

DYNAMIC BREATHING SIMULATOR

BIOMEDICAL IMPACT OF AIR & SPACE

Mr. David Mohl
711th Human Performance Wing
Aerospace Physiology Research

Overview

- Oxygen → Cognition and Performance
- Flight Profiles → Influence Pilot Breathing
- Researchers → Anticipate Flight Parameters

Dynamic Breathing Simulator

→ Create Advanced Algorithms for Replicating Pilot Breathing

Helping Save Pilots... One Breath at a Time

Pertinent Terms

- Tidal Volume (TV):
 - Amount of Air Inhaled per Breath (Resting ~ 0.5 Liters)
- Breathing Rate (BR):
 - Number of Breaths per Minute (Resting ~ 12 BPM)
- Minute Ventilation (MV):
 - Volume of Air Inhaled per Minute (Resting ~ 6 LPM)

Note: Summation of Inhale Volumes = Summation of Exhale Volumes

Design Goals

Human Breathing Characteristics

Tidal Volume: Max: ~ 3-4 L Typical: ~ 0.5 L Respiratory Rate: *Max: ~ 100 BPM Typical: ~ 12-20 Gas Peak Flow: *Max: ~ 320 LPM Typical: ~ 60 LPM

*MIL-STD-3050A

Breathing Simulator Characteristics

Bellows Volume: Max: ~ 4 L Cycle Rates: Determined by combinations of LPM & BPM

Mechanical System

• Bellows (Volumetric Air Flow):

$$V = \pi r^2 h$$

h = stroke, r = radius = ~5 inch

- Ball Screw (Linear Displacement):
 - 5 revolutions = 1 inch of travel
- Servo Motor (Rotary Motion):

Encoder: ~ 8K counts/revolution

Basic Motion

System Correlations

THE AIR FORCE RESEARCH LABORATORY

Sawtooth Algorithm

- Basic Motion Waveform
- Equation: y = mx +b
- Run at Slow Speeds
 - Provides steady air flow
 - Verify sensor data
- Run at High Speeds
 - Abrupt motion transitions
 - Investigate cellular shear
- System Checks or Maintenance

Circular Algorithm

- Industry Standard Waveform
- Equation: y = a * sin(bx + c)
 - Circle: $x = r \cos(\theta)$ and $y = r \sin(\theta)$
 - Real and Virtual Axis Assignments
- Circular Velocity -> Peak Air Flow
- Circumference -> Time per Breath
- Rapid Transitions Between Profiles
- Allows Pause & Duty Cycle Options

Alternate Algorithm

- · Approximation of Human Breathing
 - Dr. Dan Warkander (NAMRU-Dayton)
 - · Based on Centrifuge Data
 - Supports Higher G Breathing (5-7-9)
- Volumetric Flow Considerations
- Inhale Waveform:
 - Increased Section of Steady Flow
 - Duty Cycle Typical ~ 45%
- Exhale Waveform:
 - Exponential Flow
 - Duty Cycle Typical ~ 55%

Pilot Data Algorithm

- Replication of Human Breathing
 - Centrifuge Run Data (1G, 5G, 9G)
 - Inhale Matches Exhale Volume
- Opportunities
 - · Reproduce Flight Profile Breathing
 - High Fidelity System Simulations
- Challenges
 - · Recording Actual Flight Mission Data
 - Exhale Vented Through Mask
 - Pilot Performance Sensitivities

Building Waveforms

Inhale

Exhale

Blended Waveform

- Research Attributes
 - Combine Building Blocks
 - Create Unique Wave Patterns
- Algorithms to Match Actual Data
 - Repeatable and Scalable
 - Supports Automations
- Simulate Custom Profiles
 - Separate Inhale and Exhale Wavelets
 - Blend Data and Algorithms

MIL-STD-3050A

→ Pause

→ Duty Cycle

MIL-STD-3050A Conditions								
Test Condition	Mean (LPM)	Peak (LPM)	Tidal (L)	Freq (BPM)				
1	10	31	1	10				
2	20	63	1	20				
3	30	94	1.5	20				
4	35	110	1.5	23.3				
5	40	126	1	40				
6	50	157	2	25				
7	60	188	2.5	24				
8	65	204	2	32.5				
9	75	236	1.5	50				
10	75	236	2.5	30	G's	Inhale %	Pause %	Exhale %
11	41.6	180*	1.6	26	5	36	28	36
12	52.5	258*	1.75	30	7	32	36	32
13	34.5	322*	1.5	23	9	18	64	18
*Exception to Previous Trend: Peak Flow = Pi x Mean								

THE AIR FORCE RESEARCH LABORATORY

Pause Options

- Pause After Wavelet Segments
 - Original Waveform + Pause (1 Sec)
 - Constant Peak Flow (60 LPM)
 - Constant Wavelet Timing (2.5 Sec)
- Wavelets with Integrated Pause
 - Original Frequency (12 BPM)
 - Shorten Wavelet Time (2.0 Sec)
 - Increase Peak Flow (75 LPM)

→ Maintain Constant Tidal Volume

Shifted Duty Cycle

- Adjust Peak Flow & Wavelet Time
- Reference Sine Wave
 - Both Wavelets: 60 LPM & 2.5 Sec
 - Tidal Volume: 1.6 Liters
- Shifted Waveform
 - Inhale Wavelet: 75 LPM & 2.0 Sec
 - Exhale Wavelet: 50 LPM & 3.0 Sec
 - Tidal Volume: 1.6 Liters

→ Maintain Constant Tidal Volume

Summary

- So, how's your breathing?
- Do you breathe in circles or are you more like a square?
- Dynamic Breathing Simulator...
 - → Saving Airmen...

One Breath at a Time

Energetic - Excited

Focused – Relaxed

Imagery in this document are property of the U.S. Air Force

