
4116 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

Network Controllability Perspectives on Graph
Representation

Anwar Said , Obaid Ullah Ahmad , Waseem Abbas , Member, IEEE, Mudassir Shabbir ,
and Xenofon Koutsoukos

Abstract—Graph representations in fixed dimensional feature
space are vital in applying learning tools and data mining algo-
rithms to perform graph analytics. Such representations must en-
code the graph’s topological and structural information at the local
and global scales without posing significant computation overhead.
This paper employs a unique approach grounded in networked
control system theory to obtain expressive graph representations
with desired properties. We consider graphs as networked dynam-
ical systems and study their controllability properties to explore
the underlying graph structure. The controllability of a networked
dynamical system profoundly depends on the underlying network
topology, and we exploit this relationship to design novel graph
representations using controllability Gramian and related metrics.
We discuss the merits of this new approach in terms of the desired
properties (for instance, permutation and scale invariance) of the
proposed representations. Our evaluation of various benchmark
datasets in the graph classification framework demonstrates that
the proposed representations either outperform (sometimes by
more than 6%), or give similar results to the state-of-the-art em-
beddings.

Index Terms—Graph classification, graph embedding, network
controllability.

I. INTRODUCTION

THE graph-theoretic framework provides means to analyze
network characteristics and examine the influence of local

interactions on global network behavior. In recent years, various
data-driven approaches have been developed to solve real-world
graph problems like graph classification, link prediction, com-
munity detection, and network evolution. Applying prevalent

Manuscript received 28 November 2022; revised 21 August 2023; accepted
28 October 2023. Date of publication 8 November 2023; date of current
version 12 July 2024. This work was supported by National Science Foun-
dation under Grants 2325416 and 2325417. Recommended for acceptance by
B.C.M. Fung. (Corresponding author: Anwar Said.)

Anwar Said and Xenofon Koutsoukos are with Computer Science Depart-
ment, Vanderbilt University, Nashville, TN 37235 USA (e-mail: anwar.said
@vanderbilt.edu; xenofon.koutsoukos@vanderbilt.edu).

Obaid Ullah Ahmad is with the Electrical Engineering Department, Uni-
versity of Texas at Dallas, Richardson, TX 75080 USA (e-mail: obaidullah.
ahmad@utdallas.edu).

Waseem Abbas is with the Systems Engineering Department, University of
Texas at Dallas, Richardson, TX 75080 USA (e-mail: waseem.abbas@utdallas
.edu).

Mudassir Shabbir is with Computer Science Department, Information
Technology University, Lahore 54000, Pakistan, and also with Vanderbilt
University, Nashville, TN 37235 USA (e-mail: mudassir.shabbir@vanderbilt
.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TKDE.2023.3331318, provided by the authors.

Digital Object Identifier 10.1109/TKDE.2023.3331318

data mining techniques and learning algorithms to solve graph
problems is not a straightforward task. The classical methods are
designed for vector-valued data requiring graphs to be embedded
in vector spaces. In other words, we need to define vector
representations of graphs with some desired properties, such
as permutation-invariance, expressiveness, and accuracy.

In this paper, we design a novel graph representation grounded
in the network controllability paradigm [1]. We perceive graphs
as networked dynamical systems in which each vertex is an agent
(dynamical unit) that maintains a state. Every agent updates its
state through some dynamical process and interacts with other
agents in its neighborhood defined by the underlying network
graph. The states of all agents define the overall network’s
state. The network controllability paradigm concerns steering
a network from one state to another by injecting some control
signals into the system through a subset of agents. The network’s
ability to be manipulated and controlled through such external
inputs directly depends on the underlying network graph [2], [3],
[4], [5], [6]. As a result, by studying the controllability properties
of dynamical processes over networks, one can gather valuable
insights into the underlying graph’s structure that are distinct
from other approaches. We propose to understand and harness
the relationship between graph topology and networked dynam-
ical system behavior to design expressive graph representations
in this work.

The controllability of networked dynamical systems has been
a fundamental topic in control theory. In recent years, many
studies have established profound connections between network
controllability and the underlying graph-theoretic constructs,
such as matching [4], graph distances [7], dominating sets [8],
equitable partitions [3], and zero forcing sets [9]. At the same
time, graph-theoretic characterization of controllability for var-
ious families of network graphs, such as paths, cycles, trees,
complete graphs, random graphs, symmetric graphs, circulant
graphs, bipartite graphs, and product graphs, have been re-
ported [1].

