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Abstract

Hurricanes are cyclones circulating about a defined center
whose closed wind speeds exceed 75 mph originating over
tropical and subtropical waters. At landfall, hurricanes can
result in severe disasters. The accuracy of predicting their tra-
jectory paths is critical to reduce economic loss and save hu-
man lives. Given the complexity and nonlinearity of weather
data, a recurrent neural network (RNN) could be beneficial
in modeling hurricane behavior. We propose the application
of a fully connected RNN to predict the trajectory of hurri-
canes. We employed the RNN over a fine grid to reduce typ-
ical truncation errors. We utilized their latitude, longitude,
wind speed, and pressure publicly provided by the National
Hurricane Center (NHC) to predict the trajectory of a hur-
ricane at 6-hour intervals. Results show that this proposed
technique is competitive to methods currently employed by
the NHC and can predict up to approximately 120 hours of
hurricane path.

Introduction
Hurricanes are thermally driven, large-scale cyclones whose
wind speeds exceed 75 miles per hour and circulate about a
well-defined center (Miller 1967). They arise from the warm
waters of the Atlantic Ocean and the Caribbean Sea and
typically travel North, Northwest, or Northeast from their
point of origin. Hurricanes’ nature of having strong winds,
heavy precipitation, and dangerous tides typically result in
severe economic disasters and loss of lives. In 1965 Hurri-
cane Betsy caused $1.5 billion of property damage at Florida
and the Gulf States (Miller 1967). In 2005, Hurricane Ka-
trina resulted in 853 recorded fatalities also in regions of
Florida (Jonkman et al. 2009). The prediction of hurricane
trajectories allows for civilians to properly evacuate and pre-
pare for these dangerous and destructive storms. Hurricane
track forecasting is not simple, however, as hurricanes are
highly erratic in their movements.

The development of current seasonal hurricane forecast
methods has advanced over the past decades. However, most
of the current hurricane trajectory forecast methods are sta-
tistical in nature (Wang et al. 2009). These statistical ap-
proaches are limiting due to the complexity and nonlinearity
of atmospheric systems. Recurrent neural networks (RNNs)
have been recently used to forecast increasingly complicated
systems. RNNs are a class of artificial neural networks

where the modification of weights allows the model to learn
intricate dynamic temporal behaviors. A RNN with the ca-
pability of efficiently modeling complex nonlinear temporal
relationships of a hurricane could increase the accuracy of
predicting future hurricane path forecasts. Development of
such an approach is the focus of this paper.

While others have used RNNs in the forecasting of
weather data, to our knowledge this is the first fully con-
nected recurrent neural networks employed using a grid
model for hurricane trajectory forecasts. The proposed
method can more accurately predict trajectories of hurri-
canes compared to traditional forecast methods employed
by the National Hurricane Center (NHC) of the National
Oceanic and Atmospheric Administration (NOAA). This pa-
per summarizes our present state of model development. Af-
ter reviewing the related work and background of recurrent
neural networks, we describe in detail the elements of our
proposed approach. Subsequently, we compare our results
with other hurricane forecasting techniques, including ones
employed by the NHC.

Related Work
Scientists are interested in improving the capability of pre-
dictive models for tracking hurricanes for the safety of in-
dividuals. There exist various forecast prediction models
for the tracking of hurricanes. The present-day models
vary immensely in structure and complexity. The National
Hurricane Center (NHC) of the National Oceanic and At-
mospheric Administration (NOAA) uses four main types
of models in their path predictions: dynamical, statistical,
statistical-dynamical, and ensemble or consensus models.1

Dynamical models, or numerical models, are complex
as they require the highest computational power to process
physical equations of motion in the atmosphere. Kurihara
et al. describe a dynamical model called the Geophysical
Fluid Dynamics Laboratory (GFDL) Hurricane Prediction
System that was created to simulate hurricanes (Kurihara,
Tuleya, and Bender 1998). This model created a multiply
nested movable mesh system to generate the interior struc-
ture of a hurricane and used cumulus parameterization to
successfully generate a real hurricane. The GFDL model

1NHC Track and Intensity models provided at: https://
www.nhc.noaa.gov/modelsummary.shtml



can be divided into four phases: (1) establish a global model
forecast onto grid points of the hurricane model, (2) initial-
ize model through the method of vortex replacement, (3)
execute model to create a 72-hour prediction, and (4) pro-
vide time series information containing storm location, min-
imum pressure, maximum wind distribution, a map of the
storm track and the time sequences of various meteorologi-
cal fields (Kurihara, Tuleya, and Bender 1998).

