
IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1229 | P a g e

Self-Reliant and Sustainable Resource Scheduling Model

Based on Cloud Computing
Monika1, Dr. Kalpana Sharma2, Dr. Vivek Jaglan3

12Department of C.S.E., Bhagwant University Ajmer Rajasthan
3Department of C.S.E., Amity University, Gurugram, Haryana

Abstract- Cloud computing is a promising method that moves

the information and processing administration modules from

singular gadgets to a geologically dispersed cloud benefit

engineering. A general versatile distributed computing

framework is involved different cloud spaces, and every area

deals with a bit of the cloud framework assets. In this paper,

we propose an administration basic leadership framework for

interdomain benefit exchange to adjust the calculation loads

among various cloud spaces. To this end, we define the
administration ask for basic leadership process as a semi-

Markov choice process. The ideal administration exchange

choices are gotten by mutually thinking about the framework

earnings and costs. Broad reproduction results demonstrate

that it decline benefit interruptions contrasted and the

avaricious approach.

Keywords- Cloud Computing, Load Balancing, Data Centers

I. INTRODUCTION

Present day distributed computing frameworks work in
another and dynamic world, portrayed by persistent changes

in nature and in the framework and execution prerequisites

that must be fulfilled. Nonstop changes happen all of a sudden

and in an unusual way, which are outside the control of the

cloud supplier.

Along these lines, propelled arrangements should be created

that deal with the cloud framework in a powerfully versatile

manner, while consistently giving administration and

execution ensures. Specifically, ongoing examinations have

demonstrated that the fundamental difficulties looked by

cloud suppliers are to 1) decrease costs, 2) enhance levels of

execution, and 3) upgrade accessibility and constancy.
Inside this structure, it should first be noticed that, everywhere

benefit focuses, the quantity of servers are developing

fundamentally and the multifaceted nature of the system

framework is additionally expanding. This prompts a gigantic

spike in power utilization: IT experts foresee that before the

finish of 2012, up to 40 percent of the financial plans of cloud

benefit focuses will be dedicated to vitality costs. Vitality

effectiveness is, consequently, one of the fundamental central

focuses on which asset administration ought to be concerned.

Moreover, suppliers need to conform to benefit level

understanding (SLA) gets that decide the incomes picked up

and punishments caused based on the level of execution

accomplished.

Fig.1:

Nature of administration (QoS) ensures must be fulfilled

notwithstanding workload changes, which could traverse a

few requests of greatness inside a similar business day. Right

now, foundation as an administration (IaaS) and stage as an

administration (PaaS) suppliers incorporate into SLA
contracts just accessibility, while execution are disregarded. In

the event of accessibility infringement (with current figures,

notwithstanding for extensive suppliers, being around 96

percent, much lower than the qualities expressed in their

agreements [12]), clients are discounted with credits to utilize

the cloud framework for nothing. The idea of virtualization,

an empowering innovation that permits sharing of the same

physical machine by numerous end-client applications with

execution ensures, is major to creating fitting strategies for the

administration of current cloud frameworks.

Fig.2

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1230 | P a g e

From an innovative point of view, the combination of

different client workloads on the same physical machine

decreases costs, yet this likewise converts into higher usage of

the physical assets. Henceforth, unexpected load changes or

equipment disappointments can have a more noteworthy
effect among various applications, making cost-proficient,

tried and true cloud frameworks with QoS assurances of

fundamental significance to acknowledge expansive selection

of cloud frameworks.

II. RELATED WORK

There have been numerous investigations of load adjusting for

the cloud condition. Load adjusting in distributed computing

was portrayed in a white paper composed by Adler [7] who

presented the instruments and procedures regularly utilized for

stack adjusting in the cloud. In any case, stack adjusting in the

cloud is as yet another issue that requirements new designs to
adjust to numerous progressions. Chaczko et al.[8] depicted

the part that heap adjusting plays in enhancing the execution

and looking after security. There are many load adjusting

calculations. Vishakha et al.[10] utilized the insect state

enhancement strategy in hubs stack adjusting. Deepika et

al.[13] gave a thought about investigation of a few

calculations in distributed computing by checking the

execution time and cost. They presumed that the ESCE

calculation and throttled calculation are superior to the Round

Robin calculation. A portion of the traditional load adjusting

strategies are like the assignment technique in the working
framework, for instance, the Round Robin calculation and the

