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Milestones
• Opponent Modelling in Poker, Billings et.al., ‘98 

• Abstraction Methods for Game-Theoretic Poker, Shi/Littman, ‘00 

• Approximating Game-Theoretic Optimal Strategies for Full-scale Poker, 

Billings et.al., ‘03

• Optimal Rhode Island Poker, Gilpin/Sandholm, ‘05

• Annual Computer Poker Competition ‘06-Present

• EGT/automated abstraction algorithms, Gilpin/Sandholm ‘06-‘08

• Regret Minimization in Games with Incomplete Information, Zinkevich et.al., 

‘07

• Man vs. Machine limit Texas hold ‘em competitions ‘08-’09

• Computer Poker & Imperfect Information Symposium/Workshop ‘12-Present

• Heads-up Limit Hold'em Poker is Solved, Bowling et.al., ‘15

• Brains vs. AI no-limit Texas hold ‘em competition ’15

• First Computer Poker Tutorial ‘16

• DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker ’17

• Second Brains vs. AI no-limit Texas hold ‘em competition ‘17
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Scope and applicability of game theory

• Strategic multiagent interactions occur in all fields

– Economics and business: bidding in auctions, offers in 

negotiations

– Political science/law: fair division of resources, e.g., divorce 

settlements

– Biology/medicine: robust diabetes management (robustness 

against “adversarial” selection of parameters in MDP)

– Computer science: theory, AI, PL, systems; national security 

(e.g., deploying officers to protect ports), cybersecurity (e.g., 

determining optimal thresholds against phishing attacks), 

internet phenomena (e.g., ad auctions)
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Game theory background

• Players

• Actions (aka pure strategies)

• Strategy profile: e.g., (R,p)

• Utility function: e.g., u1(R,p) = -1, u2(R,p) = 1

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Zero-sum game

• Sum of payoffs is zero at each strategy profile: 

e.g., u1(R,p) + u2(R,p) = 0

• Models purely adversarial settings

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Mixed strategies

• Probability distributions over pure strategies

• E.g., R with prob. 0.6, P with prob. 0.3, S with 

prob. 0.1
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Best response (aka nemesis)

• Any strategy that maximizes payoff against 

opponent’s strategy

• If P2 plays (0.6, 0.3, 0.1) for r,p,s, then a best 

response for P1 is to play P with probability 1
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Nash equilibrium

• Strategy profile where all players 

simultaneously play a best response

• Standard solution concept in game theory

– Guaranteed to always exist in finite games [Nash 

1950]

• In Rock-Paper-Scissors, the unique equilibrium 

is for both players to select each pure strategy 

with probability 1/3 
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Minimax Theorem

• Minimax theorem: For every two-player zero-sum 

game, there exists a value v* and a mixed strategy 

profile σ* such that:

a. P1 guarantees a payoff of at least v* in the worst case by 

playing σ*1 

b. P2 guarantees a payoff of at least -v* in the worst case by 

playing σ*2 

• v* (= v1) is the value of the game 

• All equilibrium strategies for player i guarantee at 

least vi in the worst case

• For RPS, v* = 0
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Exploitability

• Exploitability of a strategy is difference 

between value of the game and performance 

against a best response

– Every equilibrium has zero exploitability

• Always playing rock has exploitability 1

– Best response is to play paper with probability 1
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Nash equilibria in two-player zero-

sum games

• Zero exploitability – “unbeatable”

• Exchangeable

– If (a,b) and (c,d) are NE, then (a,d) and (c,b) are too

• Can be computed in polynomial time by a linear 

programming (LP) formulation
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Nash equilibria in multiplayer and 

non-zero-sum games
• None of the two-player zero-sum results hold

• There can exist multiple equilibria, each with different 

payoffs to the players

• If one player follows one equilibrium while other 

players follow a different equilibrium, overall profile is 

not guaranteed to be an equilibrium

• If one player plays an equilibrium, he could do worse if 

the opponents deviate from that equilibrium

• Computing an equilibrium is PPAD-hard
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Imperfect information

• In many important games, there is information 

that is private to only some agents and not 

available to other agents

– In auctions, each bidder may know his own 

valuation and only know the distribution from which 

other agents’ valuations are drawn

– In poker, players may not know private cards held 

by other players
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Extensive-form representation
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Extensive-form games