Statistical models are light-weight models which only use
statistical formulas to discover storm behavior relationships
from historical data. The relationships utilized to predict
hurricane trajectories are based on many storm-specific fea-
tures collected, such as location and date of the hurricane.
In (Hall and Jewson 2007), the statistical non-parametric
model derives simulations of possible trajectory paths by
spatially averaging historical data. This method strives to
avoid over-fitting with the maximal amount of historical
data by using out-of-sample validation to optimize data av-
eraging. Dynamical systems combined with the statistical
relationships allow for models to employ large-scale vari-
ables as a set of predictors for hurricane forecast schemes.
In (Wang et al. 2009), they utilized a statistical-dynamical
model to predict the trajectory paths of hurricanes in the At-
lantic based on the relationship between variability of hurri-
cane trajectories, sea surface temperatures, and vertical wind
shear.

Ensemble or consensus models are a combination of fore-
casts from different models, different physical parameters,
or varying model initial conditions. These models have
shown to be more accurate than the predictions from their
individual model components on average (Krishnamurti et
al. 2000). However, there are still many challenges asso-
ciated with modeling nonlinear spatiotemporal systems and
as a result, many of the statistical developments have been
left behind by disciplines such as machine learning. In (Lee
and Liu 2000), data mining techniques are used to predict
the features of hurricanes as it provides a time-series anal-
ysis. However, this feed-forward attempt of applying ma-
chine learning to nonlinear spatiotemporal processes does
not capture time-sequential dynamical interactions between
variables of natural events (McDermott and Wikle 2017).

In (Moradi Kordmahalleh, Gorji Sefidmazgi, and Homai-
far 2016), sparse Recurrent Neural Network with a flexi-
ble topology is used where the weight connections are op-
timized using a Genetic Algorithm (GA). It accumulates the
historical information about dynamics of the system and
uses at the time of prediction. Dynamic Time Warping
(DTW) is used to make all the hurricanes uniform, allowing
the Recurrent Neural Network to equally learn from each
hurricane. However, the use of DTW in this model does not
allow for hurricanes whose path is not monotonic. In other
words, hurricanes that turn back on itself are not considered.
Due to the stochastic nature of hurricane trajectories, Recur-
rent Neural Networks could benefit from learning from all
hurricane paths. Therefore, the accuracy of hurricane tra-
jectory forecasts could benefit from a Recurrent Neural Net-
work that could model the temporal behaviors of a due to the
complexity and nonlinearity of the atmospheric systems.

Due to the complexity and non-linearity of the atmo-

spheric systems and lack of using available hurricane ob-
servations, as in sparse Recurrent Neural Network, there is a
need for networks with the capability of modeling the tem-
poral behaviors of a hurricane. With the high complexity
and continuously increasing the quantity of data collected,
linear models are limiting. A recurrent neural network with
the capability of modeling any complex nonlinear temporal
behaviors of a hurricane could increase the accuracy of pre-
dicting future hurricane trajectories.

Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are nonlinear dynam-
ical models commonly used in machine learning to repre-
sent complex dynamical or sequential relationships between
variables (McDermott and Wikle 2017). Dynamical spa-
tiotemporal processes, such as forecasting hurricane trajec-
tories, represent a class of complex systems that can poten-
tially benefit from RNNs. Similar dynamical spatiotempo-
ral processes have benefited greatly from the application of
RNNs (Maier and Dandy 2000; Barbounis et al. 2006).

RNNs are generally fully connected networks, where con-
nection weights are the training parameters. A simple ar-
chitecture of a deep recurrent neural network arranges hid-
den state vectors hlt in a two-dimensional grid, where t =
1, . . . , T is the total time the neural network will learn and
l = 1, ..., L is the depth of the network. Figure 1 shows a
simple RNN architecture with a depth of two.

