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Abstract

Hadamard matrices, orthogonal designs and amicable orthogonal designs
have a number of applications in coding theory, cryptography, wireless
network communication and so on. Product designs were introduced by
Robinson in order to construct orthogonal designs especially full orthogo-
nal designs (no zero entries) with maximum number of variables for some
orders. He constructed product designs of orders 4, 8 and 12 and types(
1(3); 1(3); 1

)
,
(
1(3); 1(3); 5

)
and

(
1(3); 1(3); 9

)
, respectively. In this paper,

we first show that there does not exist any product design of order n �= 4,
8, 12 and type

(
1(3); 1(3);n− 3

)
, where the notation u(k) is used to show

that u repeats k times. Then, following the Holzmann and Kharaghani’s
methods, we construct some classes of disjoint and some classes of full
amicable orthogonal designs, and we obtain an infinite class of full ami-
cable orthogonal designs. Moreover, a full amicable orthogonal design of
order 29 and type

(
26(8); 2

6
(8)

)
is constructed.

1 Introduction

The definitions in this section can be all found in [1].

A Hadamard matrix of order n is a square matrix of order n with ±1 entries such
that

HHT = nIn,

where HT is the transpose of H , and In is the identity matrix of order n. It is
conjectured that a Hadamard matrix of order 4m exists for each m ≥ 1.

An orthogonal design (OD) of order n and type (c1, . . . , ck), denoted OD(n; c1,
. . . , ck), is a square matrix C of order n with entries from {0,±x1, . . . ,±xk} that
satisfies

CCT =
( k∑

j=1

cjx
2
j

)
In,
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where the xj ’s are commuting variables. An OD with no zero entry is called a full
OD. A Hadamard matrix can be obtained by equating all variables of a full OD to 1.

Radon [8] worked on a proposition concerning the composition of quadratic forms
(extended by Hurwitz [4]) which has a connection in determination of the maximum
number of variables in ODs. According to the proposition, the maximum number of
variables in an OD of order n = 2ab, b odd, is ρ(n) = 8c + 2d, where a = 4c + d,
0 ≤ d < 4 (see [1, Chapter 1]). This number is called Radon-Hurwitz number.

Two square matrices A and B are called amicable if ABT = BAT. They are
called anti-amicable if ABT = −BAT. Suppose that C is an OD(n; c1, c2, . . . , ck)
with variables x1, . . . , xk, andD is an OD(n; d1, d2, . . . , dm) with variables y1, . . . , ym,
where the sets {x1, . . . , xk} and {y1, . . . , ym} are disjoint. Then (C;D) is called an
amicable orthogonal design (AOD) denoted

AOD
(
n; c1, c2, . . . , ck; d1, d2, . . . , dm

)
,

if CDT = DCT. It can be seen that if (C;D) is an AOD, then

[
C D
D −C

]
forms an

OD
(
2n; c1, c2, . . . , ck, d1, d2, . . . , dm

)
.

Wolfe [13] showed that the total number of variables in an AOD of order n = 2ab,
b odd, is less than or equal to 2a + 2.

A rational family of order n and type (r1, . . . , rk), where the rj’s are positive ra-
tional numbers, is a collection of k rational matrices of order n, A1, . . . , Ak, satisfying

(i) AiA
T
i = riIn, 1 ≤ i ≤ k;

(ii) AiA
T
j = −AjA

T
i , 1 ≤ i �= j ≤ k.

The Hadamard product of two square matrices A = [aij ] and B = [bij ] of order
n, denoted A ∗ B, is a square matrix of order n such that its entries are computed
via entrywise multiplication of A and B, i.e., A ∗ B = [aijbij ]. A and B are called
disjoint if A ∗B = 0.

Let A =
(
a1, . . . , an

)
. The square matrix C = [cij] of order n is called circulant

if cij = aj−i+1, denoted circ
(
a1, . . . , an

)
, where j − i is reduced modulo n. The

square matrix B = [bij ] of order n is called back-circulant if bij = ai+j−1, denoted
backcirc

(
a1, . . . , an

)
, where i + j − 2 is reduced modulo n. It is shown that (see [1,

Chapter 4]) if B is back-circulant and A and C are circulant matrices of order n,
then B = BT, AC = CA and BCT = CBT.

