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Scope and applicability of game theory

 Strategic multiagent interactions occur in all fields

— Economics and business: bidding in auctions, offers in
negotiations

— Political science/law: fair division of resources, e.g., divorce
settlements

— Biology/medicine: robust diabetes management (robustness
against “adversarial” selection of parameters in MDP)

— Computer science: theory, Al, PL, systems; national security
(e.g., deploying officers to protect ports), cybersecurity (e.g.,
determining optimal thresholds against phishing attacks),
Internet phenomena (e.g., ad auctions)



Game theory background

rock paper SCISSOIS
Rock 0,0 -1, 1 1, -1

Paper 1,-1 0,0 -1,1
Scissors -1.1 1,-1 0,0

Players

Actions (aka pure strategies)

Strategy profile: e.g., (R,p)

Utility function: e.g., u,(R,p) =-1, u,(R,p) = 1
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Zero-sum game

rock paper SCISSOIS
Rock 0,0 -1, 1 1, -1

Paper 1,-1 0,0 -1,1
Scissors -1.1 1,-1 0,0

» Sum of payoffs Is zero at each strategy profile:
e.9., Uy(R,p) + U,(R,p) =0
» Models purely adversarial settings



Mixed strategies

 Probability distributions over pure strategies

* E.g., R with prob. 0.6, P with prob. 0.3, S with
prob. 0.1

10



Best response (aka nemesis)

 Any strategy that maximizes payoff against
opponent’s strategy

 |f P2 plays (0.6, 0.3, 0.1) for r,p,s, then a best
response for P1 is to play P with probability 1
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Nash equilibrium

o Strategy profile where all players
simultaneously play a best response
o Standard solution concept in game theory

— Guaranteed to always exist in finite games [Nash
1950]

* In Rock-Paper-Scissors, the unique equilibrium
IS for both players to select each pure strategy
with probability 1/3
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Minimax Theorem

Minimax theorem: For every two-player zero-sum

game, there exists a value v* and a mixed strategy
profile o* such that:

a. P1 guarantees a payoff of at least v* in the worst case by
playing c*,

b. P2 guarantees a payoff of at least -v* in the worst case by
playing o*,

v* (= v,) Is the value of the game

All equilibrium strategies for player | guarantee at
least v; In the worst case

For RPS, v*=0
13



Exploitability

» Exploitability of a strategy Is difference
between value of the game and performance

against a best response

— Every equilibrium has zero exploitability
 Always playing rock has exploitability 1

— Best response Is to play paper with probability 1

14



Nash equilibria in two-player zero-
sum games

» Zero exploitability — “unbeatable”

» Exchangeable
— If (a,b) and (c,d) are NE, then (a,d) and (c,b) are too

« Can be computed In polynomial time by a linear
programming (LP) formulation

15



Nash equilibria in multiplayer and
NoN-zero-sum games

« None of the two-player zero-sum results hold

« There can exist multiple equilibria, each with different
payoffs to the players

* |f one player follows one equilibrium while other
players follow a different equilibrium, overall profile is
not guaranteed to be an equilibrium

* |f one player plays an equilibrium, he could do worse if
the opponents deviate from that equilibrium

« Computing an equilibrium is PPAD-hard

16



Imperfect information

 In many important games, there is information
that Is private to only some agents and not
avallable to other agents

— In auctions, each bidder may know his own
valuation and only know the distribution from which
other agents’ valuations are drawn

— In poker, players may not know private cards held
by other players

17



Extensive-form representation




Extensive-form games

« Two-player zero-sum EFGs can be solved In
polynomial time by linear programming
— Scales to games with up to 108 states

o [terative algorithms (CFR and EGT) have been
developed for computing an e-equilibrium that scale to
games with 101/ states

— CFR also applies to multiplayer and general sum games,
though no significant guarantees in those classes

— (MC)CFR is self-play algorithm that samples actions down
tree and updates regrets and average strategies stored at
every information set

19



Standard paradigm for solving large
Imperfect-information games

Original game

Abstracted game

Automated abstraction i E

Custom
equilibrium-finding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
20



Texas hold ‘em poker

« Huge game of imperfect information

— Most studied imp-info game in Al community since 2006
due to AAAI computer poker competition

— Most attention on 2-player variants (2-player zero-sum)
— Multi-billion dollar industry (not “frivolous”)

« Limit Texas hold ‘em — fixed betting size
— ~10%" nodes in game tree

 No Limit Texas hold ‘em — unlimited bet size
— ~10%% nodes in game tree
— Most active domain in last several years