• Two-player zero-sum EFGs can be solved in 

polynomial time by linear programming

– Scales to games with up to 108 states

• Iterative algorithms (CFR and EGT) have been 

developed for computing an ε-equilibrium that scale to 

games with 1017 states

– CFR also applies to multiplayer and general sum games, 

though no significant guarantees in those classes

– (MC)CFR is self-play algorithm that samples actions down 

tree and updates regrets and average strategies stored at 

every information set 
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Standard paradigm for solving large 

imperfect-information games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Texas hold ‘em poker

• Huge game of imperfect information

– Most studied imp-info game in AI community since 2006 

due to AAAI computer poker competition

– Most attention on 2-player variants (2-player zero-sum)

– Multi-billion dollar industry (not “frivolous”)

• Limit Texas hold ‘em – fixed betting size 

– ~1017 nodes in game tree

• No Limit Texas hold ‘em – unlimited bet size

– ~10165 nodes in game tree

– Most active domain in last several years

– Most popular variant for humans
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No-limit Texas hold ‘em poker

• Two players have stack and pay blinds (ante)

• Each player dealt two private cards

• Round of betting (preflop)

– Players can fold, call, bet (any amount up to stack)

• Three public cards dealt (flop) and a second round of 

betting

• One more public card and round of betting (turn)

• Final card and round of betting (river)

• Showdown
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Game abstraction

• Necessary for solving large games

– 2-player no-limit Texas hold ‘em has 10165 game states, 

while best solvers “only” scale to games with 1017 states

• Information abstraction: grouping information sets 

together

• Action abstraction: discretizing action space

– E.g., limit bids to be multiples of $10 or $100
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Information abstraction
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Standard paradigm for solving large 

extensive-form games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Hierarchical abstraction to enable 

distributed equilibrium computation
• On distributed architectures and supercomputers with 

high inter-blade memory access latency, 

straightforward MCCFR parallelization approaches 

lead to impractically slow runtimes 

– When a core does an update at an information set it needs to 

read and write memory with high latency

– Different cores working on same information set may need to 

lock memory, wait for each other, possibly over-write each 

others' parallel work, and work on out-of-sync inputs

• Our approach solves the former problem and also helps 

mitigate the latter issue
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High-level approach

• To obtain these benefits, our algorithm creates an 

information abstraction that allows us to assign disjoint 

components of the game tree to different blades so the 

trajectory of each sample only accesses information 

sets located on the same blade.

– First cluster public information at some early point in the 

game (public flop cards in poker), then cluster private 

information separately for each public cluster.

• Run modified version of external-sampling MCCFR

– Samples one pair of preflop hands per iteration. For the later 

betting rounds, each blade samples public cards from its 

public cluster and performs MCCFR within each cluster. 
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Standard paradigm for solving large 

imperfect-information games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Action translation

• fA,B(x) ≡ probability we map x to A 

– Will also denote as just f(x)

$
A

x

B

[Ganzfried & Sandholm IJCAI-13]
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Pseudo-Harmonic Mapping 

• We propose a new mapping, called the pseudo-

harmonic mapping, which is the only mapping 

consistent with the equilibrium of a simplified poker 

game:

– f(x) = 
(𝐵−𝑥)(1+𝐴)

(𝐵−𝐴)(1+𝑥)

• This mapping has significantly lower exploitability 

than the prior ones in several simplified poker games

• Significantly outperforms the randomized-geometric 

mappings in no-limit Texas hold’em
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Action translation desiderata

1. Boundary constraints: f(A) = 1, f(B) = 0

2. Monotonicity

3. Scale invariance

4. Action robustness: small change in x doesn’t 

lead to large change in f

5. Boundary robustness: small change in A or B 

doesn’t lead to large change in f
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Standard paradigm for solving large 

imperfect-information games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Purification and thresholding

• Thresholding: round action probabilities below c down 

to 0 (then renormalize)

• Purification is extreme case where we play maximal-

probability action with probability 1
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New family of post-processing 

techniques
• 2 main ideas: 

– Bundle similar actions

– Add preference for conservative actions

• First separate actions into {fold, call, “bet”}

– If probability of folding exceeds a threshold parameter, fold 

with prob. 1

– Else, follow purification between fold, call, and “meta-

action” of “bet.”

– If “bet” is selected, then follow purification within the 

specific bet actions.