Assume that M1, M2 and N are ODs of order n and types (a1, . . . , ar), (b1, . . . , bs)
and (u1, . . . , ut), respectively. Then (M1;M2;N) is called a product design (PD) of or-
der n and type

(
a1, . . . , ar; b1, . . . , bs; u1, . . . , ut

)
, denoted PD

(
n; a1, . . . , ar; b1, . . . , bs;

u1, . . . , ut

)
, if the following conditions hold:

(i) M1 ∗N = M2 ∗N = 0,

(ii) M1 +N and M2 +N are ODs, and

(iii) M1M
T
2 = M2M

T
1 .
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The following theorem from Robinson [10] shows how to construct an OD by
combining an AOD and a PD.

Theorem 1.1 Suppose (C;D1 +D2) is an AOD
(
m; c1, . . . , ck; v, w1, . . . , w�

)
and

(M1;M2;N) is a PD
(
n; a1, . . . , ar; b1, . . . , bs; u1, . . . , ut

)
, where D1 is an OD(m; v)

and D2 is an OD
(
m; w1, . . . , w�

)
. Let b, c, u and w be the sums of the bi’s, ci’s,

ui’s and wi’s, respectively. Then there exist

(i) OD
(
mn; va1, . . . , var, wb1, . . . , wbs, cu1, . . . , cut

)
,

(ii) OD
(
mn; va1, . . . , var, wb1, . . . , wbs, c1u, . . . , cku

)
,

(iii) OD
(
mn; va1, . . . , var, w1b, . . . , w�b, cu1, . . . , cut

)
,

(iv) OD
(
mn; va1, . . . , var, w1b, . . . , w�b, c1u, . . . , cku

)
.

Robinson [10] constructed product designs PD
(
4; 1(3); 1(3); 1

)
, PD

(
8; 1(3); 1(3); 5

)
and PD

(
12; 1(3); 1(3); 9

)
. He used these PDs and applied Theorem 1.1 with some

known AODs to construct some full ODs of small orders with maximum number of
variables. For instance, he applied Theorem 1.1 to a PD

(
12; 1(3); 1(3); 9

)
and an

AOD
(
2; 1(2); 1(2)

)
to construct an OD

(
24; 1(6), 9(2)

)
.

2 A non-existence result for product designs

Although Robinson constructed PD
(
4; 1(3); 1(3); 1

)
, PD

(
8; 1(3); 1(3); 5

)
, PD

(
12; 1(3);

1(3); 9
)
, he did not show if there is any PD

(
n; 1(3); 1(3);n− 3

)
for some n �= 4, 8, 12.

In this section, we show that in fact there does not exist any PD
(
n; 1(3); 1(3);n− 3

)
for all n �= 4, 8, 12. In doing so, we first mention the following well known theorems,
and then we prove Theorem 2.6.

Theorem 2.1 (Vinogradov [12]). Suppose that a, a′, b and c are nonzero p-adic
numbers, p is a prime number, and r and s are positive integers. Define (a, b)p,
the p-adic Hilbert symbol, to be 1 if there are p-adic numbers x and y such that
ax2 + by2 = 1, and −1 otherwise. Then

(i) (a, b)p = (b, a)p, (a, c2)p = 1,

(ii) (a,−a)p = 1, (a, 1− a)p = 1,

(iii) (aa′, b)p = (a, b)p(a
′, b)p,

and if p �= 2, then

(iv) (r, s)p = 1 if r and s are relatively prime to p,

(v) (r, p)p = (r/p), the Legendre symbol, if r and p are relatively prime,

(vi) (p, p)p = (−1/p).

Theorem 2.2 (Shapiro [11]). There is a rational family of type (s1, . . . , s9) and

order 16 if and only if Sp(s1, . . . , s9) :=
∏
i<j

(si, sj)p = 1 for every prime p.
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Theorem 2.3 (Shapiro [11]). There is a rational family of type (s1, . . . , sk) and
order 2ab, b odd, if and only if there is a rational family of the same type and order
2a.

Theorem 2.4 (Robinson [9]). There does not exist any OD
(
n; 1(5), n − 5

)
for

n > 40.