This paper demonstrates that by exploring controllability
properties of networks, including how ‘much’ of the overall
network can be controlled from a given set of input nodes,
how ‘easy’ it is to steer the network towards desired states,
how the ‘location’ of input nodes affect the controllability, and
how the network topology influences these behaviors, we can
construct effective graph representations (CTRL and CTRL+).
We evaluate the proposed representations for the classification
problem on several standard datasets and report improved or

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6715-0068
https://orcid.org/0000-0002-8303-1114
https://orcid.org/0000-0002-9013-1463
https://orcid.org/0000-0002-6961-0961
https://orcid.org/0000-0002-0923-6293
mailto:anwar.said@vanderbilt.edu
mailto:anwar.said@vanderbilt.edu
mailto:xenofon.koutsoukos@vanderbilt.edu
mailto:obaidullah.ahmad@utdallas.edu
mailto:obaidullah.ahmad@utdallas.edu
mailto:waseem.abbas@utdallas.edu
mailto:waseem.abbas@utdallas.edu
mailto:mudassir.shabbir@vanderbilt.edu
mailto:mudassir.shabbir@vanderbilt.edu
https://doi.org/10.1109/TKDE.2023.3331318

SAID et al.: NETWORK CONTROLLABILITY PERSPECTIVES ON GRAPH REPRESENTATION 4117

competitive classification accuracy compared to the existing
approaches. We also discuss the expressiveness and invariance to
node orderings of the proposed graph embeddings. This network
control systems perspective to design graph representations is
studied for the first time to the best of our knowledge.

II. RELATED WORK

Graph representation methods can be broadly divided into
three main approaches: graph kernels, spectral graph represen-
tations and Graph Neural Networks (GNNs). In the following
subsections, we provide a brief overview of the recent advance-
ments in these domains.

Graph Kernels: Graph kernels are acknowledged as prevalent
methods for analyzing and comparing graphs. There are a va-
riety of widely recognized approaches, among them being the
shortest-path kernel [10], the Weisfeiler Lehman kernel [11],
the deep graph kernel [12], and the graphlet kernel [13], among
others. These methods employ different graph-theoretic met-
rics like pairwise distances [10], subgraph mining [14], and
neighborhood aggregation [11] to extract graph representations.
To illustrate, the shortest-path kernel and its several variants,
being some of the earliest and most impactful approaches,
utilize the pairwise distance method to generate the kernel
matrix [10]. The central concept revolves around comparing
the lengths of the shortest paths between all possible pairs of
vertices in two separate graphs. Similarly, random walk kernels
offer an alternative viewpoint on graph kernels by assessing
the count of walks within graphs that are mutual [15]. Another
widely appreciated approaches involve interpreting the graph
structure as a collection of vertices, mirroring the bag-of-words
representation in textual contexts [13]. This approach, while
overlooking the global perspective, zeroes in on the intricate
details of the graph by examining the subgraph structures [16].
The Weisfeiler-Lehman (WL) kernel is another notable method
in graph kernels. This technique distinguishes itself by going
beyond the traditional graph structures, and instead, focusing
on the neighborhood information of each node [11]. Despite
the significant advances achieved by graph kernels, they do
face certain limitations. For example, their performance may
suffer when applied to large-scale graphs due to computational
complexity. Additionally, their ability to capture more nuanced
or complex patterns and structures within the graph data can be
limited, as they mainly focus on local graph information [16].

Spectral Graph Representations: Unlike graph kernels, graph
spectral methods leverage the spectrum (i.e., the eigenvalues)
of the graph Laplacian, to describe graph structures [17]. This
approach addresses the limitations of graph kernels by pro-
viding more computationally efficient solutions, especially for
large-scale graphs, and capturing global patterns and structures
within the data [18]. In recent years, various efforts have been
undertaken that have garnered considerable interest. For in-
stance, the authors in [17] introduce a family of graph spectral
distances (FGSD), aiming to produce sparse and stable graph
representations, with an emphasized focus on the uniqueness of
the resulting graph representation. This proposed methodology
leverages pairwise distances and considers the graph spectrum,

comprising eigenvectors and eigenvalues, as a means to compute
distances. In a similar vein, the authors of [19] propose the use
of the Wasserstein distance to distinguish graphs based on their
node feature distributions, while the distribution of smooth graph
signals is employed in [20] for graph comparisons. An analogous
approach, involving the optimal transport theory and discrete
graph matching in a continuous domain, is proposed in [21],
[22]. Similarly, [18] introduces a spectral graph representation
approach, termed as NetLSD, which is based on the heat and
wave kernel of the graphs. The crux of this work revolves
around the notion of heat diffusion over the graph, assuming
that the heat originates from a single vertex at time t and
subsequently diffuses throughout the graph at different time
scales. These time scales are computed in the form of a heat
matrix, and the corresponding graph representation is obtained
by taking the trace of the heat matrix calculated at each time
instance. Furthermore, [14], [23] present graph descriptors that
encapsulate the structural information of graphs using different
graph-theoretic methods.

