Petersburg Mathematics Cohort

Day 1

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

srpowell@utexas.edu

Introduce yourself.

Describe your role as an educator.
Describe the mathematics you support.

Share your Twitter handle!

Schedule for Today

$9: 00-9: 25$	- Introduction
$9: 25-9: 40$	- Instructional Platform
$9: 40-10: 30$	- Evidence-based practice: Systematic instruction
$10: 30-10: 40$	BREAK
$10: 40-11: 15$	- Evidence-based practice: Mathematical language
$11: 15-12: 00$	- Evidence-based practice: Multiple representations
$12: 00-1: 00$	LUNCH
$1: 00-2: 15$	- Evidence-based practice: Building fluency with facts and
$2: 15-2: 25$ BREAK $2: 25-3: 45$ - Evidence-based practice: Word-problem solving $3: 45-4: 00$ -	

Schedule for Tomorrow

9:00-9:05	- Trajectories in mathematics
9:05-9:45	- Manipulatives: Early Numeracy
$9: 45-10: 30$	- Manipulatives: Whole Numbers and Place Value
10:30-10:40	BREAK
10:40-11:45	- Manipulatives: Fractions
11:45-12:00	- Wrap-up

1:00-1:05	Trajectories in mathematics
1:05-1:40	- Manipulatives: Fraction Concepts
1:40-2:20	- Manipulatives: Fraction Computation
2:20-2:30	BREAK
2:30-2:45	- Manipulatives: Decimals
2:45-3:45	- Manipulatives: Algebra
3:45-4:00	- Wrap-up

$x A+H$

Introductions

Describe your experience with mathematics.

Take the brief measure of mathematics anxiety.

Petersburg Math Cohort

Summer 2022

srpowell@utexas.edu @sarahpowellphd www.sarahpowellphd.com
Your Mathematics Experiences

Place a check mark in the cell that describes your level of math anxiety.

	None	A Little	Some	A Lot	Very
Looking through the pages in your math series teacher' s manual.					
Teaching students how to use and interpret tables, graphs, and charts					
Preparing students for a 'standardized" math test throughout the week before.					
Working our math equations on the board in front of a class of students.					
Preparing a presentation for parents about the math curriculum you teach.					
Preparing to teach students a new concept that will be challenging to them.					
Explaining your rationale for the math curriculum to a parent who stopped by your classroom after school.					
Talking to a student who wanted to use a different way to solve a math problem than the way taught in class.					
Writing a lesson plan for teaching a new math concept.					
Waiting for the results of your students' year-end math tests.					
Having a surprise evaluation by an administrator during a math lesson you are teaching.					
Walking into school and thinking about teaching a math lesson.					

Trajectories in Mathematics

Broad math in preK predicted K broad math

Broad math in prek predicted grade 10 broad math

| <Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Starr etal. (2013) ee (2012) cohort 1 Ibertus et al. (2013) etal. (2013) Watts et al. (2014) Jordan et al. (2007) Navarro et al. (2012) Passolunghi et al. (2012) Stock et al. (2009) cohor Aunola et al. (2004) Krajewski et al. (2009a) Bodovski \& Farkas (2007) diperna et al. (2007) DiPerna et al. (2007)

Jordan et al. (2009) Jordan et al. (2009) Missall et al. (2012) Judge \& Watson (2011) Lee (2012) cohort 2 Morgan et al. (2009) Claessens \& Engel (2013) Baglici et al. (2010) Desoete et al. (2012) Desoete et al. (2012) LeFevre et al. (2010) tock et al. (2010) achance \& Mazzocco (2006) Mazzocco \& Thompson (2 Mazzocco et al. (2011 a) Desoete \& Gregoire (2006) Locuniack \& Jordan (2008) Stock et al. (2009) cohort 2 Vukovic (2012)
Krajewski \& Schneider (2009b Geary et al. (2012) Geary et al. (20
Geary (2011) Geary et al. (2013)
Friso-van den Bos et al. (2015) Desoete et al. (2009) Bailey, Watts, et al. (2014) cohort Bailey, Siegler, et al. (2014) Bailey, Watts, et al. (2014) cohort 2 Morgan et al. (2011) Jordan et al. (2013) Reigosa-Crespo et al. (2013) Siegler et al. (2012) cohort 1 slegler et al. (2012) cohort 2 Hansen et al. (2015) ailey et al. (2012) Primi et al. (2010) Wilkins \& Ma (2002) Lee (2012) cohort 3 Spielhagen (2006) Dougherty (2003) Britt \& Irwin (2008)

| $<$ Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I P F W S F W S F W S F W S F W S F W S F W S F W S F W S F W F S W S F W S F W S

Counting in K predicted grade 1 broad math

Broad math in K predicted grade 8 broad math

K math accurately predicted math performance below $10^{\text {th }}$ percentile in grades 2 and 3 with 84\% correct classification

| <Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Starr et al. (2013) Lee (2012) cohort 1

Libertus et al Libertus et al. (2013) Mazzocco et al. (2011 Watts et al. (2014)
Jordan et al. (2007) Navarro et al. (2012) Passolunghi et al. (2012) stock et al. (2009) cohort Aunola et al. (2004) Krajewski et al. (2009a) Bodovski \& Farkas (2007) DiPerna et al. (2007) Jordan et al. (2009) Jordan et al. (2009) Missall et al. (2012)
Claessens et al. (2009) udge $\&$ Watson (2011) Lee (2012) cohort 2 Morgan et al. (2009) Claessens \& Engel (2013) Bagliciet al. (2010) Desoete et al. (2012) LeFevre et al. (2010) Stock et al. (2010) tock et al. (2010) lachance \& Mazzocco (2006) Mazzocco \& Thompson (20 Mazzocco et al. (2011a) Desoete \& Gregoire (2006) Locuniack \& Jordan (2008) Stock et al. (2009) cohort 2 Vukovic (2012)
Krajewski \& Schneider (2009b) Geary et al. (2012) Geary et al. (2012
Geary (2011) Geary et al. (2013) Geary et al. (2013) Desoete et al. (2009) Bailey, Watts, et al. (2014) cohort Bailey, Siegler, et al. (2014) Bailey, Watts, et al. (2014) cohort 2 Morgan et al. (2011) Jordan et al. (2013) Reigosa-Crespo et al. (2013) Siegler et al. (2012) cohort 1 Siegler et al. (2012) cohort 2 Hansen et al. (2015) Bailey et al. (2012) Primi et al. (2010) Wilkins \& Ma (2002) Lee (2012) cohort 3 Spielhagen (2006) Dougherty (2003) Britt \& Irwin (2008)

| $<$ Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I P F W S F W S F W S F W S F W S F W S F W S F W S F W S F W F S W S F W S F W S