Figure 1: Sample Simple Recurrent Neural Network Architecture

The ny-dimensional vector output Yt corresponding to the
original nx-dimensional vector input Xt is given by:

Yt = g(V l ∗ hLt ) (1)

where hLt is the final nh-dimensional vector of hidden state
variables that is used to predict the output vector, V l is the
ny×nh weight matrix, and the function g(·) is an activation
function that creates the mapping between the output and the
hidden states. The hidden state vectors hlt are defined by:

hlt = f(W l ∗ hlt−1 + U l ∗Xt) (2)



(a) Largest Distance Traveled (b) Smallest Distance Traveled (c) Randomly Selected

Figure 2: 15 Atlantic Hurricane Trajectories Collected by Unisys Weather2

where W l is a nh × nh weight matrix, U l is a nh × nx
weight matrix, and the function f(·) is the activation func-
tion for the hidden layers (Karpathy, Johnson, and Fei-Fei
2015). The activation function f(·) construes the output and
is one of the core components of the neural network archi-
tecture (Tong and Mintram 2010). The nonlinearity of the
RNN model is influenced by these activation functions. The
weight matrix W models underlying dynamic connections
between the various hidden states. Thus, latent nonlinear
interactions can effectively be modeled within this frame-
work through W . Hidden states extract and provide notable
hidden dynamic features from the data and allow the V pa-
rameters to appropriately weight these patterns (McDermott
and Wikle 2017). Making recurrent neural networks appro-
priate and effective at modeling and forecasting the complex
atmospheric systems of hurricanes.

Unisys Weather Atlantic Hurricane Data
The raw Atlantic hurricane/tropical storm data used in the
study were extracted from the NOAA database.2 The data
contains all hurricanes and tropical storms from 1920 to
2012. It includes the 6-hourly center locations (latitude and
longitude in tenths of degrees), as well as the wind speeds
(in knots where one knot is equal to 1.15 mph) and min-
imal central pressure (in millibars) for the life of the his-
torical track of each cyclone. Tropical storms are cyclones
whose wind speeds do not exceed 75mph. These were con-
sidered in our model as the behavior of tropical storms are
the same as those of fully-developed hurricanes and provides
insight on trajectory behavior. The trajectories of several of
the storms from the database are depicted in Figure 2. We
utilized the hurricane points with valid longitude, latitude,
wind speed, and pressure values. The 50th percentile of
hurricanes contained 21 data points collected in its lifespan.
Since a tuple was collected 6-hourly, RNN learning was per-
formed mostly on hurricanes with duration of 126 hours.

The distance traveled and angle of travel, or direction,
was extracted from the latitude and longitude values of each
point collected 6-hourly by each hurricane. These aug-
mented parameters allow the neural network to learn about
relative rather than absolute parameters. Relative variables
provide a measure of relation and representational learning

2Atlantic hurricane tracking by year provided at: http://
weather.unisys.com/hurricane/atlantic/

for unseen paths. From the set of hurricanes we are utilizing,
the largest hurricane, Hurricane Kate (2003), traveled ap-
proximately 6394.7 miles while the smallest hurricane, Hur-
ricane Edouard (1984), traveled approximately 86.5 miles.

Although not explicitly stated by the original dataset, we
can conclude a high correlation between the number of data
points collected and the total distance traveled per histori-
cal track by the calculated Pearson correlation coefficient of
0.739. This correlation is also evident from Figure 3. From
this, we can conclude that hurricanes are continuously trav-
eling and therefore, direction and angle of travel continu-
ously provide the recurrent neural network with information
about its trajectory behavior.

Figure 3: Recorded Data Quantity vs. Distance Traveled

The direction and angle of travel features were tested
against a normal distribution using the Anderson-Darling
test. Both features returned a statistic larger than the crit-
ical value at a significance level of 0.05. Therefore, the
null hypothesis that the features come from a normal dis-
tribution is rejected. Using direction and angle of travel as
influencing features in our model, the values were normal-
ized to ensure the values of each hurricane were centered
around a normal distribution with invariant mean and vari-
ances. It has been shown that RNN with normalized data
learns from every input equally, generalizing better and con-
verging significantly faster (Cooijmans et al. 2016). It does
so as RNN returns more confident results when learning



within the interval [0,1] while being more conservative in its
sample. Normalizing is completed using Z = X−µ

σ where
X is the original value, Z is the normalized value, µ and
σ are the mean and standard deviation of all the values col-
lected by a historical hurricane path, respectively. A nor-
malized value represents the probability that the value could
appear in the given historical data, therefore the RNN can
modify the weight vectors at each state easily shown by a
runtime speedup of the RNN training (Witten et al. 2016;
Cooijmans et al. 2016).