— Most popular variant for humans
21



No-limit Texas hold ‘em poker

Two players have stack and pay blinds (ante)
Each player dealt two private cards

Round of betting (preflop)
— Players can fold, call, bet (any amount up to stack)

Three public cards dealt (flop) and a second round of
betting

One more public card and round of betting (turn)
Final card and round of betting (river)
Showdown

22



Game abstraction

» Necessary for solving large games

— 2-player no-limit Texas hold ‘em has 106> game states,
while best solvers “only” scale to games with 10/ states

 [nformation abstraction: grouping information sets
together

 Action abstraction: discretizing action space
— E.g., limit bids to be multiples of $10 or $100

23



Information abstraction
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Standard paradigm for solving large
extensive-form games

Original game

Abstracted game

Automated abstraction i E

Custom
equilibrium-finding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
PAS



Hierarchical abstraction to enable

distributed equilibrium computation

« On distributed architectures and supercomputers with
high inter-blade memory access latency,
straightforward MCCFR parallelization approaches
lead to impractically slow runtimes

— When a core does an update at an information set it needs to
read and write memory with high latency

— Different cores working on same information set may need to
lock memory, walit for each other, possibly over-write each
others' parallel work, and work on out-of-sync inputs

» Our approach solves the former problem and also helps
mitigate the latter issue

26



High-level approach

 To obtain these benefits, our algorithm creates an
Information abstraction that allows us to assign disjoint

components of t
trajectory of eac
sets located on t

ne game tree to different blades so the
n sample only accesses information
ne same blade.

— First cluster public information at some early point in the
game (public flop cards in poker), then cluster private
Information separately for each public cluster.

« Run modified version of external-sampling MCCFR

— Samples one pa

Ir of preflop hands per iteration. For the later

betting rounds, each blade samples public cards from its
public cluster and performs MCCFR within each cluster.

27



Standard paradigm for solving large
Imperfect-information games

Original game

Abstracted game

Automated abstraction i E

Custom
equilibrium-finding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
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Action translation

e f, (%) = probability we map x to A
— Will also denote as just f(x)

[Ganzfried & Sandholm IJCAI-13]
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Pseudo-Harmonic Mapping

* \We propose a new mapping, called the pseudo-
harmonic mapping, which Is the only mapping
consistent with the equilibrium of a simplified poker
game:

- 100 =G

« This mapping has significantly lower exploitability
than the prior ones in several simplified poker games

o Significantly outperforms the randomized-geometric
mappings In no-limit Texas hold’em

30



SCOR D

Action translation desiderata

Boundary constraints: f(A) =1, f(B) =0
Monotonicity
Scale invariance

Action robustness: small change in x doesn’t
lead to large change in f

Boundary robustness: small change in A or B
doesn’t lead to large change in f

31



Standard paradigm for solving large
Imperfect-information games

Original game

Abstracted game

Automated abstraction i E

Custom
equilibrium-finding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
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Purification and thresholding

 Thresholding: round action probabilities below ¢ down
to O (then renormalize)

 Purification Is extreme case where we play maximal-
probability action with probability 1

33



New family of post-processing
techniques

* 2 main ideas:
— Bundle similar actions
— Add preference for conservative actions

* First separate actions into {fold, call, “bet”}

— If probability of folding exceeds a threshold parameter, fold
with prob. 1

— Else, follow purification between fold, call, and “meta-
action” of “bet.”

— If “bet” 1s selected, then follow purification within the
specific bet actions.
» Many variations: threshold parameter, bucketing of
actions, thresholding value among buckets, etc. 4,



Experiments on no-limit Texas hold ‘em

 Purification outperforms using a threshold of
0.15

— Does better than it against all but one 2010
competitor, beats it head-to-head, and won bankroll
competition

35



Worst-case exploitability

« We also compared worst-case exploitabilities of several variants
submitted to the 2010 two-player limit Texas hold ‘em division

— Using algorithm of Johanson et al. IJCAI-11

Exploitability | Exploitability
Threshold of GS6 of Hyperborean
None 463.591 235.209
0.05 326.119 243.705
0.15 318.465 258.53
0.25 335.048 277.841
Purified 349.873 437.242

Table 4: Results for full-game worst-case exploitabilities of
several strategies in two-player limit Texas Hold’'em. Re-
sults are in milli big blinds per hand. Bolded values indicate
the lowest exploitability achieved for each strategy.