Addition influenced arithmetic with increasing importance from grades 1 to 5

Grade 1 arithmetic predicted arithmetic at grades 2, 3, and 4

> Grade 1 broad math predicted broad math at grades 3,5, and 10

| <Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | >Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | IPFWSFWSFWSFWSFWSFWSFWSFWSFWSFWFSWSFWSFWS

ee (2012) cohort 1 Libertus et al. (2013) azzocco Mazzocco et al. (2011b
Watts et al. (2014) Watts et al. (2014) Navarro et al. (2012) Passolunghi et al. (2012) stock et al. (2009) cohort Aunola et al. (2004) Krajewski et al. (2009a) Bodovski \& Farkas (2007) DiPerna et al. (2007) Jordan et al. (2009) Missall et al. (2012) Claessens et al. (2009) Judge \& Watson (2011) Lee (2012) cohort 2 Morgan et al. (2009) Claessens \& Engel (2013) Bagliciet al. (2010) Desoete et al. (2012) Lesoevre et al. (2012) LeFevre et al. (2010) tock et al. (2010) Lachance \& Mazzocco (2006) Mazzocco \& Thompson (20 Mazzocco et al. (2011a) Desoete \& Gregoire (2006) Locuniack \& Jordan (2008) Stock et al. (2009) cohort 2 Vukovic (2012) Krajewski \& Schneider (2009b) Geary et al. (2012) eary (2011) Geary et al. (2013) triso-van den Bos et al (2015) Desoete et al. (2009) sailey, Watts, et al. (2014) cohort Bailey, Slegler, et al. (2014) Bailey, Watts, et al. (2014) cohort 2 Morgan et al. (2011) Jordan et al. (2013)
 Segler et a. (2012) Segler et al. (2012) cohort Hansen et al. (2015) Bailey et al. (2012) Primi et al. (2010) Wilkins \& Ma (2002) Lee (2012) cohort 3 Spielhagen (2006) Dougherty (2003) Britt \& Irwin (2008)

| $<$ Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | >Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I P F W S F W S F W S F W S F W S F W S F W S F W S F W S F W F S W S F W S F W S

Fractions at 10-12 years old predicted broad math 5 years later
Counting and comparison in grades 2 or 4 predicted broad math 1 year later

Broad math in grade 7 predicted broad math in grade 8

Broad math in grade 8 predicted completion of 4 -year college degree

Students who took algebra in grades 8 took more advanced math courses and enrolled in 4-year colleges more often than students who took algebra in grade 9

Numeracy measured in adolescence impacted hourly earnings 7 to 15 years later

Mathematics in preschool predicts later mathematics

Mathematics in kindergarten predicts later mathematics

Mathematics in elementary school predicts later mathematics

Mathematics in middle school predicts later mathematics

Mathematics in high school predicts later outcomes

Computation

Problem Solving

How do you see earlier math relating to later math?

Recognize that in a multi-digit number, a digit in one place represents 10
times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.

Compose and decompose numbers from 11 to 19 into ten ones and some further ones ${ }^{\cdots}$

Understand that the two digits of a twodigit number represent amounts of tens and ones.

Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones.

Use place value understanding to round whole numbers to the nearest 10 or 100.

Recognize that in a multi-digit number, a digit in one place represents ten times what it represents in the place to its right…

Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions...

Solve real-
world and mathematical problems leading to two linear equations in two variables.

Solve word problems that call for addition of three whole
numbers whose sum
is less than or equal

$$
\text { to } 20 \cdots
$$

Solve real-world and mathematical problems involving the four operations with rational numbers.

Solve multi-step word problems posed with whole numbers and having whole-number answers using the four operations...

Use addition and
subtraction within 100 to
Solve addition and subtraction word problems, and add and subtract within

10…

Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators ${ }^{\text {. }}$

An important subset of the major work in grades K-8 is the progression that leads toward middle school algebra.

K	1	2	3	4	5	6	7	8
Know number names and the count sequence Count to tell the number of objects Compare numbers Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from Work with numbers 1119 to gain foundations for place value	Represent and solve problems involving addition and subtraction Understand and apply properties of operations and the relationship between addition and subtraction Add and subtract within 20 Work with addition and subtraction equations Extend the counting sequence Understand place value Use place value understanding and properties of operations to add and subtract Measure lengths indirectly and by iterating length units	Represent and solve problems involving addition and subtraction Add and subtract within 20 Understand place value Use place value understanding and properties of operations to add and subtract Measure and estimate lengths in standard units Relate addition and subtraction to length	Represent \& solve problems involving multiplication and division Understand properties of multiplication and the relationship between multiplication and division Multiply \& divide within 100 Solve problems involving the four operations, and identify \& explain patterns in arithmetic Develop understanding of fractions as numbers Solve problems involving measurement and estimation of intervals of time, liquid volumes, \& masses of objects Geometric measurement: understand concepts of area and relate area to multiplication and to addition	Use the four operations with whole numbers to solve problems Generalize place value understanding for multi-digit whole numbers Use place value understanding and properties of operations to perform multidigit arithmetic Extend understanding of fraction equivalence and ordering Build fractions from unit fractions by applying and extending previous understandings of operations Understand decimal notation for fractions, and compare decimal fractions	Understand the place value system Perform operations with multi-digit whole numbers and decimals to hundredths Use equivalent fractions as a strategy to add and subtract fractions Apply and extend previous understandings of multiplication and division to multiply and divide fractions Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition Graph points in the coordinate plane to solve real-world and mathematical problems*	Apply and extend previous understandings of multiplication and division to divide fractions by fractions Apply and extend previous understandings of numbers to the system of rational numbers Understand ratio concepts and use ratio reasoning to solve problems Apply and extend previous understandings of arithmetic to algebraic expressions Reason about and solve one-variable equations and inequalities Represent and analyze quantitative relationships between dependent and independent variables	Apply and extend previous understanding of operations with fractions to add, subtract, multiply, and divide rational numbers Analyze proportional relationships and use them to solve real-world and mathematical problems Use properties of operations to generate equivalent expressions Solve real-life and mathematical problems using numerical and algebraic expressions and equations	Work with radical and integer exponents Understand the connections between proportional relationships, lines, and linear equations** Analyze and solve linear equations and pairs of simultaneous linear equations Define, evaluate, and compare functions Use functions to model relationships between quantities

 listed here are a subset of those designated as major in the assessment consortia's draft documents.
${ }_{* *}$ Depends on similarity ideas from geometry to show that slope can be defined and then used to show that a linear equation has a graph which is a straight line and conversely.

Table A.3. Grades 6-8 Curriculum Focal Points and Connections Compared with the Expectations of the Content Standards in Principles and Standards for School Mathematics

Curriculum Focal Points and Connections

Grade 6 Curriculum Focal Points

Number and Operations: Developing an understanding of and fluency with multiplication and division of fractions and decimals
Students use the meanings of fractions, multiplication and division, and the inverse relationship between multiplication and division to make sense of procedures for multiplying and dividing fractions and explain why they work. They use the relationship between decimals and fractions, as well as the relationship between finite decimals and whole numbers (i.e., a finite decimal multiplied by an appropriate power of 10 is a whole number), to understand and explain the procedures for multiplying and dividing decimals. Students use common procedures to multiply and divide fractions and decimals efficiently and accurately. They multiply and divide fractions and decimals to solve problems, including multistep problems and problems involving measurement.