• Many variations: threshold parameter, bucketing of 

actions, thresholding value among buckets, etc.
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Experiments on no-limit Texas hold ‘em

• Purification outperforms using a threshold of 

0.15

– Does better than it against all but one 2010 

competitor, beats it head-to-head, and won bankroll 

competition
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Worst-case exploitability

• We also compared worst-case exploitabilities of several variants 

submitted to the 2010 two-player limit Texas hold ‘em division

– Using algorithm of Johanson et al. IJCAI-11
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Post-processing experiments

Hyperborean.iro Slumbot Average Min

No Thresholding +30 ± 32 +10 ± 27 +20 +10

Purification +55 ± 27 +19 ± 22 +37 +19

Thresholding-0.15 +35 ± 30 +19 ± 25 +27 +19

New-0.2 +39 ± 26 +103 ± 21 +71 +39
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Brains vs. Artificial Intelligence

• April 24-May 8, 2015 at Rivers Casino in 

Pittsburgh, PA

– The competition was organized by Carnegie Mellon 

University Professor Tuomas Sandholm. Collaborators 

were Tuomas Sandholm and Noam Brown.

• 20,000 hands of two-player no-limit Texas 

hold ‘em between “Claudico” and Dong Kim, 

Jason Les, Bjorn Li, Doug Polk

– 80,000 hands in total

• Used “duplicate” scoring
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Brains
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Brains
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Brains
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Results

• Humans won by 732,713 chips, which 

corresponds to 9.16 big blinds per 100 hands 

(BB/100) (SB = 50, BB = 100)

– Statistically significant at 90% confidence level, but 

not 95% level

• Dong Kim beat Nick Frame by 13.87 BB/100 

– $103,992 over 15,000 hands with 25-50 blinds

• Doug Polk beat Ben Sulsky by 24.67 BB/100

– $740,000 over 15,000 hands with 100-200 blinds
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Payoffs

• Prize pool of $100,000 distributed to the 

humans depending on their individual profits.
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I Limp!

• “Limping is for Losers. This is the most important 

fundamental in poker -- for every game, for every 

tournament, every stake: If you are the first player to 

voluntarily commit chips to the pot, open for a raise. 

Limping is inevitably a losing play. If you see a person 

at the table limping, you can be fairly sure he is a bad 

player. Bottom line: If your hand is worth playing, it is 

worth raising” [Phil Gordon’s Little Gold Book, 2011]

• Claudico limps close to 10% of its hands

– Based on humans’ analysis it profited overall from the limps

• Claudico makes many other unconventional plays (e.g., 

small bets of 10% pot and all-in bets for 40 times pot)
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Architecture

• Offline abstraction and equilibrium computation

– EC used Pittsburgh’s Blacklight supercomputer with 961 cores

• Action translation

• Post-processing

• Endgame solving
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Endgame solving

Strategies for entire game 

computed offline

Endgame strategies 

computed in real time to 

greater degree of accuracy
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Cannot use backwards induction in 

games of imperfect information
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Endgame definition

• E is an endgame of a game G if:

1. Set of E’s nodes is a subset of set of G’s nodes

2. If s’ is a child of s in G and s is a node in E, then s’ is 

also a node in E

3. If s is in the same information set as s’ in G and s is a 

node in E, then s’ is also a node in E



50

Can endgame solving guarantee 

equilibrium?

• Suppose that we computed an exact (full-game) 

equilibrium in the initial portion of the game 

tree prior to the endgame (the trunk), and 

computed an exact equilibrium in the endgame. 

Is the combined strategy an equilibrium of the 

full game?
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Can endgame solving guarantee 

equilibrium?

• No!

• Several possible reasons this may fail:

– The game may have many equilibria, and we might 

choose one for the trunk that does not match up 

correctly with the one for the endgame

– We may compute equilibria in different endgames 

that do not balance appropriately with each other
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Can endgame solving guarantee 

equilibrium?

Proposition: There exist games with a unique 

equilibrium and a single endgame for which 

endgame solving can produce a non-equilibrium 

strategy profile in the full game
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Can endgame solving guarantee 

equilibrium?

0,0 -1,1 0,0 0,0-1,1 -1,11,-1 1,-1 1,-1
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Endgame solving out of necessity for 

limit Texas hold ‘em agents 2003-2007
• The agent GS1 precomputed strategies only for the first 

two rounds, using rough approximations for the 

payoffs at the leaves of that trunk based on the 

(unrealistic) assumption that there was no betting in 

future rounds. Then in real time, the relevant endgame 

consisting of the final two rounds was solved using the 

LP algorithm [Gilpin-Sandholm AAAI ‘06]. 