The proposed method of capturing the control-theoretic prop-
erties of a graph offers a rich perspective on obtaining graph
representations. One way to understand such representation is
by envisioning it as a heat diffusion process on graphs, similar
to NetLSD. However, the diffusion in our proposal begins from
multiple source nodes, offering a more comprehensive perspec-
tive for analyzing the graph structure. NetLSD is a special case
of our proposed approach.

Graph Neural Networks (GNNs): GNNs are useful tools for
learning graph representations. The last few years have seen a
surge in GNNs approaches, introducing different techniques for
improving models’ capabilities. Among these, message-passing
with attention, transformers, and more recently, unsupervised
methods have significantly improved the models’ performance
on different tasks [24], [25]. Recently, various graph represen-
tation approaches have been introduced that focus on different
aspects of the GNN methods i.e. scalability, robustness, gen-
eralizability, and explanability [26]. Such approaches include
Graph Convolutional Networks [27], [28], Graph Reinforce-
ment Learning [29], and Self-Supervised Learning (SSL) [30].
Graph convolutions involve two groups of methods: spectral
and spatial convolution [31], [32]. The spectral convolutions
methods use graph Fourier transform or its extensions to trans-
late node representations to the spectral domain [31], [33]. On
the other hand, spatial convolution methods use a message-
passing mechanism to learn node embeddings [32], [34]. Re-
inforcement Learning (RL) based approaches implement RL
mechanism to perform task-oriented learning on graphs such
as graph generation, graph classification, and knowledge graph
reasoning [35]. Self-Supervised Learning extracts informative
knowledge through well-designed pretext tasks without relying
on manual labels [30].

These graph neural network approaches report a state-of-the-
art classification accuracy on several standard graph datasets,
their sizable variance is of concern for certain applications [36].
Additionally, they utilize node features in the learning pro-
cess, whereas the kernel methods usually work on unlabelled
graphs.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

4118 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

Unlike the existing works, we pursue a unique approach to
seek expressive graph representation. We consider graphs as
networked dynamical systems and observe their controllability
properties, revealing the extent to which a network can be
manipulated. Using control theory, we employ tools to capture
the relationship between networks’ control behavior and their
underlying topologies. We then propose a graph representation
based on control properties that exhibit good classification ac-
curacy for a broad range of datasets.

III. NETWORKS AS DYNAMICAL SYSTEMS

A network of inter-connected entities is represented by
a graph G = (V,E), where the vertex set V = V (G) =
{v1, v2, . . . , vN} represents the entities, and the edge set E =
E(G) ⊆ V × V represents the pairs of related entities. We use
the terms vertex, node and agent alternatively. The neighborhood
of a vertex vi is the set Ni = {vj ∈ V : (vj , vi) ∈ E}. The
degree of vi, denoted by δi, is the size of the neighborhood Ni.
A graph with N nodes is represented by the adjacency matrix
J ∈ {0, 1}N×N , where Ji,j = 1, if and only if (vj , vi) ∈ E, and
Ji,j = 0, otherwise. The degree matrix of G, denoted by D, is
a diagonal matrix with Di,i = δi. The Laplacian matrix of a
graph is defined as L = D − J . The transpose of a matrix X is
denoted by XT . An N -dimensional vector with all zero entries
is denoted by 0N , and a vector with all 1’s is represented by 1N .
We consider undirected graphs here for the ease of exposition;
however, all the methods and results are also applicable to
directed graphs. We provide the details for directed graphs in
the Supplementary material.

A. Problem Description

A graph embedding is defined as a function φ(G) : G → Rd,
from the family of graphs, G, to a d-dimensional Euclidean
space. The objective of the graph embedding problem is to
find suitable embeddings for the graphs, where the suitability
of embeddings is driven by a few design goals discussed here.
Most importantly, φ should be able to retain information about
the structural similarities between pairs of graphs at both local
and global scales, i.e., if two graphs are structurally similar,
then their embeddings should generate vectors that are nearby
with respect to the Euclidean distance in the target vector space.
Note that the concept of similarities between two graphs is
not a universal notion but rather depends on a particular ap-
plication (e.g., graph classification, nearest neighbor search,
clustering) and the family of graphs considered (e.g., chem-
ical compounds, social networks). Furthermore, φ should be
permutation-invariant in the sense that φ should return identi-
cal vectors for two graphs, G,H , with the same set of edges
on a permuted vertex set, i.e., ∃π : V (G)→ V (H), (u, v) ∈
E(G)⇔ (π(u), π(v)) ∈ E(H), then we should have φ(G) =
φ(H). Another important design goal for graph embeddings is
scale-adaptiveness. Not only should a graph embedding be able
to map graphs of varying sizes to a fixed dimensional space,
but mapping should also transcend the graph size to capture its
structural properties. For example, an ideal graph embedding
would map a cycle on ten nodes closer to the mapping of a cycle

on twenty nodes as compared to the mapping of a wheel on
fifteen nodes. In this paper, we address the problem of finding
graph embedding while keeping the above-mentioned design
goals in perspective.