First Come First Served (FCFS) rules. The Round Robin

calculation is utilized here on the grounds that it is genuinely

basic. Load adjusting for remote systems has been considered

broadly in the past writing, e.g., various factor stack adjusting

[5], stack adjusting with approach component [6], stack

adjusting in view of amusement hypothesis [7], stack

adjusting in WLANs [8], multiservice stack adjusting [9] and

delicate load adjusting [10], and planning [11] in

heterogeneous remote systems, among others. Some past

works have likewise existed on stack adjusting for CMSs [3],

[12]. Among them, the heap adjusting issue for CMSs in [3] is
worried about spreading the sight and sound administration

undertaking load on servers with the insignificant cost for

transmitting mixed media information between server groups

and customers, while the maximal load point of confinement

of every server bunch isn't damaged. A rearranged worry in

their setting is to expect that all the mixed media benefit

assignments are of a similar kind.

Practically speaking, nonetheless, the CMS offers

administrations of producing, altering, handling, and looking

through an assortment of media information, e.g., hypertext,

pictures, video, sound, designs, et cetera [1]. Diverse
interactive media administrations have different necessities for

the capacities given by the CMS (stockpiling, focal preparing

unit, and illustrations handling unit groups), e.g, theQoS

prerequisite of hypertext site page administrations is looser

than that of video gushing administrations. Likewise, the

settings in the past works [3], [12] did not consider that heap

adjusting should adjust to the time change.
To react to the functional prerequisites said above, we expect

that in the CMS, every server bunch can just deal with a

particular kind of mixed media benefit undertaking, and every

customer asks for an alternate sort of sight and sound

administration at various time. At every particular time step,

such an issue can be displayed as a whole number straight

programming definition, which is computationally recalcitrant

by and large [13]. Ordinarily, recalcitrant issues are normally

comprehended by metaheuristic approaches, e.g., recreated

toughening [14], hereditary calculation [15], molecule swarm

improvement, and so on. In this paper, we propose a

hereditary calculation (GA) for the concerned unique load
adjusting issue for CMSs. GA has effectively discovered

applications in an assortment of zones in software engineering

and building, for example, quick covariance coordinating, air

ship ground benefit planning issue, ideal electric system

outline, among others. In our setting of GA, tip top outsiders

and arbitrary workers are added to new populace, since they

are appropriate for tackling the issues in unique situations.

The test results demonstrate that to a specific degree, our

approach is prepared to do progressively spreading the mixed

media errand stack equitably.

Note that some past takes a shot at different issues of
distributed computing or circulated registering have

additionally existed, e.g., fetched ideal booking on mists,

stack adjusting for appropriated multi-operator figuring,

correspondence mindful load adjusting for parallel

applications on groups, among others. Additionally take note

of that GA has been connected to dynamic load adjusting, yet

their GA was intended for appropriated frameworks, not

particular to the CMS. What's more, they didn't have any

multiservice concern.

III. MODELING AND FORMULATION

In this segment, we show an IDC framework and figure the
vitality cost minimization issue for an IDC. To begin with, we

depict IDC limit and workload, limit limitation, lining defer

requirement, and workload preservation imperative. At that

point, we plan the vitality cost minimization issue and utilize a

compelled straight programming technique to accomplish the

ideal outcome. We list the documentations in figure 3.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1231 | P a g e

Fig.3:

We display an IDC framework as a discrete-time framework

developing over an arrangement of equivalent length

vacancies. A genuine power value stays consistent all through

a vacancy and shifts after some time openings. We evaluate

the limit of an IDC by the most extreme measure of work that

should be possible with all IDC assets in a schedule vacancy.

All IDC assets are evaluated in unit of fundamental asset unit.

An essential asset unit may incorporate various microchip

centers, a measure of memory, a measure of capacity, and

various programming assets. Along these lines, an IDC limit
is in unit of essential asset unit _ schedule vacancy.

An IDC workload can be by and large named delay-delicate,

or delay-tolerant. Delay sensitive workloads incorporate

intelligent internet gaming charges, web seek demands and

different errands requesting a short administration delay.

Postponement tolerant workloads incorporate figure escalated

or information serious employments that require a casual

administration delay, for example, logical processing

applications and web list refreshing.