Model and Implementation
In this paper, hurricane forecasting is performed by a fully-
connected RNN employed over a grid system. The proposed
network has the capability to accumulate the historical in-
formation about the nonlinear dynamics of the atmospheric
system by updating the weight matrices appropriately. This
capability makes the RNN suitable for modeling the com-
plex system of hurricane behavior with unobservable states.

Grid Model
We trained our neural network to learn about a grid model,
meaning that the RNN will learn the behavior of a hurri-
cane trajectory moving from one grid location to another.
Typical numerical methods contain truncation errors due to
computational limitations. As numerical models attempt to
increase accuracy and reduce the scale, truncation errors be-
come more excessive (Birchfield 1960). If minor truncation
errors propagate throughout the prediction, this could rep-
resent hundreds of miles in potential error. Employing the
grid system and reducing the number of possible truncation
errors contributes to the improved accuracy of our model by
allowing us to control the amount of loss used by prediction.

Figure 4: Atlantic Hurricane Points Collected by Unisys Weather

Figure 4 shows the recorded latitude and longitude points
collected by Unisys Weather Data used to train and test our
model. This figure allows us to see the habitual behavior
of hurricane trajectories given certain atmospheric informa-
tion. A refined grid was placed over the latitude and longi-
tude points to reduce truncation errors while allowing for a
larger scale model that encapsulates the small-scale features
more accurately (Birchfield 1960). This being an ideal ar-
rangement for RNNs to optimally grasp the complexity of
hurricane trajectories.

Main RNN Hyperparameters
Hyperparameters are preset values optimally selected by the
programmers before training begins. The activated values of
hyperparameters vary greatly depending on the model being
employed, the quantity and quality of the data being used,
and the complexity of the model. These hyperparameters
are fundamental in encapsulating the nonlinearly and com-
plexity behind forecasting hurricane paths as they influence
the decision making steps when updating the weight matri-
ces.

Grid Boundaries The number of grid blocks in our model
could be tuned depending on the amount of hurricane data
available. The number of grid blocks optimal for the RNN is
directly proportional to the number of data points available
to train on. Given that we utilized 13,131 total valid data
points and 539 hurricane/tropical storm trajectories, we uti-
lized a total of 7,256 grid blocks. The grid blocks were of
size 1x1 degrees latitude by longitude. Due to the spherical
nature of Earth, the area of each grid block is not uniform
in square miles but since most points are centered around
Earth’s equator, the difference in size for each grid block is
negligible.

Dropout A regularization hyperparameter, known as the
dropout value, randomly ignores a percentage of the input
to prevent the model from co-adapting to the training set, or
overfitting, of hurricane trajectories (Srivastava et al. 2014).
This value was set to 0.1 and was tuned and selected using
cross-validation, meaning 10% of each input was ignored
when training our RNN.

Long Short-Term Memory Cell Long Short-Term Mem-
ory Cells (LSTM) are a building unit for layers in RNNs.
Inside an LSTM, there exist three interacting activation lay-
ers, each containing their own individual training parame-
ters. The main purpose of these cells is to remember values
over arbitrary time intervals by preventing vanishing and ex-
ploding weights throughout the RNN. As a result, LSTMs
have shown to provide a significant improvement in RNN
performance when applications require long-range reason-
ing (Karpathy, Johnson, and Fei-Fei 2015). There exists
other variants of LSTM for RNNs with the same intentions;
however, LSTM was the most successful in storing and re-
trieving information over long periods of time (Karpathy,
Johnson, and Fei-Fei 2015). As hurricane trajectories can
span over hundreds of hours, these long-term cells in the
hidden layers positively contribute to the RNN’s ability to
learn about each hurricane.

Hidden State Vectors Hidden state vectors, often referred
to as hidden layers, isolate notable hidden dynamic features
from the input data. The number of hidden layers in RNNs
contribute to the complexity of the model. It has been shown
that having at least two hidden state vectors returns satisfac-
tory results, but more than three hidden state vectors do not
provide significant improvement: increasing the hidden lay-
ers, given there are more than three, tends to overfit (Karpa-
thy, Johnson, and Fei-Fei 2015). Therefore, we employed
three hidden layers each with a long short-term memory cell



to properly encapsulate the complexity of hurricane trajec-
tory behavior while not overfitting.