B. Control Dynamics Properties Over Networks

We design distinctive graph representations by studying con-
trolled dynamical processes over networks and mapping the
control behavior to the network topology. Consider a network
graph in which each agent vi is a dynamical unit with a state
xi(t) ∈ R at time t that the agent also shares with its neighbors
Ni. Each agent updates its state by following some dynamics
(e.g., consensus dynamics) while incorporating its neighbors’
states during the state update process. The state of the overall
system at time t is a vector of the states of all the agents, i.e.,
x(t) = [x1(t) x2(t) · · · xN (t)]T . Each agent updates its state
by the consensus dynamics given by

ẋi(t) =
∑
vj∈Ni

(xj(t)− xi(t)) . (1)

The system level dynamics (evolution of the state x(t)) is then
defined by the following linear system:

ẋ(t) = −Lx(t), (2)

whereL is the Laplacian matrix of the underlying network graph.
It is well known that if G is connected, then state of each agent
will eventually converge to the average of the initial states of all
agents [1]. Thus, if xi(0) is the initial state (at t = 0) of agent
vi, then

xi(t) → x̄ � 1

N

∑
vj∈V

xj(0), as t→∞, (3)

∀vi ∈ V . It means the overall network state x(t) will be
[x̄ x̄ · · · x̄]T = x̄1N ∈ RN , as t→∞. Thus, under the con-
sensus dynamics in (2), all agents converge to the same state. The
linear system defined overG in (2) is autonomous as the system’s
state is updated without any external input. We have no control
over the state’s evolution in the sense that we cannot steer the
system to some desired state, say x∗(tf) ∈ RN at time tf . For
this purpose, external control signals are injected into the system
through a small subset of agents called leaders. Through these
exogenous signals, leaders’ states can be directly manipulated,
i.e., ẋl = ul(t), whereul(t) is the input signal to the leader agent
vl. The non-leader agents, often called followers, continue to
update their states using (1).

By feeding appropriate control signals to leaders, which are
typically very few, the network’s overall state x(t) ∈ RN can be
manipulated. As a result, we get certain control over the system’s
(state) evolution. The set of states that can be achieved, that is,
to which the system can be driven, depends on the underlying
network graph, the number of leaders, and their locations within
the network. This ability of a network to be controlled through
external inputs is called network controllability. By studying
network controllability, we can gather valuable information
about the network’s structure as the two are deeply connected.
By studying the control-related properties of the network, for

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

SAID et al.: NETWORK CONTROLLABILITY PERSPECTIVES ON GRAPH REPRESENTATION 4119

instance, the number of leaders needed to completely control it,
the dimension of the subspace consisting of controllable states,
and the amount of control energy needed to steer the system
from one state to another, one can thoroughly examine the graph
structure and design effective graph representations.

IV. NETWORK CONTROLLABILITY AND GRAPH

REPRESENTATION

In this section, we will explore network controllability, a
fundamental idea in network theory that helps us understand
how we control systems. First, We will formally define a dy-
namic system for networks that can be controlled by probing
the network using external signals. Second, we define network
controllability and discuss various measures to quantify it. In
the end, we will discuss the potential of these control-based
measures in graph representation and illustrate their capability
with a few examples. Based on these measures, we design novel
embeddings for networks in Section V.

A. Network Dynamics

For a network graph G = (V,E), we partition V into fol-
lower and leader nodes, denoted by Vf and V�, respectively,
i.e., V = Vf ∪ V�. Here, |Vf | = Nf and |V�| = N�. Without
loss of generality, we assume that Vf = {v1, v2, . . . , vNf

} and
V� = {vNf+1, . . . , vN}. The subgraph induced by Vf is called
the follower graph and is denoted by Gf . The Laplacian matrix
of G is partitioned as

L =

[
A B

BT C

]
, (4)

whereA ∈ RNf×Nf ,B ∈ RNf×N� andC ∈ RN�×N� . An exter-
nal input signal ul is given to leader agent vl ∈ V�. The follower
nodes update their states according to (1). The state vector
corresponding to follower nodes is denoted by xf (t) ∈ RNf ,
and is updated by the following system.