In spite of the fact that our proposed eco-IDC calculation is

especially reasonable for delay-tolerant workloads, it is as yet
appropriate to many distributed computing applications. The

same number of center registering and enormous scale

arrangement of product PCs turn into the standard in server

farms, enthusiasm for parallelizing applications continues

developing: solid employments are supplanted by practically

identical little assignments mapped into laborer PCs and

executed in a shorter measure of time [13].

Fig.4:

For the enthusiasm of room, we talk about our plan for the

case that all client demands require a similar administration

postpone bound, and subsequently, a similar greatest

permitted lining defer IB that equivalents the administration

defer bound less one schedule vacancy spent in executing

little client undertakings. To suit in excess of one

administration postpone bound, the plan can be instantiated

one outline unit for every administration defer bound;

dispatched client errands from all plan units can share the

server farm limit utilizing weighted reasonable sharing. In this
paper, we don't examine in detail the outline specifics on

taking care of client demands requiring diverse administration

postpone limits because of the space restriction.

All arriving client demands are enqueued into a FIFO line in

the vitality cost minimization organize. At that point, the

vitality cost minimization scheduler disintegrates client

solicitations to little client undertakings and dispatches client

assignments to execution.

IV. PROPOSED MODEL OF CLOUD

COMPUTING

Presently, the substance of Internet ends up more extravagant,
not just our generally subjective access, steering et cetera, yet

additionally the processing, stockpiling, benefit ,

programming and different components. The substance of

distributed computing contains the system, as well as those

things once portrayed outside cloud. As utilizing the cloud to

delineate system for underlining the utilization of system as

opposed to its execution subtle elements, distributed

computing use cloud to portray data benefit foundation

(arrange, figuring, stockpiling and so forth.), and

programming (working framework, application stage, Web

administrations, and so forth.). The point is to accentuation on
the use of these assets instead of their execution details[8].

As distributed computing has not uniform principles and

standards, distinctive organizations based their own particular

framework to plan their own planning model. In distributed

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1232 | P a g e

computing, asset planning technique is essential,

straightforwardly affect on the general execution and

operational advantages of distributed computing platforms[9].

In general, asset booking model of distributed computing

appeared in Figure 2, the asset administration focus of

distributed computing based current utilization of asset, utilize
the asset portion procedure to allocate assets set R = {r1, r2, ...

rn} to the client assignment set T = {t1, t2, ..., tm}, and restore

the outcomes to clients.

Resource purchasers:- Clients can present an assignment

with depicted data to the Resource Broker. The depiction

what’s more, execution of the assignment directly affects the

QoS[11]. The principle data of the assignment that client

submitted to the intermediary can be close as the financial

plan on this undertaking, due date of the errand et cetera. Each

activity contains the accompanying highlights: (1) Type of

undertaking, for assignment consummation time or errand
culmination cost;

(2) Length of undertaking, info and yield information of

assignment, the execution begin and finish time of the errand

and the proprietor of the errand; (3) The due date and

spending plan of assignment.

Resource Broker:- The principle data of every asset that

clients gave to the specialist are the host IP address, the

figuring limit of the assets, introductory offers (the processor

executes costs every second), assets distribution procedures

(time-sharing or space sharing), hub load et cetera. Asset
Broker is the center piece of the booking model. It arranges

the present assets accessible data, which is the center point

between the clients and asset. Asset intermediary can locate

the constant accessible quantities of assets and the demand

consummation errands to delineate asset to assignments. In

the ForCES engineering, CE goes about as an asset

intermediary, which can have a worldwide administration of

bring together depiction LFB asset in multi-FE by means of

ForCES convention, including arrangement, dynamic refresh.

Powers virtualization innovation can outline ForCES on the

physical system assets to the CE side, which makes CE can

convey LFB in FE flexibly. Furthermore, we can utilize the
system gear to finish a wide range of administrations business

by developing distinctive LFB topology. As is appeared in

Figure 1, the paper plan asset administration structure

demonstrate in light of ForCES organize, which comprises of

a control component (CE), sending elments (FE) and rationale

work square (LFB)[14]. CE is the administration focus of

whole ForCES arrange; FE and LFB are the system assets,

and FE is made out of different LFB to meet diverse business

needs.

Then again, look into on ForCES arrange asset portion can

make a more productive and more sensible utilization of the
current assets of ForCES organize.

Fig.5:

AgentLFB, which is situated in FE, is not quite the same as

the general LFB assets. It is utilized to gather the accessible

assets in the FE and to report constant asset utilization of its

parent FE to CE through ForCES convention. CE will produce
a table in light of these conditions, and spare the ongoing use

of each asset, so CE can be more helpful and more exact to

choose asset designation.