Post-processing experiments

Hyperborean.iro Slumbot Average Min
No Thresholding +30 + 32 +10 £ 27 +20 +10
Purification +55 + 27 +19 + 22 +37 +19
Thresholding-0.15 +35+ 30 +19 £ 25 +27 +19
New-0.2 +39 + 26 +103 + 21 +71 +39
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Brains vs. Artificial Intelligence

 April 24-May 8, 2015 at Rivers Casino In
Pittsburgh, PA

— The competition was organized by Carnegie Mellon
University Professor Tuomas Sandholm. Collaborators
were Tuomas Sandholm and Noam Brown.

20,000 hands of two-player no-limit Texas
hold ‘em between “Claudico” and Dong Kim,
Jason Les, Bjorn Li, Doug Polk

— 80,000 hands In total

» Used “duplicate” scoring
38
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Brains

g Donger Kim wins heads-up challenge against
p)
TCfromUB
Poker News G+l p ] fj n khare

ong "Donger Kim" Kim won $103.992 from Nick "TCfromUB" Frame in the 15,000 hand
heads-up challenge, which not only earned him the respect of the high stakes community, but
also an additional $15,000 from the sidebets for the challenge.
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Results

« Humans won by 732,713 chips, which
corresponds to 9.16 big blinds per 100 hands
(BB/100) (SB =50, BB = 100)

— Statistically significant at 90% confidence level, but
not 95% level

* Dong Kim beat Nick Frame by 13.87 BB/100
— $103,992 over 15,000 hands with 25-50 blinds

» Doug Polk beat Ben Sulsky by 24.67 BB/100
— $740,000 over 15,000 hands with 100-200 blinds

42



Payoffs

* Prize pool of $100,000 distributed to the
humans depending on their individual profits.

I — T4

$10.000 - %60.000 —4m8 ——M
Tr1+ T2 + T3 — 314

Iro — T4

r1+ Ira + Iy — 311"'.1

S10. 000 + $60. 000
T3 — T4

$10,000 + 860,000 —MM
T+ Tg + Ty — ATy

10,000

o = pa = py = $25, 000
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| Limp!

« “Limping is for Losers. This iIs the most important
fundamental in poker -- for every game, for every
tournament, every stake: If you are the first player to
voluntarily commit chips to the pot, open for a raise.
Limping is inevitably a losing play. If you see a person
at the table limping, you can be fairly sure he Is a bad
player. Bottom line: If your hand is worth playing, it is
worth raising” [Phil Gordon’s Little Gold Book, 2011]

 Claudico limps close to 10% of its hands

— Based on humans’ analysis it profited overall from the limps

 Claudico makes many other unconventional plays (e.g.,
small bets of 10% pot and all-in bets for 40 time§14pot)



Architecture

Original game

Abstracted game

Automated abstraction i j

iZustom
equilibrium-finding
algorithm

Reverse mapping

Nash equilibrium Nash equilibrien
Offline abstraction and equilibrium computation

— EC used Pittsburgh’s Blacklight supercomputer with 961 cores
Action translation

Post-processing

Endgame solving i



Endgame solving

Strategies for entire game
computed offline

A

Endgame strategies
computed In real time to
greater degree of accuracy

46



(2,10) (1,0

Figure 5.2: A perfect-information game in extensive form.
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Cannot use backwards induction In
games of imperfect information




Endgame definition

* E Is an endgame of a game G If:

1.
2.

Set of E’s nodes 1s a subset of set of G’s nodes

If s’ 1s a child of s in G and s 1s a node 1n E, then s’ 1s
also a node In E

If s 1s in the same information set as s’ m G and sis a
node 1n E, then s’ 1s also a node in E

49



Can endgame solving guarantee
equilibrium?

» Suppose that we computed an exact (full-game)
equilibrium in the initial portion of the game
tree prior to the endgame (the trunk), and
computed an exact equilibrium in the endgame.
Is the combined strategy an equilibrium of the
full game?

50



Can endgame solving guarantee
equilibrium?
2N\ (o]

» Several possible reasons this may fail:

— The game may have many equilibria, and we might
choose one for the trunk that does not match up
correctly with the one for the endgame

— We may compute equilibria in different endgames
that do not balance appropriately with each other

ol



Can endgame solving guarantee
equilibrium?

Proposition: There exist games with a unique
equilibrium and a single endgame for which
endgame solving can produce a non-equilibrium
strategy profile in the full game

52



Can endgame solving guarantee
equilibrium?