• GS2 precomputed strategies for the first three rounds, 

using simulations to estimate the payoffs at the leaves; 

it then solved the endgames for the final two rounds in 

real time [Gilpin-Sandholm AAMAS ’07].
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• 2007 – 2013, everyone: “Endgame solving is 

fundamentally flawed!!!”

– “No point in doing it when we have the resources available 

to solve a reasonable abstraction of the full game already!”
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Benefits of endgame solving

• Computation of exact (rather than approximate) 

equilibrium strategies in the endgames

• Computation of equilibrium refinements (e.g., 

undominated and ε-quasi-perfect equilibrium)

• Better abstractions in the endgame that is reached

– Finer-grained abstractions

– History-aware abstractions

– Strategy-biased abstractions

• Solving the “off-tree problem” 
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• Endgame solving had not been implemented by any competitive 

agents for no-limit Texas hold ‘em. 

• Prior approaches assume that the private hand distributions 

leading into the endgame are independent, while they are actually 

dependent and the full joint distribution should be computed. 

• The prior approaches use a single perfect-recall card abstraction 

that has been precomputed offline (which assumes a uniform 

random distribution for the opponent's hand distributions). In 

contrast, we use an imperfect-recall card abstraction that is 

computed in real time in a finer granularity than the initial offline 

abstraction and that is tailored specifically to the relevant 

distribution of the opponent's hands at the given hand history.

• Furthermore, the prior approaches did not compare performance 

between endgame solving and not using it (since the base 

strategies were not computed for the endgames), while we 

provide such a comparison.
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G1

a1

……

G2 Gn

a2 an

Player 1 selects his action ai, then the players play 

imperfect-information game Gi.

Is there any hope?
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Is there any hope?

• Endgame solving produces strategies with low 

exploitability in games where the endgame is a 

significant strategic portion of the full game.

– i.e., in games where any endgame strategy with high full-

game exploitability can be exploited by the opponent by 

modifying his strategy just within the endgame.
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Is there any hope?

• Proposition: If every strategy that has exploitability 

strictly more than ε in the full game has exploitability 

of strictly more than δ within the endgame, then the 

strategy output by a solver that computes a δ-

equilibrium in the endgame induced by a trunk strategy 

t would constitute an ε-equilibrium of the full game 

when paired with t.
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Endgame property

• We can classify different games according to 

property described by premise of proposition

– If premise is satisfied, then we can say game 

satisfies the (ε, δ)-endgame property

• Interesting quantity would be smallest value ε*(δ) such 

that game satisfies the (ε, δ)-endgame property for a 

given δ.

• Game above has ε*(δ)  = δ for each δ >= 0

• RPS has ε*(δ)  = 1 for each δ >= 0
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Efficient algorithm for endgame-solving in 

large imperfect-information games

• First step: compute joint input distribution of private 

information using Bayes’ rule

• Naïve approach requires iterating over all possible 

private hand combinations and for each pair looking up 

probability base strategy would take given sequence

– This requires O(n2) lookups to the strategy table, where n is 

the number of possible hands (n = 1081 for river in poker)

– Becomes bottleneck and makes real-time endgame solving 

computationally infeasible (takes > 1 min/hand)

– Our algorithm uses just O(n) strategy table lookups (takes a 

few seconds per hand)
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Algorithm for computing joint 

private hand distributions

• In short, the algorithm first computes distributions 

separately for each player (as done by the independent 

approach), then multiplies the probabilities together for 

hands that do not share a common card (and sets the 

joint probability to zero otherwise).

– Utilizes indexing schemes to compute private card hand 

index and 7-card board

– Maps 7-card index to 2-card index in main loop so we can 

determine which hands share a common card

– Final loop is O(n2), though main bottleneck loop is O(n)
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Main endgame-solving algorithm

• First compute joint hand distribution D[][]

• Next compute arrays E1, E2 of equities for each hand 

against opponent's distribution 

– For P1, do this by adding D[h1][h2] to E1[h1] for each hand h2

with lower rank than that of h1, and adding D[h1][h2]/2 for 

each hand with equal rank

• Compute information (card) abstractions A1, A2 by 

clustering elements of Ei into ki buckets

– ki = floor(T/bi), where T is parameter and bi number of action 

sequences in action abstraction

• Solve new abstracted game using an algorithm for 

computing an equilibrium (or a refinement)
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Algorithm for computing endgame 

information abstractions
• Most prior work in poker uses k-means

– However, this can be problematic. Suppose there are many hands with equity 

0.7643, and also many hands with equity 0.7641. Then k-means would likely 

create separate clusters for these, and group hands with very different 

equities (e.g., 0.2 and 0.3) together if few hands have those equities.