Theorem 2.5 (Kharaghani and Tayfeh-Rezaie [7]). There is a full OD
(
32; 1(5), u1,

. . . , uk

)
if and only if (u1, . . . , uk) = (9, 9, 9) or (9, 18) or (12, 15) or (27).

Theorem 2.6 There does not exist any PD
(
n; 1(3); 1(3);n− 3

)
for n �= 4, 8, 12.

Proof. If there exists a PD
(
n; 1(3); 1(3);n − 3

)
for some n > 20, then applying

Theorem 1.1 with an AOD
(
2; 1(2); 1(2)

)
gives an OD

(
2n; 1(6), 2n− 6

)
which contra-

dicts Theorem 2.4. From the definition of PD, there is no PD
(
n; 1(3); 1(3);n − 3

)
for n = 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18 and 19. If n = 16, then from
the above argument, there exists an OD

(
32; 1(6), 26

)
which is impossible by Theo-

rem 2.5. Thus, there is no PD
(
16; 1(3); 1(3); 13

)
. Now suppose that there exists a

PD
(
20; 1(3); 1(3); 17

)
. Applying Theorem 1.1 to this PD and an AOD

(
4; 1(2), 2; 1(2),

2
)
(see [1, Chapter 5] for the existence of this AOD) gives an OD(80; 1(3), 3(3), 17(2),

34). Hence, by Theorem 2.3, there is a rational family of type (1(3), 3(3), 17(2), 34) and
order 16. It can be seen that Theorem 2.1 gives S17(1(3), 3(3), 17(2), 34) = −1 which
contradicts Theorem 2.2. Therefore, there does not exist any PD

(
20; 1(3); 1(3); 17

)
.

�

3 Some full amicable orthogonal designs

In this section, we combine techniques similar to [3] and [10] to obtain some classes
of full amicable orthogonal designs.

Construction 3.1 Suppose that A1, A2, B, C, D, E, F , G are square matrices of
order n, and 0 is the zero matrix. Let

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 D B C 0 0 0 0
−D 0 −C B 0 0 0 0
B −C 0 D 0 0 0 0
C B −D 0 0 0 0 0
0 0 0 0 0 −D B C
0 0 0 0 D 0 −C B
0 0 0 0 B −C 0 −D
0 0 0 0 C B D 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 G E F 0 0 0 0
−G 0 F −E 0 0 0 0
E F 0 −G 0 0 0 0
F −E G 0 0 0 0 0
0 0 0 0 0 −E F G
0 0 0 0 E 0 G −F
0 0 0 0 F G 0 E
0 0 0 0 G −F −E 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ni =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai 0 0 0 Ai −Ai Ai Ai

0 Ai 0 0 Ai Ai Ai −Ai

0 0 −Ai 0 −Ai −Ai Ai −Ai

0 0 0 −Ai −Ai Ai Ai Ai

−Ai −Ai −Ai −Ai Ai 0 0 0
Ai −Ai −Ai Ai 0 Ai 0 0
Ai Ai −Ai −Ai 0 0 −Ai 0
Ai −Ai Ai −Ai 0 0 0 −Ai

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

for i ∈ {1, 2}. Now suppose that A1, A2, B, C,D,E, F and G are pairwise amicable
(not necessary ODs), and they satisfy the following properties:

5A1A
T
1 +BBT + CCT +DDT = kIn, (1)

5A2A
T
2 + EET + FFT +GGT = sIn, (2)

where k and s are two quadratic forms. Let

I :=

[
1 0
0 1

]
, P :=

[
0 1
1 0

]
, Q :=

[
1 0
0 −1

]
, R :=

[
0 1

−1 0

]
. (3)

Note that PQT = −QPT, RIT = −IRT, PRT = RPT, PIT = IPT, QIT = IQT,
RQT = QRT, N1N

T
2 = N2N

T
1 , M1M

T
2 = M2M

T
1 and for i, j ∈ {1, 2}, MjN

T
i =

−NiM
T
j . Also, I ∗ P = 0, Q ∗R = 0, Mj ∗Ni = 0 for i, j ∈ {1, 2}. Using Equations

(1) and (2) and the above properties, it can be verified that the following matrices
form an AOD of order 16n:

U = N1 ⊗ I +M1 ⊗Q, V = N2 ⊗ P +M2 ⊗ RT, (4)

where ⊗ is the Kronecker product. Moreover, it can be seen that U and V in Equation
(4), are disjoint.