53



Endgame solving out of necessity for

limit Texas hold ‘em agents 2003-2007

« The agent GS1 precomputed strategies only for the first
two rounds, using rough approximations for the
payoffs at the leaves of that trunk based on the
(unrealistic) assumption that there was no betting in
future rounds. Then In real time, the relevant endgame
consisting of the final two rounds was solved using the
LP algorithm [Gilpin-Sandholm AAAI “06].

« (GS2 precomputed strategies for the first three rounds,
using simulations to estimate the payoffs at the leaves;
It then solved the endgames for the final two rounds in
real time [Gilpin-Sandholm AAMAS °07].
54



« 2007 — 2013, everyone: “Endgame solving 1s
fundamentally flawed!!!”

— “No point 1n doing 1t when we have the resources available
to solve a reasonable abstraction of the full game already!”

25



Benefits of endgame solving

Computation of exact (rather than approximate)
equilibrium strategies In the endgames

Computation of equilibrium refinements (e.g.,
undominated and e-quasi-perfect equilibrium)

Better abstractions in the endgame that is reached
— Finer-grained abstractions

— History-aware abstractions

— Strategy-biased abstractions

Solving the “off-tree problem”

56



Endgame solving had not been implemented by any competitive
agents for no-limit Texas hold ‘em.

Prior approaches assume that the private hand distributions
leading into the endgame are independent, while they are actually
dependent and the full joint distribution should be computed.

The prior approaches use a single perfect-recall card abstraction
that has been precomputed offline (which assumes a uniform
random distribution for the opponent's hand distributions). In
contrast, we use an imperfect-recall card abstraction that is
computed in real time in a finer granularity than the initial offline
abstraction and that is tailored specifically to the relevant
distribution of the opponent's hands at the given hand history.

Furthermore, the prior approaches did not compare performance
between endgame solving and not using it (since the base
strategies were not computed for the endgames), while we

provide such a comparison. -



Is there any hope?

Player 1 selects his action a;, then the players play
Imperfect-information game G;.

o8



Is there any hope?

« Endgame solving produces strategies with low
exploitability in games where the endgame Is a
significant strategic portion of the full game.

— 1.e., In games where any endgame strategy with high full-
game exploitability can be exploited by the opponent by
modifying his strategy just within the endgame.

59



Is there any hope?

» Proposition: If every strategy that has exploitability
strictly more than ¢ in the full game has exploitability
of strictly more than 6 within the endgame, then the
strategy output by a solver that computes a o-
equilibrium in the endgame induced by a trunk strategy
t would constitute an e-equilibrium of the full game
when paired with t.

60



Endgame property

» We can classify different games according to
property described by premise of proposition
— If premise Is satisfied, then we can say game
satisfies the (e, 6)-endgame property

* [nteresting quantity would be smallest value £*(6) such
that game satisfies the (g, 6)-endgame property for a
given o.

« Game above has €*(6) = o foreach 6 >=0
« RPShase*(6) =1foreacho>=0

61



Efficient algorithm for endgame-solving In
large imperfect-information games

 FIrst step: compute joint input distribution of private
information using Bayes’ rule

 Naive approach requires iterating over all possible
private hand combinations and for each pair looking up
probability base strategy would take given sequence

— This requires O(n?) lookups to the strategy table, where n is
the number of possible hands (n = 1081 for river in poker)

— Becomes bottleneck and makes real-time endgame solving
computationally infeasible (takes > 1 min/hand)

— Our algorithm uses just O(n) strategy table lookups (takes a
few seconds per hand)

62



Algorithm for computing joint
private hand distributions

* |n short, the algorithm first computes distributions
separately for each player (as done by the independent
approach), then multiplies the probabilities together for
hands that do not share a common card (and sets the
joint probability to zero otherwise).

— Utilizes indexing schemes to compute private card hand
Index and 7-card board

— Maps 7-card index to 2-card index in main loop so we can
determine which hands share a common card

— Final loop is O(n?), though main bottleneck loop is O(n)

63



Main endgame-solving algorithm

First compute joint hand distribution D[][]

Next compute arrays E,, E, of equities for each hand
against opponent's distribution

— For P1, do this by adding D[h,][h,] to E,[h,] for each hand h,
with lower rank than that of h,, and adding D[h,][h,]/2 for
each hand with equal rank

Compute information (card) abstractions A, A, by
clustering elements of E; into k; buckets

— k; =floor(T/b;), where T Is parameter and b, number of action
seguences In action abstraction

Solve new abstracted game using an algorithm for

computing an equilibrium (or a refinement)
64



Algorithm for computing endgame
Information abstractions

Most prior work in poker uses k-means

— However, this can be problematic. Suppose there are many hands with equity
0.7643, and also many hands with equity 0.7641. Then k-means would likely
create separate clusters for these, and group hands with very different
equities (e.g., 0.2 and 0.3) together if few hands have those equities.