V. INTELLIGENT WORKLOAD FACTORING

The K-way hypergraph segment, a NP-difficult issue [11], is

to dole out all vertexes (information objects) to K (K=2 for

our situation) disjoint nonempty areas without the normal

workload past their abilities, and accomplish negligible parcel

cost cj is the net cut cost (the aggregate weights of the nets

that range in excess of one area, thusly bringing remote

information get to/consistency overhead); γ is a factor to
appoint diverse weights on the two overhead segments. There

are quick parcel arrangements proposed like the cut segment

conspire [11]. For video gushing administrations where ask

for information relationship is basic and there is no net cut as

one demand gets to just a single information thing, the

segment issue ruffians to the rucksack issue where our

avaricious plan is moving vertexes from the base zone one by

one positioned by their notoriety until the point that achieving

the blaze swarm zone's ability. This is equivalent to divert the

solicitations for the most prevalent information things in a

best k list into the blaze swarm zone, and the rest of the
inquiry is on the best way to rapidly create the right best k list

amid a notoriety progress time bothered by the workload

burst. Next we give the points of interest of the workload

calculating procedure.

It conspire has three fundamental parts: workload profiling,

based load limit, and quick calculating. The workload

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1233 | P a g e

profiling segment refreshes the present framework stack after

approaching solicitations, and looks at it to the base load edge

to choose if the framework is in an ordinary mode or a

figuring mode.

It might be physically arranged by administrators as per the

base zone limit, or naturally set in light of the heap history
data (e.g., the 95-percentile landing rate) which at that point

will likewise enter into the base zone for asset provisioning

choice. At the point when the present framework stack isn't

higher than the base load limit, the quick calculating

procedure is in the "ordinary" mode, and it just advances

approaching solicitations into the base zone. At the point

when the present framework stack is higher than the base load

edge, it is in the considering mode and inquiries a quick

successive information thing location calculation to check if

an approaching solicitation requests information in an

arrangement of hot information objects; if yes, this demand is

sent to the blaze swarm zone; else, it is sent to the base zone.
We call the quick incessant information thing recognition

calculation FastTopK. it has the accompanying information

structures: a FIFO line to record the last c asks for, a rundown

to record the present best k mainstream information things, a

rundown to record the authentic best k prevalent information

things, and a rundown of counters to record the information

thing access recurrence.

Fig.6:

Given a demand r, the calculation yields "base" if r will go to

the base zone, and "glimmer swarm" generally. It functions as

following:

1) if the framework is in the "ordinary" mode, the verifiable

best k list is constantly set as vacant; go to stage 4).
2) if the framework is in the "calculating" mode and r is the

principal ask for since entering this mode, we duplicate

the present best k list into the authentic best k list, reset

all recurrence counters to 0, and void the present best k

list.

3) if r coordinates any of the verifiable best k list (i.e.,

asking similar information thing), we increment the

recurrence counter of that information thing by 1 in the

counter rundown, and refresh the recorded best k list in

light of counter qualities.

4) else, we arbitrarily draw m demands from the FIFO line,

and contrast them and r; if r coordinates any of the m

demands (i.e., asking similar information thing), we

increment the recurrence counter of that information thing
by 1 in the counter rundown, and refresh the present best

k list in light of counter qualities.

5) In the "typical" mode, the calculation dependably replies

"base".

6) In the "considering" mode, the calculation consolidates

the two best k records by computing the assessed ask for

rate of every datum thing: for every thing in the authentic

best k list, the rate is its recurrence counter esteem

separated by the aggregate solicitations touched base

since entering the "figuring" mode; for every thing in the

present best k list, the rate is given in Theorem 1.

7) if r's information thing is in the best k of the 2k joint
things, the calculation answers "streak swarm", else it

answers "base".

8) if r's information thing does not have a place with the

chronicled top-k list, the calculation includes r into the

FIFO line for ask for history, and returns.

The key thoughts in the fastTopK calculation for accelerating

incessant information thing identification incorporate two:

accelerating the best k recognition at changing information

prevalence conveyances by pre-sifting old prominent

information things in another dispersion, and accelerating the

best k location at an information ubiquity dissemination by
pre-separating disliked information things in this new

appropriation.