• Instead, we use percentile hand strength

– Break up the interval [0,1] into ki regions of equal length

– Group hand hi into bucket floor(Ei[hi] / ki)

– We use modification where we first add a special bucket just for hands with 

Ei[hi] >= alpha

– Can result in significantly fewer than ki buckets, since may be zero hands 

with Ei within some intervals. We take this into account, and reduce number 

of buckets in the card abstraction accordingly before solving the endgame.

– The abstractions may be very different for the two players (and have 

different numbers of buckets)
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Solving the abstracted endgame

• Solve the endgame with precomputed betting 

abstractions and computed information abstractions by 

applying an equilibrium-finding algorithm

– If endgame has 108 or fewer states, can solve it exactly using 

LP, as opposed to using an iterative algorithm like CFR that 

is only guaranteed to approach equilibrium in the limit

– Can also apply algorithms that compute certain refinements

• While card abstractions are computed independently, 

we use the joint distribution for determining 

probabilities that players are dealt hands from 

respective buckets when constructing the endgame
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Experiments

• We tested our algorithm against the two strongest 

agents for two-player no-limit Texas Hold’em from the 

2013 poker competition. The base agent was a version 

the agent we submitted to the 2014 ACPC from shortly 

before the competition.

• Endgame solver averaged around 8 seconds per hand 

(using Gurobi’s LP solver)



68

Variance reduction

• Proposition: Let A1 and A2 be two algorithms that 

differ in play only for endgames. Then the difference in 

performance looking at only the hands where both 

make it to the same endgame is not an unbiased 

estimator of the overall performance difference.

• Proposition: Let A1 and A2 be two algorithms that 

differ in play only for endgames. Then the difference in 

performance looking at only the hands where both 

make it to some (but not necessarily the same) 

endgame is an unbiased estimator of the overall 

performance difference.
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Experiments

• Statistically significant performance improvement 

against both opponents: 87+-50 vs. Hyperborean and 

29+-25 vs. Slumbot

– Results are from 100 duplicate matches against Hyperborean 

and 155 against Slumbot. Since each match is 3000 hands, 

this corresponds to 600,000/930,000 hands.

– Out of these hands, both versions of our agent made it to the 

river round on 173,568 hands against Hyperborean and on 

318,700 hands against Slumbot. 

– Results are from hands where both versions made it to the 

river, using our variance-reduction technique (would not 

have obtained statistical significance using prior duplicate 

approach).
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Experiments

• Base agent used purification for all actions except first 

preflop action

– Was shown to be best in prior experiments and was our 

standard setting for evaluating our base agent

• Endgame solver assumed that both agents used no 

thresholding when creating the input distributions

• Endgame solver did not do any rounding for the river
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Problematic hands

1. We had A4s and folded preflop after putting in over half of our stack 

(human had 99).

– We only need to win 25% of time against opponent’s distribution for 

call to be profitable (we win 33% of time against 99). 

– Translation mapped opponent’s raise to smaller size, which caused us to 

look up strategy computed thinking that pot size was much smaller than 

it was (7,000 vs. 10,000)

2. We had KT and folded to an all-in bet on turn after putting in ¾ of our stack 

despite having top pair and a flush draw

– Human raised slightly below smallest size in our abstraction and we 

interpreted it as a call

– Both 1 and 2 due to “off-tree problem”

3. Large all-in bet of 19,000 into small pot of 1700 on river without “blocker”

– E.g., 3s2c better all-in bluff hand than 3c2c on JsTs4sKcQh

– Endgame information abstraction algorithm doesn’t fully account for 

“card removal”
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Reflections on the First Man vs. Machine 

No-Limit Texas Hold ‘em Competition 
[Sigecom Exchanges ‘15, to appear in AI Magazine]

• Two most important avenues for improvement

– Solving the “off-tree problem”

– Improved approach for information abstraction that better accounts for 

card removal/“blockers” 

• Improved theoretical understanding of endgame solving

– Works very well in practice despite lack of guarantees

– Newer decomposition approach with guarantees does worse

• Bridge abstraction gap

– Approaches with guarantees only scale to small games

– Larger abstractions work well despite theoretical “pathologies”