Assume that the matrices A1, A2, B, C, D, E, F and G are full (no zero entries)
pairwise amicable, and H is a Hadamard matrix of order 2. Then the following
matrices form a full AOD of order 16n:

UH = N1 ⊗H +M1 ⊗QH, VH = N2 ⊗ PH +M2 ⊗ RTH. (5)
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Example 3.1 Consider A1 = backcirc(x,−b, b), A2 = circ(−d, d, d), B= circ(b, b, b),
C = circ(−a, b, b), D = circ(a, b, b), E = circ(d, d, d), F = circ(−c, d, d) and G =
circ(c, d, d). It can be seen that the conditions of Construction 3.1 hold, and so
matrices UH and VH given by Equation (5) are AOD

(
48; 4, 10, 34; 4, 44

)
(see the

appendix in [2]).

Construction 3.2 Suppose that A1, A2, B, C, D, E, F , G are square matrices of
order n, and 0 is the zero matrix. Let

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B C D 0 0 0 0 0 0 0 0 0
−C B 0 −D 0 0 0 0 0 0 0 0
−D 0 B C 0 0 0 0 0 0 0 0

0 D −C B 0 0 0 0 0 0 0 0
0 0 0 0 B C D 0 0 0 0 0
0 0 0 0 −C B 0 −D 0 0 0 0
0 0 0 0 −D 0 B C 0 0 0 0
0 0 0 0 0 D −C B 0 0 0 0
0 0 0 0 0 0 0 0 B C D 0
0 0 0 0 0 0 0 0 −C B 0 −D
0 0 0 0 0 0 0 0 −D 0 B C
0 0 0 0 0 0 0 0 0 D −C B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E F G 0 0 0 0 0 0 0 0 0
F −E 0 −G 0 0 0 0 0 0 0 0
G 0 −E F 0 0 0 0 0 0 0 0
0 −G F E 0 0 0 0 0 0 0 0
0 0 0 0 F G E 0 0 0 0 0
0 0 0 0 G −F 0 −E 0 0 0 0
0 0 0 0 E 0 −F G 0 0 0 0
0 0 0 0 0 −E G F 0 0 0 0
0 0 0 0 0 0 0 0 G −E −F 0
0 0 0 0 0 0 0 0 −E −G 0 F
0 0 0 0 0 0 0 0 −F 0 −G −E
0 0 0 0 0 0 0 0 0 F −E G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Ni =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −Ai Ai Ai Ai −Ai Ai −Ai Ai −Ai

0 0 −Ai 0 Ai −Ai −Ai −Ai −Ai −Ai −Ai −Ai

0 Ai 0 0 Ai Ai −Ai Ai Ai Ai −Ai −Ai

Ai 0 0 0 Ai −Ai Ai Ai Ai −Ai −Ai Ai

−Ai −Ai −Ai −Ai 0 0 0 −Ai Ai Ai −Ai Ai

−Ai Ai −Ai Ai 0 0 −Ai 0 Ai −Ai Ai Ai

−Ai Ai Ai −Ai 0 Ai 0 0 −Ai −Ai −Ai Ai

Ai Ai −Ai −Ai Ai 0 0 0 −Ai Ai Ai Ai

−Ai Ai −Ai −Ai −Ai −Ai Ai Ai 0 0 0 −Ai

Ai Ai −Ai Ai −Ai Ai Ai −Ai 0 0 −Ai 0
−Ai Ai Ai Ai Ai −Ai Ai −Ai 0 Ai 0 0
Ai Ai Ai −Ai −Ai −Ai −Ai −Ai Ai 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

for i ∈ {1, 2}. Suppose that A1, A2, B, C, D, E, F and G are pairwise amicable (not
necessarily orthogonal designs) and they satisfy the following properties:

9A1A
T
1 +BBT + CCT +DDT = uIn,

9A2A
T
2 + EET + FFT +GGT = vIn,

where u and v are two quadratic forms. Then, as in Construction 3.1, the matrices
U and V in Equation (4) along with these new matrices (M1, M2, N1, N2) form an
AOD of order 24n; and U and V are disjoint. Moreover, matrices UH and VH in
Equation (5) along with these new matrices (M1, M2, N1, N2) form a full AOD of
order 24n, provided the matrices A1, A2, B, C, D, E, F and G in this construction
have no zero entries.