VI. RESULTS AND ANALYSIS

In this area, and to infer understanding on the capability of

SocialCloud, we explore different avenues regarding the test

system portrayed previously. Before diving into the points of

interest of the tests, we depict the information and assessment

metric utilized in this segment.

Evaluation Metric:- To exhibit the capability of working

SocialCloud, we utilize the ''standardized completing time'' of
an undertaking outsourced by a client to different hubs in the

SocialCloud as the execution metric. We consider a similar

metric over the diverse diagrams utilized in the recreation. To

show the execution of all hubs that have errands to be

registered in the framework, we utilize the observational CDF

(commutative dispersion work) as a total measure.

We characterize x as the variables of time of typical activity

per committed machines, if they somehow happened to be

utilized as opposed to outsourcing calculations. This is,

assume that the general time of an assignment is Ttot and the

time it takes to process the subtask by the slowest specialist is
Tlast, at that point x for that hub is characterized as Tlast=Ttot.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1234 | P a g e

Tasks Generation:- To demonstrate the activity of our test

system and the exchange off our framework gives, we

consider two unique methodologies for the errands produced

by every client. The span of each produced errand is estimated

by virtual units of time, and for our exhibition we utilize two
distinct situations.

1) Constant undertaking weight each outsourcer creates

errands with an equivalent size. These assignments are

partitioned into square with shares and dispersed among

various specialists in the registering framework. Every laborer

gets an equivalent offer of the assignment from the outsourcer.

The age of a variable errand weight would result in non-

uniform load among neighbors for assignments to register,

and would be an empowering agent for strategies like most

brief (or longest) first and their relative execution.

Additionally, see the idea of these social charts, where they

are worked in various social settings and have changing
characteristics of assume that fits to the application situation

said before. The proposed structural plan of SocialClould, be

that as it may, insignificantly relies upon these diagrams, and

different systems a brought rather than them. As these

diagrams are broadly utilized for confirming different

applications on informal organizations, we trust they

appreciate an arrangement of delegate attributes to different

systems too.

VII. DISCUSSION

As indicated by Algorithm, every server performs MaxWeight
planning just at invigorate times. At different occasions, it

utilizes an indistinguishable calendar from previously. Since

an invigorate time happens onlywhen none of the servers are

serving any occupations, revive times could be quite

inconsistent by and by. Also, invigorate times wind up rarer as

the quantity of servers increments. This may prompt huge line

lengths and postponements by and by. Another drawback with

the utilization of (worldwide) revive times is that there should

be some type of coordination between the servers to know

whether a schedule opening is an invigorate time or not.

Henceforth, we propose the utilization of neighborhood revive

times. For server , a neighborhood revive time is a period
when every one of the employments that are in benefit at

server complete their administration at the same time. In this

way, if a period moment is a nearby invigorate time for every

one of the servers, it is a (worldwide) revive time for the

framework.

Steering is finished by the Join the most brief Queue

calculation as previously. For planning, every server picks a

MaxWeight plan just at nearby invigorate times. Between the

nearby revive times, a server keeps up a similar setup. It isn't

clear if this is throughput-ideal or not. Every server may have

different neighborhood revive times between two (worldwide)
invigorate times.

Random Routing and MaxWeight Scheduling at Local

Refresh times:-

1) Routing Algorithm (JSQ Routing): Each activity that

touches base into the framework is directed to one of the

servers consistently at arbitrary.
2) Scheduling Algorithm (MaxWeight Scheduling) for every

server : Let mean a design picked in each availability. On the

off chance that the vacancy is a neighborhood invigorate time,

is picked by the MaxWeight strategy, i.e., If it's anything but a

revive time, adjusting issue with no planning (i.e., when the

occupations and servers are one-dimensional), arbitrary

directing is known to be throughput-ideal when every one of

the servers are indistinguishable. By and by, numerous server

farms have indistinguishable servers.

Assume that every one of the servers are indistinguishable and

the activity measure appropriation fulfills Assumption 1. At

that point, any activity stack vector that fulfills is supportable
under arbitrary directing and MaxWeight booking at

neighborhood revive times.

We skirt the evidence here in light of the fact that it is

fundamentally the same as the confirmation. Since steering is

arbitrary, every server is autonomous of different servers in

the framework. Along these lines, one can demonstrate that

every server is steady under the activity stack vector utilizing

the Lyapunov work in (13). This at that point suggests that the

entire framework is steady.