Number and Operations: Connecting ratio and rate to multiplication and

 divisionStudents use simple reasoning about multiplication and division to solve ratio and rate problems (e.g., "If 5 items cost $\$ 3.75$ and all items are the same price, then I can find the cost of 12 items by first dividing $\$ 3.75$ by 5 to find out how much one item costs and then multiplying the cost of a single item by $12^{\prime \prime}$). By viewing equivalent ratios and rates as deriving from, and extending, pairs of rows (or columns) in the multiplication table, and by analyzing simple drawings that indicate the relative sizes of quantities, students extend whole number multiplication and division to ratios and rates. Thus, they expand the repertoire of problems that they can solve by using multiplication and division, and they build on their understanding of fractions to understand ratios. Students solve a wide variety of problems involving ratios and rates.

Algebra: Writing, interpreting, and using mathematical expressions and equations

Students write mathematical expressions and equations that correspond to given situations, they evaluate expressions, and they use expressions and formulas to solve problems. They understand that variables represent numbers whose exact values are not yet specified, and they use variables appropriately. Students understand that expressions in different forms can be equivalent, and they can rewrite an expression to represent a quantity in a different way (e.g., to make it more compact or to feature different information). Students know that the solutions of an equation are the values of the variables that

Expectations of the Content Standards

Number and Operations, Grades 6-8

Work flexibly with fractions, decimals, and percents to solve problems

Compare and order fractions, decimals, and percents efficiently and find their approximate locations on a number line

- Develop meaning for percents greater than 100 and less than 1

Understand and use ratios and proportions to represent quantitative relationships

- Develop an understanding of large numbers [identified in Grades 4 and 5 Curriculum Focal Points] and recognize and appropriately use exponential, scientific, and calculator notation
- Use factors, multiples, prime factorization, and relatively prime numbers to solve problems
- Develop meaning for integers and represent and compare quantities with them

Understand the meaning and effects of arithmetic operations with fractions, decimals, and integers

Use the associative and commutative properties of addition and multiplication and the distributive property of multiplication over addition to simplify computations with integers, fractions, and decimals

Understand and use the inverse relationships of addition and subtraction, multiplication and division, and squaring and finding square roots to simplify computations and solve problems

Select appropriate methods and tools for computing with fractions and decimals from among mental computation, estimation, calculators or computers, and paper and pencil, depending on the situation, and apply the selected methods

\square
 What's the critical math content for your students?

Designing an Instructional Platform

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

evidence-based intervention
evidence-based strategy
promising practice

A method or strategy that has shown a positive result

evidence-based intervention
evidence-based strategy
promising practice

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

1. Critical math: What is the critical math you need to teach to your students?
2. How will you sequence the critical math across the school year?
3. Which evidence-based practices will you use to teach the critical math?

Evidence-Based Practice: Systematic Instruction

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit instruction

INSTRUCTIONAL STRATEGIES

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Modeling is a dialogue between the teacher and students.	MODELING Step-by-step explanation Planned examples	PRACTICE Guided practice Independent practice
	SU Ask high-level Eliciting fre Providing affirmativ	RTS w-level questions t responses corrective feedback

| Modeling |
| ---: | :---: | :---: |
| includes a |\quad MODELING \quad PRACTICE

26 "Let's solve this, problem. What's the problem?

$$
\text { "26 plus } 79 . "
$$

"To solve 26 plus
79 , first decide
about the operation.
Should we add,
subtract, multiply, or divide?"
"Add."

"How did you know we want to add?"
"The plus sign tells us we want to add.
To add, let's use the partial sums strategy. What strategy?"
"Partial sums."

"With the partial sums strategy, we start adding in the greatest place value. What's the greatest place value in this problem?"
"The tens."

"So, let's add the tens. What's 20 plus 70?"
"20 plus 70
equals 90 . Let's write 90 right here below the equal line. What will we write?"
"90 is the partial sum when you add the tens. What does 90 represent?"
"Now, let's add the ones. What should we add?"

MODELING

Step-by-step explanation

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

What's the math that you model with your students?

MODELING

Step-by-step
explanation
Planned examples

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses
Providing affirmative and corrective feedback

How do you engage students

 in guided practice?
MODELING
 Step-by-step explanation
 PRACTICE
 Guided practice
 Independent practice
 Planned examples
 SUPPORTS
 Ask high-level and low-level questions
 Eliciting frequent responses
 Providing affirmative and corrective feedback

These Supports should be used in both Modeling and Practice.

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

During Modeling and Practice, it is essential to engage students and check for understanding.

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback
$\square \square \square$

MODELING

Step-by-step explanation

Planned examples

SUPPORTS

Ask high-level and low-level questions

Providing affirmative and corrective feedback

PRACTICE

Guided practice
Independent practice

Eliciting frequent responses

"Why do you use zero pairs?"
"Because a positive 1 and a negative 1 equal
0 . I use the zero pair to help me subtract."
yyug

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

During Modeling and Practice, students should frequently respond. The frequent responses keeps student attention and keeps student learning active.

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

- Oral
- Written
- With manipulatives
- With drawings
- With gestures

MA+

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses

Providing affirmative and corrective feedback

During Modeling and Practice, students should receive immediate feedback on their responses.

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback
"Nice work using your word problem attack
strategy."

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback
"Let's look at that again. Tell me how you added in the hundreds column."

MODELING

Step-by-step
explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses
Providing affirmative and corrective feedback

Which of these supports should you use more often?

Explicit Instruction

MODELING
 Step-by-step explanation

PRACTICE

Guided practice
Planned examples Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Select one math topic you would model with your students.