In the following two examples, we construct two full AODs using the above con-
struction, and we refer to the appendix in [2] for the display of these AODs.

Example 3.2 Suppose that A1 = backcirc(x,−b, b), A2 = circ(−d, d, d), B =
circ(b, b, b), C = circ(b, b, b), D = circ(b, b, b), E = circ(d, d, d), F = circ(d, d, d)
and G = circ(d, d, d). Then they satisfy all the conditions of Construction 3.2, and
so matrices UH and VH given by Equation (5) form a full AOD

(
72; 18, 54; 72

)
.

Example 3.3 Consider A1 = backcirc(a,−a,−a, a,−a, a, a), A2 = circ(c,−c,−c, c,
−c, c, c), B = circ(b, a, a, a, a, a, a), C = circ(−b, a, a, a, a, a, a), D = circ(a,−a,−a,
a,−a, a, a), E = circ(d, c, c, c, c, c, c), F = circ(−d, c, c, c, c, c, c) and G = circ(c,−c,
−c, c,−c, c, c). It can be verified that these matrices satisfy all the conditions of
Construction 3.2, and so matrices UH and VH given by Equation (5) form a full
AOD

(
168; 4, 164; 4, 164

)
.

Remark 3.1 If we replace matrices A1, B, C, D, E, F and G by variables in
Constructions 3.1 and 3.2, then matrices M1, M2 and N1 will form product designs
PD

(
8; 1, 1, 1; 1, 1, 1; 5

)
and PD

(
12; 1, 1, 1; 1, 1, 1; 9

)
, respectively.



E. GHADERPOUR/AUSTRALAS. J. COMBIN. 63 (3) (2015), 374–384 381

4 An infinite class of full amicable orthogonal designs

In this section, we choose two full AODs that can be constructed from Constructions
3.1 and 3.2, and show how one can obtain an infinite class of full AODs by using
them. The following theorem is an application to an algebraic result that Kawada
and Iwahori [5] obtained.

Theorem 4.1 (see [1, Chapter 5]). Suppose that (A;B) is an AOD of order n. Let
t be the number of variables in B and ρt(n) be the number of variables in A. Also,
n = 24a+bd, where 0 ≤ b < 4 and d is an odd number. Then

ρt(n) ≤ 8a− t+ δ + 1,

where the values of δ are given in the following table:

b 0 1 2 3
t ≡ 0 (mod 4) 0 1 3 7
t ≡ 1 (mod 4) 1 2 3 5
t ≡ 2 (mod 4) −1 3 4 5
t ≡ 3 (mod 4) −1 1 5 6

Theorem 4.2 (Wolfe [13]). Suppose that there is an AOD
(
n; u1, u2, . . . , ur; v1, v2,

. . . , vs
)
. Then for each t ≥ 1, there is an

AOD
(
2tn; u1, u1, 2u1, . . . , 2

t−1u1, 2
tu2, . . . , 2

tur; 2tv1, 2
tv2, . . . , 2

tvs

)
.

Construction 4.1 Replacing A1, B, C, D, A2, E, F and G by variables in Con-
structions 3.1 and 3.2, respectively, one obtains

AOD
(
16; 2, 2, 2, 10; 2, 2, 2, 10

)
and AOD

(
24; 2, 2, 2, 18; 2, 2, 2, 18

)
.

Applying Theorem 4.2 for these AODs, one obtains an infinite class of full AODs:

AOD
(
2n; 2n−3

(3) , 10, 10, 5 · 22, . . . , 5 · 2n−4; 2n−3
(3) , 5 · 2n−3

)
, n > 4,

AOD
(
2n · 3; 2n−2

(3) , 18, 18, 9 · 22, . . . , 9 · 2n−3; 2n−2
(3) , 9 · 2n−2

)
, n > 3.

Example 4.1 From Construction 4.1, we obtain

(i) AOD
(
24; 2, 2, 2, 18; 2, 2, 2, 18

)
,

(ii) AOD
(
48; 4, 4, 4, 18, 18; 4, 4, 4, 36

)
,

(iii) AOD
(
96; 8, 8, 8, 18, 18, 36; 8, 8, 8, 72

)
.