VIII. CONCLUSION
We have demonstrated that a cloud can be worked in such a

way to bring down carbon discharges and operational cost.

Our reenactments demonstrate that there is a comparing

punishment as far as normal administration ask for time if the

cloud is kept running in such a design. Our work looks at the

power cost, carbon outflows, and normal administration ask

for time for an assortment of situations. The choice

concerning how to adjust the different elements will rely upon

SLAs, government enactment. The idea of the administration

will decide whether a cloud proprietor can actualize this

calculation while complying with benefit level assertions.

IX. REFERENCES

[1]. J. L. Bosque, P. Toharia, O. D. Robles, L. Pastor, “A load index
and load balancing algorithm for heterogeneous clusters,” 2013.

[2]. J. Leverich, C. Kozyrakis, “On the energy (in)efficiency of
Hadoop clusters,” ACM SIGOPS Operating Systems Review.
Volume 44 Issue 1, January 2010. p 61-65.

[3]. X. Tong, W. Shu, “An efficient dynamic load balancing scheme
for heterogeneous processing system,” In: International
conference on computational intelligence and natural
computing, 2009. CINC ’09, vol 2, pp 319–322.

[4]. W. Li, H. Shi, “Dynamic Load Balancing Algorithm Based on

FCFS,” 4Th International Conference on Innovative Computing,
Information and Control. 2009. pp 1528-1531.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1235 | P a g e

[5]. J. L. Bosque, O. D. Robles; L. Pastor, A. Rodríguez, “Parallel
CBIR implementations with load balancing algorithms,” Journal
of Parallel and Distributed Computing 66 (8), pp. 1062-1075.
2006..

[6]. P. A. Cabarcos, F. A. Mendoza, R. S., Guerrero, A. M. Lopez,

and D.Diaz-Sanchez, “SuSSo: seamless and ubiquitous single
sign-on for cloudservice continuity across devices,” IEEE
Trans. ConsumerElectron., vol. 58, no. 4, pp. 1425-1433, 2012.

[7]. S. Lee and D. Lee, and S. Lee, “Personalized DTV
programrecommendation system under a cloud computing
environment,” IEEETrans. Consumer Electron., vol. 56, no. 2,
pp. 1034-1042, 2010.

[8]. Y. Lee, “An integrated cloud-based smart home management

systemwith community hierarchy,” IEEE Trans. Consumer
Electron., vol. 62,no. 1, pp.1-9, 2016.

[9]. E. Pinheiro, R. Bianchini, E. V. Carrera, T. Heath, “Load
Balancing and Unbalancing for Power and Performance in
Cluster-Based Systems,” In proceedings of: Workshop on
Compilers and Operating Systems for Low Power (COLP).
2001.

[10]. Vishakha, SurjeetDalal, “Performance Analysis of Cloud Load

Balancing Algorithms”, International Journal of Institutional &
Industrial Research ISSN: 2456-1274, Vol. 1, Issue 1, Jan-April
2016, pp.1-5.

[11]. S. Grzonkowski, and P. M. Corcoran, “Sharing cloud services:
userauthentication for social enhancement of home networking,”
IEEETrans. Consumer Electron., vol. 57, no. 3, pp. 1424-1432,
2011.

[12]. B. Palanisamy, A. Singh, and L. Liu, “Cost-effective

resourceprovisioning for mapreduce in a cloud,” IEEE Trans.
Parallel Distrib.Syst., vol. 26, no. 5, pp. 1265-1279, 2015.

[13]. Y. Fan, W. Wu, Y. Xu, and H. Chen, “Improving
MapReducePerformance by Balancing Skewed Loads,” China
Communications, vol.11, no. 8, pp. 85-108, 2014.

[14]. Deepika Sharma, Dr. SurjeetDalal, “Evaluating Heuristic based
Load Balancing Algorithm through Ant Colony Optimization”
International Journal of Recent Research Aspects ISSN: 2349-

7688, Vol. 1, Issue 2, Sept. 2014, pp. 5-9.
[15]. T. P. Jing, and J. Yan, “Computing resource prediction for

mapreduceapplications using decision tree,” Web Technologies
and Applications,pp. 570-577, 2012.

[16]. T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, “Profiling
andmodeling resource usage of virtualized applications,”
Proceedings of the9th ACM/IFIP/USENIX International
Conference on Middleware, pp.366-387, 2008.