1. Develop your step-bystep plan for modeling that type of problem.
2. Demonstrate to your partner, using supports.

Evidence-Based Practice: Mathematical Language

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

$x A+1 \cdot \mid$

1. Some math terms are shared with English but have different meanings

right
degree
2. Some math terms are shared with English but have different meanings
3. Some math words are shared with English with similar meanings (but a more precise math meaning)

4. Some math terms are shared with English but have different meanings
5. Some math words are shared with English with similar meanings (but a more precise math meaning)
6. Some math terms are only used in math

7. Some math terms are shared with English but have different meanings
8. Some math words are shared with English with similar meanings (but a more precise math meaning)
9. Some math terms are only used in math
10. Some math terms have more than one meaning
\square

Rubenstein \& Thompson (2002)

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
variable vs.
variably cloudy
6. Some math terms are shared with English but have different meanings
7. Some math words are shared with English with similar meanings (but a more precise math meaning)
8. Some math terms are only used in math
9. Some math terms have more than one meaning
10. Some math terms are similar to other content-area terms with different meanings
11. Some math terms are homographs

eight vs. ate

sum vs. some

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
factor vs. multiple
hundreds vs. hundredths
```
numerators vS. denominator
```

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings

mesa vs.

tabla

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
10. Some math terms are shared with English but have different meanings
11. Some math words are shared with English with similar meanings (but a more precise math meaning)
12. Some math terms are only used in math
13. Some math terms have more than one meaning
14. Some math terms are similar to other content-area terms with different meanings
15. Some math terms are homographs
16. Some math terms are related but have distinct meanings
17. An English math term may translate into another language with different meanings
skip count vs. multiples
18. English spelling and usage may have irregularities
19. Some math concepts are verbalized in more than one way
20. Some math terms are shared with English but have different meanings
21. Some math words are shared with English with similar meanings (but a more precise math meaning)
22. Some math terms are only used in math
23. Some math terms have more than one meaning
24. Some math terms are similar to other content-area terms with different meanings
25. Some math terms are homographs
26. Some math terms are related but have distinct meanings
27. An English math term may translate into another language with different meanings
28. English spelling and usage may have irregularities

rhombus vs. diamond

10. Some math concepts are verbalized in more than one way
11. Informal terms may be used for formal math terms

Use formal math language

Use terms precisely

What number is in the tens place?

What digit is in the tens place? What is the value of the digit in the tens place?

135

Why this is important...

- A number refers to the entire amount.
- The 3 in the tens place value is not a number, but rather a digit in the number 135 .
- Reinforces conceptual understanding of place value.
- Emphasizes that 3 is part of the number 135 with a value of 30 .

The alligator eats the bigger number

is less than OR

 is greater thanWhy this is important...

- Students must learn how to read and write the inequality symbols.
- Students must learn to read equations correctly from left to right because < and > are two distinct symbols.

Four point seven Four point oh seven

$$
\begin{array}{r}
4.7 \\
4.07
\end{array}
$$

Why this is important...

- Accurately shares the magnitude of the decimal.
- Emphasizes place value.

flips, slides, turns

reflections, translations, rotations

Why this is important...

- The informal language helps children remember the actions, but this vocabulary is not used on assessments.
- Use the formal mathematical terms.

What are examples of,

 "Instead of __, Say ___?"
Use formal math language

Use terms precisely

Improper fraction Proportion

$$
\frac{8}{5}
$$

Mixed number

$$
1 \frac{3}{5}
$$

Proper fraction $\frac{2}{9}$

$$
\frac{2}{5}=\frac{8}{20}
$$

Ratio
$4: 3$
Unit fraction
$\frac{1}{6}$

Equation $9 x-4=7 x$
Expression 9x - 4
Formula $a^{2}+b^{2}=c^{2}$
Function $\quad f(x)$
Inequality $9 x-4>6 x$

Integers
 Irrational numbers
 Natural numbers
 Rational numbers

 Whole numbers

Quadrilaterals

Kite

Parallelogram

Rectangle \square

Rhombus

Square

Trapezoid

Acute angle

Obtuse angle $\xrightarrow[\text { angle }]{\longrightarrow}$

Straight angle

Acute triangle

Obtuse triangle

Right triangle

Equilateral triangle

 ΔIsosceles triangle

Scalene triangle

C

Adjacent angles

Alternate angles

Complementary angles

Corresponding angles

Supplementary angles

$$
=180^{\circ}
$$

Vertical angles

Congruent figures
$\square_{\text {Similar figures }}^{\square}$

I

Which terms do your students not use precisely?

Use formal math language

Use terms precisely

1. Use explicit instruction

 Over $\mathbf{1 5 0 , 0 0 0}$ in Print
 explicit

Effective and Efficient Teaching

ANITAL. ARCHER
CHARLES A. HUGHES

2. Use graphic organizers

Dunston \& Tyminski (2013)
2. Use graphic organizers

Dunston \& Tyminski (2013)

6. Equal: having the same amount or value.

4. Have students create glossaries

Integer Definitions

Zero Pairs
A positive and negative cancel one another;

Positive
A number that is greater than zero.

Absolute

Value
The distance of a number from zero on a number line; shown as ||

Negative
A number that is
less than zero. Identified by a minus sign.

Numerator: how many parts of the whole

Ex. 10
Odd number: a number not divided evenly by 2

- Ex. 1, 3, 5, 7, 9....

Percent: a specific number in comparison to 100 74\%
Polygon: any enclosed shape that is made up of 3 or more straight lines

5. Create a word wall

6. Preview vocabulary

Bay-Williams \& Livers (2009)

7. Cluster vocabulary

	Length	Weight
Meaning	How long something is	How heavy something is
Visual	1 Yard	2000 pounds $=1$ ton

Livers \& Bay-Williams (2014)

7. Cluster vocabulary

Rating	Word	Definition	Synonym(s)	Example	Sample Problem
2	$e x)^{\text {(esin }}$	a mathematical phrase combining operations, numbers and/or variables.	phrase algebraic expression	$\begin{array}{cc} 6 & \text { い'equal- } \\ 6 n & \text { no } \\ 6+n & \text { sign: } \end{array}$	Lucia earns \$8 per haur for babysilting and gets a $\$ 5$ tip. Write an expression to represent the amount she would earn if she worked for x hours.
2	joishor	a quantity that can change ortake many values. (refers to the letter orsymbol representing the quantity)	unknown		The variable x vepresents the number of hours charlie work in a week. Write an expression to vepresent his earnings if he carns $\$ 9$ per park
1	$p^{1000^{x}}$	the result when two or more numbers are multiplied	total answer	$\begin{array}{r} 3 \times 2=\underset{\uparrow}{\uparrow} \\ \text { product } \end{array}$	The product of 6 and a number is 24. What is the number?
3		the result of a division crefers to the number of times the divisor divides the dividend)	answer	$\begin{aligned} & 18 \div 2=9 \\ & 2 \sqrt{18}<\text { quitient } \end{aligned}$	Estimate the quotient when 365 is divided by 12.

8. Use mnemonics

Riccomini et al. (2015)

VOCABULARY CROSSWORD
ANSWERKEY

10. Use technology

1. Discuss how you will use formal math language.
2. Discuss how you will help students
distinguish among similar math terms.
3. Describe your strategy for focusing more on math language in your math instruction.

Evidence-Based Practice: Multiple Representations

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Multiple Representations

MA+ $:$

Two-dimensional images

Modeling Fractions with Cuisenaire Rods

Two-dimensional images

Numerals and symbols and words

$$
2+8=10 \quad 34=3 \text { tens and } 4 \text { ones }
$$

$$
x-6=8
$$

$$
4,179
$$

$$
\begin{array}{r}
569 \\
\hline
\end{array}
$$

If you are left handed: What's one of your favorite hands-on manipulatives?