Instead, we use percentile hand strength

— Break up the interval [0,1] into k; regions of equal length

— Group hand h; into bucket floor(E;[hi] / k;)

— We use modification where we first add a special bucket just for hands with
E;[h;] >= alpha

— Can result in significantly fewer than k; buckets, since may be zero hands

with E; within some intervals. We take this into account, and reduce number
of buckets in the card abstraction accordingly before solving the endgame.

— The abstractions may be very different for the two players (and have
different numbers of buckets) 65



Solving the abstracted endgame

» Solve the endgame with precomputed betting
abstractions and computed information abstractions by
applying an equilibrium-finding algorithm
— If endgame has 108 or fewer states, can solve it exactly using

LP, as opposed to using an iterative algorithm like CFR that
IS only guaranteed to approach equilibrium in the limit

— Can also apply algorithms that compute certain refinements
« While card abstractions are computed independently,
we use the joint distribution for determining

probabilities that players are dealt hands from
respective buckets when constructing the endgame

66



Experiments

« We tested our algorithm against the two strongest
agents for two-player no-limit Texas Hold’em from the
2013 poker competition. The base agent was a version
the agent we submitted to the 2014 ACPC from shortly
before the competition.

« Endgame solver averaged around 8 seconds per hand
(using Gurobi’s LP solver)

67



Variance reduction

 Proposition: Let A, and A, be two algorithms that
differ in play only for endgames. Then the difference in
performance looking at only the hands where both
make It to the same endgame is not an unbiased
estimator of the overall performance difference.

 Proposition: Let A; and A, be two algorithms that
differ in play only for endgames. Then the difference in
performance looking at only the hands where both
make It to some (but not necessarily the same)
endgame Is an unbiased estimator of the overall
performance difference. 68



Experiments

o Statistically significant performance improvement
against both opponents: 87+-50 vs. Hyperborean and
29+-25 vs. Slumbot

— Results are from 100 duplicate matches against Hyperborean
and 155 against Slumbot. Since each match is 3000 hands,
this corresponds to 600,000/930,000 hands.

— Out of these hands, both versions of our agent made it to the
river round on 173,568 hands against Hyperborean and on
318,700 hands against Slumbot.

— Results are from hands where both versions made it to the
river, using our variance-reduction technigue (would not
have obtained statistical significance using prior duplicate
approach). 69



Experiments

« Base agent used purification for all actions except first
preflop action

— Was shown to be best in prior experiments and was our
standard setting for evaluating our base agent

« Endgame solver assumed that both agents used no
thresholding when creating the input distributions

« Endgame solver did not do any rounding for the river
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Problematic hands

1. We had A4s and folded preflop after putting in over half of our stack
(human had 99).

—  We only need to win 25% of time against opponent’s distribution for
call to be profitable (we win 33% of time against 99).

—  Translation mapped opponent’s raise to smaller size, which caused us to

look up strategy computed thinking that pot size was much smaller than
It was (7,000 vs. 10,000)

2.  We had KT and folded to an all-in bet on turn after putting in % of our stack
despite having top pair and a flush draw

—  Human raised slightly below smallest size in our abstraction and we
Interpreted it as a call

—  Both 1 and 2 due to “off-tree problem™
3. Large all-in bet of 19,000 into small pot of 1700 on river without “blocker”
—  E.g., 3s2c better all-in bluff hand than 3c2c on JsTs4sKcQh

—  Endgame information abstraction algorithm doesn’t fully account for
“card removal” 71



Reflections on the First Man vs. Machine

No-Limit Texas Hold ‘em Competition
[Sigecom Exchanges ‘15, to appear in Al Magazine]

Two most important avenues for improvement

— Solving the “off-tree problem™

— Improved approach for information abstraction that better accounts for
card removal/“blockers”

Improved theoretical understanding of endgame solving
— Works very well in practice despite lack of guarantees
— Newer decomposition approach with guarantees does worse

Bridge abstraction gap
— Approaches with guarantees only scale to small games
— Larger abstractions work well despite theoretical “pathologies”

Diverse applications of equilibrium computation
Theoretical questions for action translation/post-processing



