C14 Practice Exam

Multiple Choice

e. 1.4×10^{-3}

Identify the choice that best completes the statement or answers the question.

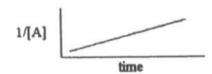
A flask is charged with 0.124 mol of A and allowed to react to form B according to the reaction $A(g) \rightarrow B(g)$. The following data are obtained for [A] as the reaction proceeds:


		Time (s)	0.00	10.0	20.0	30.0	40.0		
		Moles of A	0.124	0.110	0.088	0.073	0.054		
-	1.	The average a. 2.2 × 10 b. 1.1 × 10 c. 4.4 × 10 d. 454 e. 9.90 ×)-3)-3)-3	disapp	earance	of A	oetween	10 s and 20 s is	mol/s.
_	2.		rate of 0-4 0-3 0-3	disapp	earance	e of A	between	20 s and 40 s is	mol/s.
		a. +1.5 × b. +5.0 × c1.5 × d. +7.3 × e7.3 ×	10-3 10-4 10-3 10-3 10-3					s and 30 s is	
	4.	The average a. 5.0 × 1 b. 1.6 × 1 c. 1.5 × 1 d. 670 e. 0.15	0-4 0-2	isappea	rance o	f A be	tween 20	0 s and 30 s is	mol/s.
	5.	How many a. 0.011 b. 0.220 c. 0.110 d. 0.014	moles o	of B are	e preser	nt at 10	s?		

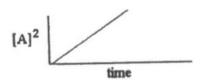
b. 0.15 c. 0.073 d. 1.7 × 10 ⁻³ e. 0.051	
7. The kinetics of the reaction below a factor of 9 when the concentration A + B → P	were studied and it was determined that the reaction rate increased by on of B was tripled. The reaction is order in B.
a. zerob. firstc. secondd. thirde. one-half	
8. The kinetics of the reaction below change when the concentration of A + B → P	were studied and it was determined that the reaction rate did not B was tripled. The reaction is order in B.
a. zero b. first c. second d. third e. one-half	
the reaction rate to a. remain constant b. increase by a factor of 27 c. increase by a factor of 9 d. triple e. decrease by a factor of the cu	
10. A reaction was found to be zero of the reaction rate to a. remain constant b. increase by a factor of 27 c. increase by a factor of 9 d. triple e. decrease by a factor of the cu	rder in A. Increasing the concentration of A by a factor of 3 will cause the root of 3

11.	For a first-order reaction, a plot of versus is linear.
	a. $\ln [A]_1, \frac{1}{t}$
	•
	b. $\ln [A]_t$, t
	c. $\frac{1}{[A]_t}$, t
	A 577
	d. [A]i, t
	d. $[A]_t$, t e. t , $\frac{1}{[A]_t}$
 12.	The rate constant for a particular second-order reaction is 0.47 M ⁻¹ s ⁻¹ . If the initial concentration of reactant is 0.25 mol/L, it takes s for the concentration to decrease to 0.13 mol/L. a. 7.9 b. 1.4 c. 3.7 d. 1.7 e. 0.13
 13.	A first-order reaction has a rate constant of 0.33 min ⁻¹ . It takes min for the reactant concentration to decrease from 0.13 M to 0.088 M.
	a. 1.2
	b. 1.4
	c. 0.51
	d. 0.13 e. 0.85
 14.	The reaction below is first order in [H ₂ O ₂]:
	$2H_2O_2(I) \rightarrow 2H_2O(I) + O_2(g)$
	A solution originally at 0.600 M H ₂ O ₂ is found to be 0.075 M after 54 min. The half-life for this
	reaction is min.
	a. 6.8
	b. 18
	c. 14
	d. 28
	e. 54
 _ 15	 A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher in pure
	oxygen than is in air. b. oxygen is a catalyst for combustion.
	·
	 e. nitrogen is a reactant in combustion and its low concentration in pure oxygen catalyzes the combustion.
	•

16. Which one of the following graphs shows the correct relationship between concentration and time for a reaction that is second order in [A]?


a.


b.


C.

d.

e.