If you are right handed: What's one of your favorite virtual manipulatives?

Evidence-Based Practice:
Building Fluency with Facts and Computation

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building

Building Fluency

Addition

Multiplication
Division

- Fluency is doing mathematics easily and accurately.
- Fluency in mathematics makes mathematics easier.
- Fluency provides less stress on working memory.
- Fluency helps students build confidence with mathematics.

- With fluency, it is important to emphasize both conceptual learning and procedural learning.
- Fluency is not strictly procedural!

Addition

100 addition basic facts

- Single-digit addends sum to a single- or double-digit number

5 (addend)
$\left(\begin{array}{l}\text { (addend) } \\ +9 \\ (\text { sum })\end{array}\right.$

Addition: Total (Part-Part-Whole, Combine)

Count one set, count another set, put sets together, count sum

$$
2+3=5
$$

Addition: Join (Change Increase)

Start with a set, add the other set, count sum

$$
2+3=5
$$

Total

Parts put together into a total

- Karly saw 4 cardinals and 5 blue jays. How many birds did Karly see?

$$
4+5=?
$$

Change

An amount that increases or decreases

- Premila had \$4. Then they earned \$3 for cleaning their room. How much money does Premila have now?

$$
4+3=?
$$

Total Versus Change (Join)

$$
3+9=
$$

If you have brown eyes: What's a Total story to show addition?
If you don't have brown eyes: What's a Change/Join story to show addition?

Subtraction

100 subtraction basic facts

- Subtrahend and difference are single-digit numbers and minuend is single- or doubledigit number

$$
\begin{array}{r}
16 \\
-\quad 8 \\
\hline 8
\end{array}
$$

(minuend)
(subtrahend)
(difference)

Subtraction: Separate (Change Decrease)

Start with a set, take away from that set, count difference

$$
5-3=2
$$

Subtraction: Difference (Compare)

Compare two sets, count difference

$$
5-3=2
$$

Change

An amount that increases or decreases

- Bronwyn had 9 cookies. Then they ate 2 of the cookies. How many cookies does Bronwyn have now?

$$
9-2=?
$$

Difference

Greater and less amounts compared for a

- Rachel has 9 apples. Jodie has 4 apples. How many more apples does Rachel have? (How many fewer does Jodie have?)

$$
9-4=
$$

Change (Separate) versus Difference

$$
9-5=
$$

If you weren't born in Virginia: What's a Change/Separate story to show subtraction? If you were born in Virginia: What's a Difference story to show subtraction?

Multiplication

100 multiplication basic facts

- Multiplication of single-digit factors results in a single- or double-digit product

Multiplication: Equal Groups

Show the groups, show the amount for each group, count product

$3 \times 2=6$

Multiplication: Equal Groups

Show the groups, show the amount for each group, count product

$3 \times 2=6$

Multiplication: Comparison

Show a set, then multiply the set

\section*{| 0 | 1 | 2 | 3 | 4 | 4 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

$3 \times 2=6$

Equal Groups

Groups multiplied by number in each group for a product

- Rhiannon has 2 boxes of crayons. There are 12 crayons in each box. How many crayons does Rhiannon have altogether?
$2 \times 6=?$

Comparison

Set multiplied by a number of times for a product

- Vivienne picked 6 apples. Jessica picked 2 times as many apples as Vivienne. How many apples did Jessica pick?
$6 \times 2=$?

Equal Groups versus Comparison

$$
2 \times 5=
$$

If you have glasses on: What's an Equal Groups story to show multiplication? If you don't have glasses on: What's a Comparison story to show multiplication?

Division

90 division basic facts

- Divisor and quotient are single-digit numbers and dividend is single- or double-digit number

$$
8 \div 4=2
$$

(dividend) (divisor) (quotient)

Division: Equal Groups (Partitive Division)

Show the dividend, divide equally among divisor, count quotient

앙
(2)

$$
8 \div 2=4
$$

Division: Equal Groups (Quotative Division)

Show the dividend, make groups of the divisor, count groups

Equal Groups

Groups multiplied by number in each group for a product

- Stefanie has 12 apples. She wants to share them equally among her 2 friends. How many apples will each friend receive?

$$
2 \times ?=12
$$

- Nicole has 12 apples. She put them into bags containing 6 apples each. How many bags did Nicole use?

$$
? \times 6=12
$$

Partitive versus Quotative

$$
12 \div 4=
$$

If you watched Friends:
What's a Partitive story to show division?

If you watched Seinfeld:
What's a Quotative story to show division?

- Build fluency with math facts.
- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor

$$
\begin{array}{r}
5 \\
+\quad 6 \\
+\quad 4 \times 7 \div 8 \\
\hline
\end{array}
$$

Addition	Subtraction
Multiplication	Division

What are other ways to practice fluency?

Addition	Subtraction
Multiplication	Division

- Build fluency with whole-number computation
15
1009
158
$+\quad 28$
$\begin{array}{r}-\quad 724 \\ \hline\end{array}$

$$
\begin{array}{r}
23250 \\
\times \quad 9 \\
\hline
\end{array}
$$

- Build fluency with rationalnumber computation

$$
\begin{array}{r}
1.47 .892 \\
+\quad 3.9 \quad \div \quad 0.14 \\
\hline
\end{array}
$$

$$
\frac{2}{3} \times \frac{3}{4} \quad \frac{9}{4}-\frac{3}{8}
$$

Addition
 Subtraction

Multiplication

Division

- Build fluency with integer computation
$-135 \div 2=$
6

$$
\times-12
$$

$-14-(-7)=$
1.4
1.4 .9
$+\quad$

Tracey

Partial Sums

- Work left to right

Martin

Opposite Change

- Round one number to nearest ten
- Amount added is subtracted from other number

$$
\begin{aligned}
& \text { a. } 74 \xrightarrow{-4} 70 \\
& +18 \stackrel{+4}{\rightarrow}+22 \\
& \text { 8. } 725 \stackrel{+5}{\longrightarrow} 730 \\
& +365^{-5} \xrightarrow{\frac{5}{1,090}}
\end{aligned}
$$

Fiona

Partial Differences

- Work left to right

834
$\begin{array}{r}834 \\ -\quad 675 \\ \hline\end{array}$

Sally

Same Change

- Change subtrahend to end in 0

$$
\text { A. } \begin{array}{rr}
62 \xrightarrow{+3} 65 \\
-17 \xrightarrow{+3}+20 \\
45 & -\quad 96 \xrightarrow{+4} 309 \\
\hline
\end{array}
$$

834
 $\begin{array}{r}834 \\ -\quad 675 \\ \hline\end{array}$

Kaitlan

Add-Up

$$
\begin{aligned}
& \text { А. } \begin{array}{rrrrr}
62 & 17 & \text { в. } & 305 & 96 \\
-17 & 20 & 40 & -\quad 96 & 100 \\
\hline
\end{array} \\
& \begin{array}{r}
834 \\
-\quad 675 \\
\hline
\end{array}
\end{aligned}
$$

Tracey

Partial Products

A. | 24 |
| ---: |
| $\times 143$ |
| 800 |
| 160 |
| 60 |
| $+\quad 12$ |
| 1,032 |

Kim

Area

Michael

Lattice Method

Lee Anne

Partial Quotients

Sharon

Lattice Division

\square

Julian

Division as Fractions

1. Describe how you will help students learn their mathematics facts.
2. Describe how you will support students with other types of math fluency.