• Diverse applications of equilibrium computation

• Theoretical questions for action translation/post-processing
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Two most important avenues for 

improvement

• “The first is to develop an improved approach for the ``off-tree'' 

problem where we make a mistake due to a misperception of the 

actual size of the pot after translating an action for the opponent 

that is not in our action abstraction. We have outlined promising 

agendas for attacking this problem, including improved action 

abstraction and translation algorithms, novel approaches for 

real-time computation that address the portion of the game 

prior to the final round, and entirely new approaches 

specifically geared at solving the off-tree problem independently 

of the other problems.”
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• “And the second is to develop an improved approach for 

information abstraction that better accounts for card 

removal/``blockers'' (i.e., that accounts for the fact that us 

having certain cards in our hand modifies the probability of the 

opponent having certain hands). This issue is most problematic 

within the information abstraction algorithm for the 

endgame, where the card removal effect is most significant 

due to the distributions for us and the opponent being the 

most well defined (i.e., there is no more potential remaining in 

the hand due to uncertainty of public cards, and this relative 

certainty will likely cause the distributions to put positive weight 

on fewer hands), and it limits our ability to utilize large bet 

sizes, which have been demonstrated to be optimal in certain 

settings.”

Two most important avenues for 

improvement
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• New game decomposition approach (CFR-d) has 

theoretical guarantee but performs worse empirically

– Burch et al. AAAI-14 

• Recent approach for safer endgame solving that 

maximizes the “endgame margin” 

– Moravic et al. AAAI-16

• Doug Polk related to me in personal communication 

after the competition that he thought the river strategy 

of Claudico using the endgame solver was the strongest 

part of the agent.
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Second Brains vs. AI Competition

• Libratus: +14.7 BB/100 over 120,000 hands ($200k in 

prizes)

– Claudico -9.16 BB/100 over 80,000 hands ($100k in prizes)
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1. Libratus: 20-25 million core hours on supercomputer

– Claudico: 2-3 million core hours on supercomputer
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2. Improved equilibrium-finding algorithm “Regret-

based pruning” which prunes actions with high regret 

early on in CFR so that the computation can eliminate 

large portions of the game tree following these “bad” 

actions.

– Brown and Sandholm, “Reduced Space and Faster 

Convergence in Imperfect-Information Games via 

Regret-Based Pruning,” 2017 AAAI Workshop on 

Computer Poker and Imperfect Information

http://www.cs.cmu.edu/~noamb/papers/16-arXiv-Total-RBP.pdf
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3. Improved endgame solver. Used supercomputer 

resources in real time. Was able to solve full turn and 

river endgames within around 20 seconds. Estimated 

that it would take 10+ minutes on normal machine.

– Brown and Sandholm, “Safe and Nested Endgame Solving 

in Imperfect-Information Games,” 2017 AAAI Workshop 

on Computer Poker and Imperfect Information

– Used CFR instead of LP for endgame solving (to better 

capitalize on parallelization).

http://www.cs.cmu.edu/~noamb/papers/17-AAAI-Refinement.pdf
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4. Claudico’s mistakes  Libratus’ strengths

– e.g., card removal/“blockers” and off-tree problem
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DeepStack

• DeepStack agent from Alberta beat human 

“professionals” but not two-player no-limit Texas hold 

‘em specialists in 2016 for 49 bb/100.

– Libratus: +14.7 BB/100

– Claudico: -9.16 BB/100

• It played 3000 hands per match against each human, 

against ~35 humans. Used variance reduction 

techniques for statistical significance.

• Published in “Science,” 2017.
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• Michael Bowling, “DeepStack is ALL Endgame 

Solving!”

• Solves each round independently, assuming payoffs 

that were trained using deep learning.

• Can apply for any stack sizes (while Claudico and 

Libratus were solved specifically for the competition 

parameters).

• DeepStack acts very quickly in real time, but requires 

~175 core years for the training, which is equivalent to 

several hundred computers for a several months.
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Conclusions and future research

• Endgame solving can help in practice in large imperfect-

information games

• New efficient algorithm led to significantly stronger 

performance against best 2013 ACPC NLTH agents 

• Improved versions led to Claudico and ultimately to superhuman 

play with Libratus and DeepStack (both in very different ways).

• We showed that endgame solving can produce strategies with 

high exploitability in certain games, while it guarantees low 

exploitability in others.

– Where do different game classes fall on this spectrum? 

• Is there an underlying theoretical justification for endgame 

solving’s success?

• Can these techniques be applied to games with more than two 

players, and/or games beyond poker?
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• www.ganzfriedresearch.com

• https://www.youtube.com/watch?v=phRAyF1rq0I

• www.bestgametheoryclass.com