Network Architecture and Implementation
For the network architecture, five total layers were em-
ployed. An input layer, three hidden layers as previous
described, and an output layer. The input layer takes in a
data tuple. A data tuple is a sequence of features containing
the wind speed, latitude and latitude coordinates, direction
(or angle of travel), distance, and grid identification num-
ber. The output layer contains an LSTM building unit along
with the dropout value, a dense layer, and the final activation
layer. Our model utilized the activation function hyperbolic
tangent rather than the frequently used sigmoid and rectified
linear unit functions in the output layer. This is so as this ac-
tivation function allowed the model to output values between
[-1, 1] which better models movement in all directions. The
output shape of each layer contains the input feature count,
the time step, and the output size in that order.

For the implementation of our model, we utilized Keras.
Keras is an API that integrates with lower-level deep learn-
ing languages such as TensorFlow. It has been increas-
ingly used in the industry and research community with over
200,000 individual users as of November 2017 and large
scientific organizations including CERN and NASA3. This
API provided a sequential recurrent neural network model
with input, hidden, and output layers created with the neces-
sary parameters to facilitate the process of creating the RNN.
Keras provides a default learning rate hyperparameter of the
value 0.001. The learning rate is the rate at which the RNN
updates the weights at each hidden layer and is modified us-
ing Stochastic Gradient Descent (Chung et al. 2014). The
learning rate is used to minimize the error and stabilize the
process of updating the weight matrices. The model was
trained on an NVIDIA GeForce GTX 1060 with 6GB of
RAM which allowed the model to complete training in 200
seconds.

Forecast Results
The accuracy of our RNN employed over a grid system is
shown for the trajectory predictions of the powerful hur-
ricanes such as ALEX, DELTA, SANDY, HORTENSE,
IVAN, and PALOMA. Figure 5 shows the forecasted tra-
jectory grid locations of these randomly selected hurricanes
against the recorded grid locations from the information pro-
vided by NOAA’s Unisys Atlantic Hurricane Weather Data.
The random selection of these hurricanes occurred on the
largest 50th percentile of hurricanes in the testing set. This
was selected as so because hurricanes that are longer in
duration and distance are better to show the model’s pre-
diction capabilities than with shorter hurricanes. Of these
selected hurricanes, Hurricane SANDY was the deadliest,
most destructive, and costliest hurricane. Due to its exces-
sive wind field, large storm surge, and unusual track into
the population-dense area, the damage was about $75 bil-
lion (Force 2013). Thousands of business were damaged or

3Keras API: https://keras.io/layers/
recurrent/

forced to close in addition to the 650,000 homes that were
damaged or destroyed. None of the current methods em-
ployed by the NHC predicted it would reach the Northern-
most part of the U.S and affect New York the way it did until
it was too late for most to evacuate. At least 159 people were
killed along the path of the storm.

The data provided by Unisys Weather data was divided
where 85% of the total hurricanes were used for training,
and 15% were used for testing the accuracy of our model.
In other words, the training set and testing contained 27,477
and 4,850 individual data tuples, respectively. Each data tu-
ple containing a sequence of features of size 5 comprised
of wind speed, latitude and longitude coordinates, direction,
and grid identification number. When the RNN is deriving
a model to predict nonlinear and complex systems, predic-
tive quantification and validity is essential when testing on
a dataset different from the training dataset (Ivanescu et al.
2016). As a result, validation of the training set was com-
pleted on 10% of the 85% training set, or 2,747 data tuples.
At the time of testing, hurricanes were fed into the RNN one
hurricane, or tropical storm, at a time. Figure 5 shows some
examples that the RNN was able to successfully encapsulate,
model, and forecast the future trajectory paths of hurricanes
at 6-hour intervals. Figure 5 shows that the grid locations
predicted followed the similar trajectory behavior as the real
hurricane trajectory.