BREAKOUT

Evidence-Based Practice: Word-Problem Solving

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

Maya has 120 caramel apples to sell. Each caramel apple is covered with one topping.

- $\frac{1}{5}$ of the caramel apples are covered with peanuts.
- $\frac{1}{3}$ are covered with chocolate chips.
- $\frac{3}{10}$ are covered with coconut.
- The rest are covered with sprinkles.

How many caramel apples are covered with sprinkles?
A 100
B 33
C 25
D 20

BREAKOUT

How would you solve this problem? What skills are necessary to solve this problem?

What are additional areas of difficulty that we should add to this list?

1. Keywords tisc to operations

Lincoln had 8 pencils fewer than Roscoe. If Roscoe had 18 pencils, how many pencils did Lincoln have?

Lincoln had 8 pencils fewer than Roscoe. If Lincoln had 18 pencils, how many pencils did Roscoe have?

Key Words Used in Math Word Problems

Word-Problem Words Poster Set

Item \#162978
75\%
of respondents would

What dou want to know about thi product?

Expect an answer in about 48 hours

Pay with 3 monthly payments of just $\$ 4.33$. No fees.

Learn more ${ }^{1}$

Description of Single-Step Word Problems ($n=132$)

	Occurr sche		$\begin{array}{r} \mathrm{Ar} \\ \text { keyv } \end{array}$		Sch spe keyw	a- fic $\mathrm{rds}^{\mathrm{a}}$			Keywor to co solutio) led ct n^{3}
Schema	n	\%								
Total	27	20.5	26	96.3	23	88.5	5	19.2	21	80.8
Difference	17	12.9	17	100.0	14	82.4	2	11.8	12	70.6
Change	11	8.3	7	63.6	5	71.4	5	71.4	2	28.6
Equal groups	29	22.0	26	89.7	22	84.6	18	69.2	8	30.8
Comparison	10	7.6	9	90.0	9	100.0	4	44.4	5	55.6
Ratios or proportions	29	22.0	23	79.3	9	39.1	9	39.1	6	26.1
Product of measures	9	6.8	9	100.0	8	88.9	1	11.1	5	55.6
${ }^{\text {a }}$ When a problem featured a keyword.										

Description of Multi-	Word P	ms (n				
Schema	Occurrence of schema ${ }^{\text {a }}$		Any keyword		Keyword(s) led to correct solution ${ }^{\text {b }}$	
	n	\%	n	\%	n	\%
Total	40	47.6	39	97.5	3	7.7
Difference	11	13.1	11	100.0	1	9.1
Change	21	23.8	19	95.0	1	5.3
Equal groups	49	58.3	48	98.0	1	2.1
Comparison	7	8.3	7	100.0	0	0.0
Ratios or proportions	22	25.0	16	76.2	1	6.3
Product of measures	7	8.3	7	100.0	2	28.6

"Sum across schemas does not equal 100 because each word problem featured more than one schema.
${ }^{\text {b }}$ When a problem featured a keyword.

Mr. Rivera's taxable income is $\$ 20$ each hour before taxes are taken out. Mr. Rivera worked a total of 40 hours each week for 50 weeks.

What is the dollar amount, to the nearest dollar, taken out for taxes based on Mr. Rivera's taxable income?

Jessica rented 1 video game and 3 movies for a total of $\$ 11.50$.

- The video game cost $\$ 4.75$ to rent.
- The movies cost the same amount each to rent.

What amount, in dollars, did Jessica pay to rent each movie?

The temperature of a substance decreased by $24^{\circ} \mathrm{C}$ per minute for 3 minutes. What was the overall change of the temperature of the substance?

Important notes about keywords

Keywords are important to identify and understand

Keywords are often the mathematical vocabulary that help an students understand what the story is about and what they need to do

Talk about keywords ("What does more than tell you about?")
2. Presenting priu!ems by operation

LONG DIVISION WORD PROBLEMS

1. Zookeeper Al wants to give each monkey the zoo an equal number of bananas. There are 37 D eys in the 200 and 567 bananas. How many bananas do ach monkey get? And How many are left over for him to nimself?
make theming has 1376 pages of scrap paper. She wants to many pages will each packet have? How many extra pages will she have left over?

Teaching Problem Solving

 Have an attack strategyTeach word-problem schemas

Have an attack strategy

RIDE

Read the problem.
Identify the relevant information.
Determine the operation and unit for the answer.
Enter the correct numbers and calculate, then check the answer.

RIDGES

Read the problem.
I know statement.
Draw a picture.
Goal statement.
Equation development. Solve the equation.

Have an attack strategy

RICE

Read and record the problem.
Illustrate your thinking.
Compute.
Explain your thinking.
Stop and read the problem carefully.
Think about your plan and the strategy you will use.
Act. Follow your plan and solve the problem.
Review your answer.

Have an attack strategy

SUPER

Slowly read the story problem twice. Underline the question and circle the numbers you need. Picture it. Draw the scenario to show what is happening. Explain the problem with a number sentence. Rewrite the answer in a sentence.

SHINES

Slowly and carefully read the problem. Highlight or underline key information.
Identify the question by drawing a circle around it.
Now solve the problem. Show your work.
Examine your work for precision, accuracy, and clarity. Share your answer by writing a sentence.

Have an attack strategy

R-CUBES

SOLVE

Study the problem.
Organize the facts.
Read the problem. Circle key numbers.
Underline the question.
Box action words.
Evaluate steps.
Solve and check.

Line up the plan.
Verify the plan with computation.
Examine the answer.

Have an attack strategy

UPS.
 Understand
 Read and explain.

Plan

How will you solve the problem?
Solve
Set up and do the math!
, снеск
Does your answer make sense?

Share your favorite attack strategy.