The reaction $A \rightarrow B$ is first order in [A]. Consider the following data.

time (s)	[A] (M)
0.0	1.60
10.0	0.40
20.0	0.10

- 17. The rate constant for this reaction is _____ s⁻¹.
 - a. 0.013
 - b. 0.030
 - c. 0.14
 - d. 3.0
 - e. 3.1×10^{-3}

18.	The half-life of this reaction is s. a. 0.97 b. 7.1 c. 5.0 d. 3.0 e. 0.14
 19.	In the energy profile of a reaction, the species that exists at the maximum on the curve is called the a. product b. activated complex c. activation energy
	d. enthalpy of reaction e. atomic state
 20.	 Which of the following is true? a. If we know that a reaction is an elementary reaction, then we know its rate law. b. The rate-determining step of a reaction is the rate of the fastest elementary step of its mechanism. c. Since intermediate compounds can be formed, the chemical equations for the elementary reactions in a multistep mechanism do not always have to add to give the chemical equation of the overall process. d. In a reaction mechanism, an intermediate is identical to an activated complex. e. All of the above statements are true.
 21.	Of the following, will lower the activation energy for a reaction. a. increasing the concentrations of reactants b. raising the temperature of the reaction c. adding a catalyst for the reaction d. removing products as the reaction proceeds e. increasing the pressure
 22.	The rate law of the overall reaction
	$A + B \rightarrow C$
	is rate = k[A] ² . Which of the following will <u>not</u> increase the rate of the reaction? a. increasing the concentration of reactant A b. increasing the concentration of reactant B c. increasing the temperature of the reaction d. adding a catalyst for the reaction e. All of these will increase the rate.

14 Practice Exam

MULTIPLE CHOICE

1.	ANS:	A	PTS:	1	DIF:	1	REF:	Sec. 14.2
2.	ANS:	В	PTS:	1	DIF:	1	REF:	Sec. 14.2
3.	ANS:	A	PTS:	1	DIF:	1	REF:	Sec. 14.2
4.	ANS:	C	PTS:	1	DIF:	1	REF:	Sec. 14.2
5.	ANS:	D	PTS:	1	DIF:	1	REF:	Sec. 14.2
6.	ANS:	E	PTS:	1	DIF:	1	REF:	Sec. 14.2
7.	ANS:	C	PTS:	1	DIF:	1	REF:	Sec. 14.3
8.	ANS:	A	PTS:	1	DIF:	1	REF:	Sec. 14.3
9.	ANS:	В	PTS:	1	DIF:	1	REF:	Sec. 14.3
10.	ANS:	A	PTS:	1	DIF:	1	REF:	Sec. 14.3
11.	ANS:	В	PTS:	1	DIF:	1	REF:	Sec. 14.3
12.	ANS:	A	PTS:	1	DIF:	2	REF:	Sec. 14.4
13.	ANS:	A	PTS:	1	DIF:	1	REF:	Sec. 14.4
14.	ANS:	В	PTS:	1	DIF:	4	REF:	Sec. 14.4
15.	ANS:	A	PTS:	1	DIF:	1	REF:	Sec. 14.1
16.	ANS:	C	PTS:	1	DIF:	2	REF:	Sec. 14.4
17.	ANS:	C	PTS:	1	DIF:	1	REF:	Sec. 14.4
18.	ANS:	C	PTS:	1	DIF:	1	REF:	Sec. 14.4
19.	ANS:	В	PTS:	1	DIF:	1	REF:	Sec. 14.5
20.	ANS:	A	PTS:	1	DIF:	4	REF:	Sec. 14.6
21.	ANS:	C	PTS:	1	DIF:	1	REF:	Sec. 14.7
22.	ANS:	В	PTS:	1	DIF:	1	REF:	Sec. 14.7

SHORT ANSWER

- 23. ANS:
 - a. rate = $k[NO]^{1}[Cl_{2}]^{2}$
 - b. 12 L2/mol2h
 - c. 0.060 mol/Lh
 - d. 9.0 mol/Lh
 - PTS: 1
- 24. ANS:
 - a. $2NO + 2H_2 \rightarrow N_2 + 2H_2O\acute{E}$ show work with cancellations
 - b. rate = $k[NO]^2[H_2]^1$
 - c. step 3Éexplain
 - d. rate = $k[NO]^2$
 - PTS: 1