As was stated in the Related Work section, the sparse Re-
current Neural Network with a flexible topology was trained
and tested using the Unisys Weather dataset. This method,
although presented impressive results, lacks in modeling and
forecasting hurricane behaviors that occur frequently in na-
ture. Due to their use of dynamic time warping (DTW), they
are unable to train or test on hurricanes that contain loops.
In Table 1, we compare the Mean Absolute Error (MAE) re-
sults they presented with the MAE results of scaled values
we predicted. The methods referred to in the related work
are not open source and are difficult to reproduce. There-
fore, we compared with (Moradi Kordmahalleh, Gorji Se-
fidmazgi, and Homaifar 2016) as they used the same dataset
and tested with similar hurricanes. However, their predic-
tions were in the form of latitude and longitude with a calcu-
lated MAE for each. Our method which employed the grid
system returns grid locations as converting back to trajec-
tory paths reduces accuracy. The MAE calculated between
the scaled predicted grid block value and the real grid block
value. Our grid boundaries are located at a 1x1-degree scale
to latitude and longitude. Although we are comparing errors
with respect to grid block values for our approach versus
errors over the latitude and longitude values for the sparse
RNN approach, these two methods can be compared from
the provided MAE values. The most appropriate comparison
from the table is between the Grid-Based RNN MAE and the
average of latitude and longitude MAE for sparse RNN. We
can clearly see that our method properly encapsulated the
nonlinearity and complexity of hurricane trajectories.

From Table 1, one can see that we have significantly less
mean absolute values than the sparse RNN method. This
is because their model is incapable of predicting hurricane
trajectories that are monotonic. Due to this, their training



(a) Hurricane ALEX (1998) (b) Hurricane DELTA (2005) (c) Hurricane SANDY (2012)

(d) Hurricane HORTENSE (1996) (e) Hurricane IVAN (1960) (f) Hurricane PALOMA (2008)

Figure 5: Randomly Selected Atlantic Hurricane Trajectory Predictions

set is much smaller, and since only monotonic hurricanes
were used for training, it can only predict hurricanes without
loops. As a result, their method is an impractical solution to
predicting hurricanes trajectories due to hurricane’s dynamic
tendency.

Hurricane DEAN SANDY ISAAC

Grid-Based RNN 0.0842 0.0800 0.0592
Sparse RNN Latitude 0.8651 0.2500 0.7888

Sparse RNN Longitude 0.0572 0.5949 0.3425
Sparse RNN Average 0.46115 0.42245 0.56565

Table 1: Mean absolute error using our grid-based approach and
the sparse RNN approach. Errors of our approach are with respect
to the grid created from the latitude and longitude data while the
sparse RNN errors are with respect to the direct latitude and longi-
tude data.

To compare with the methods employed by the National
Hurricane Center (NHC), the annual errors collected from
all tropical cyclones are plotted against the Government Per-
formance and Results Act (GPRA)4. These annual errors are
calculated for all 48-hour forecasts for the prediction tech-
niques employed by the National Hurricane Center. The

4National Hurricane Center GPRA Track Goal Verifi-
cation: https://www.nhc.noaa.gov/verification/
verify8.shtml

track goal is specifically for only 48-hour forecasts, regard-
less of having forecasts ranging from 6- to 120-hour fore-
casts, as it is more important for disaster management and
citizen preparedness actions. The comparison against GPRA
started in year 2000. Figure 6 shows the performance of the
Grid-Based RNN against the NHC annual errors from year
2000 to 2012. As shown in the figure, our Grid-Based RNN
performed lower than currently employed NHC techniques
due to the fact that the refined grid reduces truncation er-
rors (a common occurrence is statistical-dynamical models
utilized by NHC) while allowing for a more extensive scale
model that encapsulates the small-scale features more accu-
rately (Birchfield 1960). As a result, the RNN learns the be-
havior from one relative location to the next and not general
hurricane trajectories which differ highly given the different
nonlinear and dynamic features.

The overall regression slope of the error for the Grid-
Based RNN is less compared to NHC methods due to the
fact that the training set contained hurricanes of years rang-
ing from 1920 to 2012 due to the fact that the dataset was
unordered when the training set and testing set were cre-
ated and remained unordered during the training process of
the recurrent neural network. The largest contribution to the
forecast error for the Grid-Based RNN is due to the error
penalty of 50 km when converting from the 1x1-degree grid
area to latitude and longitude coordinates.