Teach word-problem schemas

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Schema and Definition	Equations and Graphic Organizers	Examples			Variations
Total (Combine; Part-partwhole) Parts combined for a sum		Sum unknown: Lyle has 11 red apples and 18 green apples. How many apples does Lyle have altogether?	Part unknown: Lyle has 29 red and green apples. If 11 of the apples are red, how many green apples does Lyle have?		More than two parts: Lyle has 34 apples. Of the apples, 11 are red, 18 are green, and the rest are yellow. How many yellow apples does Lyle have?
Difference (Compare) Sets compared for a difference		Difference unknown: Sasha wrote 85 words in her essay, and Tabitha wrote 110 words. How many fewer words did Sasha write than Tabitha?	Bigger/greater unknown: Tabitha wrote 25 more words than Sasha. If Sasha wrote 85 words, how many words did Tabitha write?	Smaller/lesser unknown: Tabitha wrote 110 words in her essay. Sasha wrote 25 words fewer than Tabitha. How many words did Sasha write?	(None)
Change (Join; Separate) An amount that increases or decreases	ST +/ - C = E (start $+/$ - change $=$ end)	End (increase) unknown: Jorge had $\$ 52$. Then, he earned $\$ 16$ babysitting. How much money does Jorge have now? End (decrease) unknown: Jorge had \$52. Then, he spent $\$ 29$ at the ballpark. How much money does Jorge have now?	Change (increase) unknown: Jorge had $\$ 52$. Then, he earned some money babysitting. Now, Jorge has $\$ 68$. How much did Jorge earn babysitting? Change (decrease) unknown: Jorge had $\$ 52$ but spent some money when he went to the ballpark. Now, Jorge has $\$ 23$. How much did Jorge spend at the ballpark?	Start (increase) unknown: Jorge has some money, and then he earned $\$ 16$ for babysitting. Now, Jorge has $\$ 68$. How much money did he have to start with? Start (decrease) unknown: Jorge had some money. Then, he spent $\$ 29$ at the ballpark and has \$23 left. How much money did Jorge have before going to the ballpark?	Multiple changes: Jorge had \$78. He stopped and bought a pair of shoes for $\$ 42$ and then he spent $\$ 12$ at the grocery. How much money does Jorge have now?

Total

Parts put together into a total

Daniela saw 3 canoes and 8 kayaks. How many boats did Daniela see?

Daniela saw 11 boats. If 3 of the boats were canoes, how many were kayaks?

Daniela saw 11 boats. 8 of the boats were kayaks, how many were canoes?

Total

"Are parts put together for a total?"

Total
$P 1+P 2=$ T

(total)

(part)

(part)

Total

Additive Word Problems

Total

What's an example Total problem?

Difference

Greater and lesser amounts compared for a difference

Adrianna has 10 pencils. Tracy has 4 pencils. How many more pencils does Adrianna have? (How many fewer?)

Adrianna has 6 more pencils than Tracy. If Tracy has 4 pencils, how many does Adrianna have?

Tracy has 6 fewer pencils than Adrianna. Adrianna has 10 pencils. How many pencils does Tracy have?

Total

"Are parts put together for a total?"

Difference

"Are amounts compared for a difference?"

Difference

Difference

Additive Word Problems

A.	
Megan baked 38 sugar cookies and 24 chocolate	In
In	

March and April, it rained a total of 11.4 inches. If it rained 3.9 inches in March, how many inches did it rain in April?
C.
Jana has 162 wooden beads and 95 glass beads.
How mal

How many more wooden beads than glass beads
does Jana have?
D.

The temperature in Norfolk was 12 degrees warmer than in Roanoke where the temperature was 79 degrees. It was 86 degrees in Marion. What was the temperature in Norfolk?

Difference

What's an example Difference problem?

Change

An amount that increases or decreases

Nickole had 6 notebooks. Then, she bought 3 notebooks. How many notebooks does Nickole have now?

Nickole had 6 notebooks. Then, she bought a few more notebooks. Now, Nickole has 9 notebooks. How many notebooks did she buy?

Nickole had some notebooks. Then, she bought 3 notebooks. Now, Nickole has 9 notebooks. How many notebooks did she have to start with?

Change

An amount that increases or decreases

Samantha baked 20 cookies. Then, she ate 3 of the cookies. How many cookies does Samantha have now?

Samantha baked 20 cookies. Then, she ate some of the cookies. Now, she has 17 cookies. How many cookies did Samantha eat?

Samantha baked some cookies. She ate 3 of the cookies and has 17 cookies left. How many cookies did Samantha bake?

Total

"Are parts put together for a total?"

Difference

"Are amounts compared for a difference?"

Change
"Does an amount increase or decrease?"

Change

$$
+1-
$$

(start)
(change)
(end)

Additive Word Problems

$\left.$	E.
A plant was 3 3/4 inches tall at the beginning	
of June. By the end of July, the plant was $91 / 8$	
inches tall. How many inches did the plant grow	
in 2 months?	
:---	
Martina has some money in her bank account.	
Then, she spent $\$ 135.69$ and has a balance of	
- $\$ 24.80$. How much money did Martina have to	
begin with?	\right\rvert\,
:---	

Change

What's an example Change
problem?

G.

Sam mows lawns and made \$560 last week. She made $\$ 95$ on Monday, $\$ 135$ on Tuesday, and \$70 on Wednesday. How much did Sam make on Thursday and Friday?

$$
P 1+P 2+P 3+P 4=T
$$

Change

$$
S T-C+C=E
$$

Which schema?

Schema Quiz Time!

Change

Pablo goes to a stamp show where he can share, buy, and sell stamps.
26. Part A

The first day, Pablo starts with 744 stamps. He buys 27 stamps from his friend. He then sells 139 stamps.

What is the total number of stamps that Pablo has after the first day of the stamp show?

Difference

The graph below shows the number of pounds of plastic the Keller family recycled for five months.

Based on the graph, how many more pounds of plastic did the family recycle in July than in April?

Total

Mr. Conley delivers packages. The bar graph shows the total number of packages he delivered on five days last week.

10. Part A

What is the total number of packages Mr. Conley delivered on Monday and Tuesday?
(A) 300
(B) 340
(c) 350
(2) 360

Teach word-problem schemas

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Schema and Definition	Graphic Organizers	Examples			Variations
Equal Groups (Vary) A number of equal sets or units		Product unknown: Maria bought 5 cartons of eggs with 12 eggs in each carton. How many eggs did Maria buy?	Groups unknown: Maria bought 60 eggs. The eggs were sold in cartons with 12 eggs each. How many cartons of eggs did Maria buy?	Number unknown: Maria bought 5 cartons of eggs for a total of 60 eggs. How many eggs were in each carton?	With rate: Maria bought 5 cartons of eggs. Each carton cost \$2.95. How much did Maria spend on eggs?
Comparison One set as a multiple or part of another set		Productunknown: Malik picked 7 flowers. Danica picked 3 times as many flowers. How many flowers did Danica pick?	Setunknown: Danica picked 3 times as many flowers as Malik. If Danica picked 21 flowers, how many flowers did Malik pick?	Times unknown: Malik picked 7 flowers. Danica picked 21 flowers. How many times more flowers did Danica pick?	With fraction: Malik picked 25 red and yellow flowers. If $1 / 5$ of the flowers were yellow, how many were red?
Proportions (Percentages; Unit Rate) Relationships among quantities		Subject unknown: Sally typed 56 words in 2 minutes. How many words could Sally type in 7 minutes?	Object unknown: Sally typed 56 words in 2 minutes. How many minutes would it take Sally to type 192 words?		With percentage: Watson received an 80\% on his science quiz. If the test had 40 questions, how many questions did Watson answer correctly?
Ratio		Base unknown: Justin baked cookies and brownies. The ratio of cookies to brownies was $3: 5$. If he baked 15 cookies, how many brownies did he bake?	Compared unknown: Justin baked cookies and brownies. The ratio of cookies to brownies was 3:5. If he baked 25 brownies, how many cookies did he bake?	Ratio unknown: Justin baked 15 cookies and 25 brownies. What's the ratio of cookies to brownies?	With unit rate: Paula bought 5 boxes of markers. She spent $\$ 9.75$. What is the price of one box of markers?