Two most Important avenues for
Improvement

» “The first 1s to develop an improved approach for the “ off-tree”
problem where we make a mistake due to a misperception of the
actual size of the pot after translating an action for the opponent
that Is not in our action abstraction. We have outlined promising
agendas for attacking this problem, including improved action
abstraction and translation algorithms, novel approaches for
real-time computation that address the portion of the game
prior to the final round, and entirely new approaches
specifically geared at solving the off-tree problem independently

of the other problems.”’
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Two most important avenues for
Improvement

* “And the second 1s to develop an improved approach for
Information abstraction that better accounts for card
removal/" blockers" (i.e., that accounts for the fact that us
having certain cards in our hand modifies the probability of the
opponent having certain hands). This issue is most problematic
within the information abstraction algorithm for the
endgame, where the card removal effect is most significant
due to the distributions for us and the opponent being the
most well defined (i.e., there is no more potential remaining in
the hand due to uncertainty of public cards, and this relative
certainty will likely cause the distributions to put positive weight
on fewer hands), and it limits our ability to utilize large bet
sizes, which have been demonstrated to be optimal in certain

settings.” 24



« New game decomposition approach (CFR-d) has
theoretical guarantee but performs worse empirically

— Burch et al. AAAI-14

 Recent approach for safer endgame solving that
maximizes the “endgame margin”
— Moravic et al. AAAI-16

* Doug Polk related to me in personal communication
after the competition that he thought the river strategy
of Claudico using the endgame solver was the strongest

part of the agent.
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Second Brains vs. Al Competition

 Libratus: +14.7 BB/100 over 120,000 hands ($200Kk in
prizes)
— Claudico -9.16 BB/100 over 80,000 hands ($100Kk in prizes)
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1. Libratus: 20-25 million core hours on supercomputer
— Claudico: 2-3 million core hours on supercomputer
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2.

Improved equilibrium-finding algorithm “Regret-
based pruning” which prunes actions with high regret
early on in CFR so that the computation can eliminate
large portions of the game tree following these “bad”
actions.
— Brown and Sandholm, “Reduced Space and Faster
Convergence in Imperfect-Information Games via

Regret-Based Pruning,” 2017 AAAI Workshop on
Computer Poker and Imperfect Information

/8


http://www.cs.cmu.edu/~noamb/papers/16-arXiv-Total-RBP.pdf

3. Improved endgame solver. Used supercomputer
resources In real time. Was able to solve full turn and
river endgames within around 20 seconds. Estimated
that it would take 10+ minutes on normal machine.

— Brown and Sandholm, “Safe and Nested Endgame Solving
In_Imperfect-Information Games,” 2017 AAAI Workshop
on Computer Poker and Imperfect Information

— Used CFR instead of LP for endgame solving (to better
capitalize on parallelization).
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http://www.cs.cmu.edu/~noamb/papers/17-AAAI-Refinement.pdf

4. Claudico’s mistakes = Libratus’ strengths
— e.g., card removal/“blockers” and off-tree problem
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DeepStack

» DeepStack agent from Alberta beat human
“professionals’ but not two-player no-limit Texas hold

‘em specialists in 2016 for 49 bb/100.

— Libratus: +14.7 BB/100
— Claudico: -9.16 BB/100

» |t played 3000 hands per match against each human,
against ~35 humans. Used variance reduction

techniques for statistical significance.
e Published 1n “Science,” 2017.
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Michael Bowling, “DeepStack i1s ALL Endgame
Solving!”

Solves each round independently, assuming payoffs
that were trained using deep learning.

Can apply for any stack sizes (while Claudico and
_1bratus were solved specifically for the competition
parameters).

DeepStack acts very quickly in real time, but requires
~175 core years for the training, which is equivalent to
several hundred computers for a several months.
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Small Game | Large Game

Base Strategy 0.128

Unsafe 39.68
Resolve
Maxmargin 0.9362 0.6121
Reach-Maxmargin

Table 1: Exploitability (evaluated in the game with no infor-
mation abstraction) of the endgame-solving techniques.
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Conclusions and future research

Endgame solving can help in practice in large imperfect-
Information games

New efficient algorithm led to significantly stronger
performance against best 2013 ACPC NLTH agents

Improved versions led to Claudico and ultimately to superhuman
play with Libratus and DeepStack (both in very different ways).

We showed that endgame solving can produce strategies with
high exploitability in certain games, while it guarantees low
exploitability in others.

— Where do different game classes fall on this spectrum?

Is there an underlying theoretical justification for endgame
solving’s success?

Can these techniques be applied to games with more than two
players, and/or games beyond poker? a4
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