In addition to an improvement in forecast error, statistical-
dynamical models used by NHC, require many hours only
to make a single prediction utilizing the world’s most ad-
vanced supercomputers. The application of neural networks



Figure 6: Comparison of Grid-Based RNN against National
Hurricane Center 48-hour forecasts. Both methods perform better

than required by the Government Performance and Results Act
(GPRA), and Grid-Based RNN outperforms currently employed

NHC methods.4

is bleeding edge for hurricane track predictions as it returns
accurate forecasts significantly faster (our model completed
the training in 200 seconds) in comparison to the hours it
takes using the models in practice. The run-time complex-
ity of these algorithms is vital for up-to-date forecasts. A
trained neural network can make predictions instantly. As
the quantity of data increases and the number of param-
eters increase given new sensing technologies, statistical-
dynamical forecasting techniques become impractical.

Limitations and Further Enhancement
Our model’s final results were grid location prediction coor-
dinates (rather than latitude and longitude) with high accu-
racy, as shown in Figure 6. However, when we extract in-
dividual hurricane trajectories from grid locations and con-
verting from grid locations to latitude and longitude coor-
dinates increases the margin of error. This increase in mar-
gin of error could be up to 50 km. The size of the grids is
not restricted to be a 1x1-degree scale to latitude and longi-
tude. However, the size of the size of the grids is directly
correlated to the number of recorded data points per square
kilometer. As a result, a more extensive dataset would allow
for smaller grid locations which also reduces the error at the
time of conversion. Currently, maintaining a 50 km margin
of error due to the grid locations being of 1x1-degree scale
to latitude and longitude is still competitive with the current
methods employed by the NHC as most of the methods used
have at least approximately 50 km margin of error (Leonardo
and Colle 2017).

We intended to directly compare the model’s capabilities
to capture the nonlinearity of hurricane trajectory features to
make predictions. In future work, we will explore the appli-
cation of an artificial neural network to accurately and ade-
quately convert from grid locations to latitude-longitude co-
ordinates to minimize the conversion error. Also, the imple-
mentation of a Bayesian neural network in combination with
our grid-based RNN could increase accuracy as Bayesian

models could quantify the uncertainty of a prediction. This
uncertainty parameter is also valuable information in hurri-
cane trajectory predictions.

Conclusion
We proposed a recurrent neural network employed over a
grid system with the intention to encapsulate the nonlinear-
ity and complexity behind forecasting hurricane trajectories
and potentially increasing the accuracy compared to operat-
ing hurricane track forecasting models. Our model predicts
the next hurricane location at 6 hours, as Unisys Weather
data collect the hurricane points with this time frequency.
The mean-squared error and root-mean-squared error were
0.01 and 0.11, respectively, for both the training and test-
ing set. The main advantage over the proposed method
and the previous technique (“sparse RNN”) is that their ap-
proach does not work on hurricanes that loop in behavior.
All storms used for training and testing are monotonic, or
cannot turn back on themselves, an assumption that is not
always true in hurricane trajectory behavior. Our grid-based
RNN can be trained and predict hurricanes of any type.

The high accuracy when comparing against currently em-
ployed NHC methods in predicting hurricane trajectories is
due to the augmented features of direction and distance trav-
eled in combination to the employed grid. This is because
a refined grid reduces truncation errors (a common occur-
rence is statistical-dynamical models) while allowing for a
more extensive scale model that encapsulates the small-scale
features more accurately (Birchfield 1960). Also, the RNN
learns the behavior from one physical location to the next
and not general hurricane trajectories which differ highly
given the different nonlinear and dynamic features. As a
result, this model is ideal for RNNs to grasp the complexity
of hurricane trajectories optimally.

Although the idea of grid-based models and recurrent
neural networks are not new, the combination of both to
model complex nonlinear temporal relationships is a novel
contribution. Future researchers might benefit from this pa-
per as this grid-based model is suitable for any application
that requires predictions on Euclidean spatiotemporal time
series data. Also, as the size of data increases, a model ca-
pable of quickly processing and accurately predicting hurri-
cane trajectory information is crucial for the safety of indi-
viduals. The high complexity of currently employed meth-
ods by the NHC takes hours to make a single prediction and
will come to be highly impractical. Future work will consist
of using deep learning to convert from grid locations to lati-
tude and longitude coordinates to reduce the conversion rate
from grid locations to latitude and longitude coordinates re-
gardless of the size of the dataset. Overall, the intended pur-
pose of this paper is to introduce deep learning for practical
hurricane forecasting to increase accuracy while being more
lightweight than the statistical-dynamical methods currently
employed by the NHC.
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