According to Theorem 4.1, these AODs have taken the maximum number of vari-
ables. We refer to the appendix in [2] for the display of these AODs.
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5 A full amicable orthogonal designs in 16 variables

In this section, we construct an AOD
(
29; 26(8); 26(8)

)
, and consequently an

OD
(
210; 26(16)

)
.

Theorem 5.1 (Wolfe [13]). Given an integer n = 2sd, where d is odd and s ≥ 1,
there exist sets A =

{
A1, . . . , As+1

}
and B =

{
B1, . . . , Bs+1

}
of signed permutation

matrices of order n such that

(i) A consists of mutually anti-amicable and disjoint matrices,

(ii) B consists of mutually anti-amicable and disjoint matrices,

(iii) for each i and j, Ai and Bj are amicable.

Proof. For each k, 2 ≤ k ≤ s+ 1, let

A1 =
(
⊗s

i=1 I
)
⊗ Id, Ak =

(
⊗k−2

i=1 I
)
⊗R⊗

(
⊗s

i=k P
)
⊗ Id,

and
B1 =

(
⊗s

i=1 P
)
⊗ Id, Bk =

(
⊗k−2

i=1 I
)
⊗Q⊗

(
⊗s

i=k P
)
⊗ Id,

where I, P , Q, R are given by Equation (3), and Id is the identity matrix of order d.
Then the matrices Ai’s and Bi’s (1 ≤ i ≤ s + 1) satisfy properties (i), (ii) and (iii).
�

Lemma 5.1 There exists an AOD
(
29; 26(8); 26(8)

)
.

Proof. Suppose that A = {A1, . . . , A8} and B = {B1, . . . , B8} are two sets of signed
permutation matrices of order 27 satisfying properties (i), (ii) and (iii) of Theorem
5.1. Let H be a Hadamard matrix of order 27. For each j, 1 ≤ j ≤ 4, let

Xj =
1

2
x2j−1

(
A2j−1 −A2j

)
H +

1

2
x2j

(
A2j−1 + A2j

)
H

and

Yj =
1

2
y2j−1

(
B2j−1 −B2j

)
H +

1

2
y2j

(
B2j−1 +B2j

)
H.

Note that for 1 ≤ i �= j ≤ 4, XiX
T
j = −XjX

T
i and YiY

T
j = −YjY

T
i . For 1 ≤ i, j ≤ 4,

XiY
T
j = YjX

T
i . Also, for each j, 1 ≤ j ≤ 4,

XjX
T
j = 26

(
x2
2j−1 + x2

2j

)
I27 and YjY

T
j = 26

(
y22j−1 + y22j

)
I27 .

Let

C = I ⊗ I ⊗X1 + I ⊗ P ⊗X2 + P ⊗ I ⊗X3 + P ⊗ P ⊗X4,

D = I ⊗ I ⊗ Y1 + I ⊗ P ⊗ Y2 + P ⊗ I ⊗ Y3 + P ⊗ P ⊗ Y4.

It can be directly verified that CCT =
(
26

8∑
i=1

x2
i

)
I29 , DDT =

(
26

8∑
i=1

y2i

)
I29 and

CDT = DCT. Therefore, C and D are an AOD
(
29; 26(8); 26(8)

)
. �
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Theorem 5.2 There is an OD
(
210; 26(16)

)
.

Proof. Let C and D be the matrices constructed in the proof of Lemma 5.1. Since

CDT = DCT, it can easily be verified that

[
C D
D −C

]
is an OD

(
210; 26(16)

)
. �

Kharaghani [6] constructed an OD
(
210; 26(16)

)
using a different method. Since the

maximum number of variables in an AOD of order 26 is 14, there does not exist
any AOD

(
26; 23(8); 23(8)

)
; however, it is not known whether or not there exists an

AOD
(
27; 24(8); 24(8)

)
. Although one of the main purposes of Robinson [10] for intro-

ducing PDs was to construct full ODs with the maximum number of variables, he did
not construct any full OD of order 128 with 16 variables. It is not known whether
there exists any full OD of order 128 with the maximum number of variables. In
fact, it is conjectured [6] that whether there exists an OD

(
128; 23(16)

)
.
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