Material collected from: Jitendra, DiPipi, \& Perron-Jones, 2002; Jitendra \& Star, 2011; Jitendra et al., 2009; Van de Walle et al., 2013; Xin, Jitendra, \& Deatline-Buchman, 2005; Xin \& Zhang, 2009.

Equal Groups

Groups multiplied by number in each group for a product

Toni has 2 bags of apples. There are 6 apples in each bag. How many apples does Toni have altogether?

Toni has 12 apples. They want to share them equally among their 2 friends. How many apples will each friend receive?

Toni has 12 apples. They put them into bags containing 6 apples each. How many bags did Toni use?

Equal Groups

"Are there groups with an equal number in each group?"

Equal Groups

GR X

Equal Groups

Multiplicative Word Problems

B.

Ms. Thompson sold 6 cartons of cherries at the Farmers' Market. Each carton holds 25 cherries. How many cherries did she sell?

Jane bought 112 light bulbs. The light bulbs come

Enrique has 2 times as many pencils as Ava. Ava has 6 pencils. How many pencils does Enrique have?

Susan has 7 times as many books as Mo. Mo has 18 books. How many books Susan has?

Equal Groups

What's an example Equal Groups problem?

Comparison

Set multiplied by a number of times for a

 productBrooke picked 6 apples. Shaleeni picked 4 times as many apples as Brooke. How many apples did Shaleeni pick?

Equal Groups

"Are there groups with an equal number in each group?"

Comparison

"Is a set compared a number of times?"

Comparison

(multiplier/ (product) part)

Comparison

Multiplicative Word Problems

Ms. Thompson sold 6 cartons of cherries at the
Farmers' Market. Each carton holds 25 cherries.
How many cherries did she sell?
B.
Jane bought 112 light bulbs. The light bulbs come in packs of 4 . How many packs of light blubs did Jane buy?
C.
Enrique has 2 times as many pencils as Ava. Ava has 6 pencils. How many pencils does Enrique have?

Comparison

What's an example
Comparison problem?

Ratios/Proportions

Description of relationships among quantities

Emma typed 56 words in 2 minutes. At this rate, how many words could Emma type in 7 minutes?

Melissa baked cookies and brownies. The ratio of cookies to brownies was $3: 5$. If she baked 25 brownies, how many cookies did she bake?

Equal Groups

"Are there groups with an equal number in each group?"

Comparison

"Is a set compared a number of times?"

Ratios/Proportions

"Are there relationships among

Ratios/Proportions

Description of relationships among quantities

Ratios/Proportions

Ratios/Proportions

What's an example Ratio/Proportion problem?

Schema Quiz Time!

Equal Groups

Mr. Kowolski ordered 35 boxes of granola bars. Each box contained 24 granola bars.

What is the total number of granola bars Mr. Kowolski ordered?

Ratios/Proportions

A company makes 625 cell phone cases each day. How many cell phone cases does the company make in 31 days?

Comparison

Danielle's full-grown dog weighs 10 times as much as her puppy. The puppy weighs 9 pounds.

Enter the number of pounds the full-grown dog weighs.

Teach word-problem schemas

Total

Equal Groups

Difference

Comparison

Change
Ratios/Proportions

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

National Center on
INTENSIVE INTERVENTION
at American Institutes for Research ■

Intensive	Tools	Implementation	Intervention	Information
Intervention v	Charts v	Support -	Materials •	For... •

Intensive Intervention in Mathematics Course Content

Search

MODULE 4: INTENSIVE MATHEMATICS INTERVENTION: MATHEMATICS INTERVENTIO
INSTRUCTIONAL DELIVERY

NCII, through a collaboration with the University of Connecticut, developed a set of course content focused on developing educators' skills in designing and delivering intensive mathematics instruction. This content is designed to support faculty and professional development providers with instructing preservice and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

[^0]

MODULE 5: INTENSIVE
MATHEMATICS INTERVENTION: INSTRUCTIONAL STRATEGIES

https://www.inclusionintexas.org/apps/pages/index.isp?uREC ID=2155039\&type=d\&pREC ID=2169859

Schedule for Today

$9: 00-9: 25$	- Introduction
$9: 25-9: 40$	- Instructional Platform
$9: 40-10: 30$	- Evidence-based practice: Systematic instruction
$10: 30-10: 40$	BREAK
$10: 40-11: 15$	- Evidence-based practice: Mathematical language
$11: 15-12: 00$	- Evidence-based practice: Multiple representations
$12: 00-1: 00$	LUNCH
$1: 00-2: 15$	- Evidence-based practice: Building fluency with facts and
$2: 15-2: 25$ BREAK $2: 25-3: 45$ - Evidence-based practice: Word-problem solving $3: 45-4: 00$ -	

Schedule for Tomorrow

9:00-9:05	- Trajectories in mathematics
9:05-9:45	- Manipulatives: Early Numeracy
$9: 45-10: 30$	- Manipulatives: Whole Numbers and Place Value
10:30-10:40	BREAK
10:40-11:45	- Manipulatives: Fractions
11:45-12:00	- Wrap-up

1:00-1:05	Trajectories in mathematics
1:05-1:40	- Manipulatives: Fraction Concepts
1:40-2:20	- Manipulatives: Fraction Computation
2:20-2:30	BREAK
2:30-2:45	- Manipulatives: Decimals
2:45-3:45	- Manipulatives: Algebra
3:45-4:00	- Wrap-up

$x A+H$

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

srpowell@utexas.edu

[^0]: Intensive instruction was recently identified as a high-leverage practice in special educations, and DBI is a research based approach to delivering intensive instruction across content areas (NCII, 2013). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in mathematics, complete with exemplars from actual classroom teachers.

 NCII, through a collaboration with the University of Connecticut and the National Center on Leadership in Intensive Interventions and with support from the CEEDAR Center『, developed course content focused on enhancing educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and professional development providers with instructing pre-service and in-service educators who are learning to implement intensive mathematics intervention through data-based individualization (DBI). The content in this course complements concepts covered in the Features of Explicit Instruction Course and so we suggest that users complete both courses.