ẋf (t) = −Axf (t)−Bu(t), (5)

where A and B are in (4) and u(t) = [uNf+1(t) · · · uN (t)]T ∈
RN� is a control signal at time t. We note that the system matrices
−A and −B in (5) directly depend on the underlying network
structure and the selection of leader agents. As a result, the
evolution ofxf is a function of the network graph and the control
mechanism, which includes external inputs and the selection of
leader agents in the network. From the control perspective, we
are interested in knowing if it is possible to steer the system
(5) from an arbitrary initial state to an arbitrary final state in a
finite amount of time t1. If it is possible, then how much control
energy E(u), defined below, would be required.

E(u) =
∫ t1

τ=0

‖u(τ)‖2dτ. (6)

Similarly, if all states are not reachable, then what is the dimen-
sion of the subspace consisting of reachable states? How these
control properties vary as a result of a change in leader agents?
Answers to these questions encode information that could be
conducive to learn the graph structure. For this, we need metrics

to quantify various aspects of network controllability. These
measures can then be used to obtain graph embeddings. Control-
lability of linear systems is a fundamental topic in Control theory
and we use results from there to quantify the controllability
properties of networks.

B. Network Controllability Metrics

Controlling a network corresponds to driving a network from
a given initial state to a desired final state by applying control
inputs to leaders in the network. If xf (ti) is the initial state at
time ti, then under the dynamics (5), the state at time ts is

xf (ts) = e−A(ts−ti)xf (ti) +

∫ ts

ti

e−A(ts−τ)(−B)u(τ)dτ.

(7)
A statex∗

f ∈ RNf is called reachable if there exists an input that
can drive the network from origin0Nf

tox∗
f in a finite amount of

time. The set of all reachable states constitutes the controllable
subspace.1 The dimension of the controllable subspace is an
important control-theoretic property and can be computed by
the rank of the Controllability matrix below, [6].

C =
[
−B (−A)(−B) · · · (−A)Nf−1(−B)

]
. (8)

The rank of the above matrix depends on A and B, which in turn
depend on the network graph and the selection of leaders. The
network is completely controllable if and only if rank(C) = Nf .
Controllability Gramian is an important mathematical object
that provides crucial information about the control behavior of
the network [5], [37], [38]. Using controllability Gramian, we
can quantify how ‘easy’ it is to go from one state to another
in terms of the required control energy (6). For the system in
(5), the infinte horizon controllability Gramian is defined as [5],
[37],

W =

∫ ∞
0

e−Aτ (−B)(−B)T e−A
T τdτ ∈ RNf×Nf . (9)

If the system is stable, that is, all eigenvalues of −A have
negative real parts, then W converges asymptotically and can
be computed by the Lyapunov equation,

(−A)W +W(−A)T + (−B)(−B)T = 0, (10)

which is a system of linear equations and is therefore easily
solvable. For the solution of (10) to exist, −A must be a stable
matrix, which is true for connected graphs.

Lemma 1: If we partition the Laplacian matrix L of an undi-
rected connected graph as in (4), then the matrix A is positive
definite [1].

As a result, −A is negative definite in the case of connected
graphs and the system in (5) is stable, and the correspondingW
can be computed. Controllability Gramian provides an energy-
related quantification of controllability, and we can obtain sev-
eral controllability statistics fromW [5], [37], [38]. We discuss
some of them below.

1In continuous linear time-invariant systems, as in (5), if a state x∗f is
reachable from the origin, then x∗f is also reachable from an arbitrary initial
state in any duration of time.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

4120 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

� Trace of W: The trace of the controllability Gramian is
inversely related to the average control energy over random
target states. It can also be considered as a measure of
average controllability in all directions in the state space.

� Minimum eigenvalue ofW: It is the worst-case metric that
is inversely proportional to the control energy required to
steer the network in the least controllable direction in the
controllable subspace.

� Rank of W: The rank of W is the dimension of the con-
trollable subspace.

� Determinant ofW: The quantity ld(W)= log(
∏

j μj(W)),
where μj(W) is a non-zero eigenvalue ofW , is a volumet-
ric measure of the controllable subspace reachable with one
unit or less of control energy. If the system is completely
controllable, then ld(W) is the log determinant ofW .

C. Main Idea

In this section, we demonstrate the main idea regarding how
can we design successful graph embeddings by exploiting the
behavior of controlled dynamical processes over networks. The
controllability metrics, as defined in the above section, have the
capability to capture the underlying local and global network
topology and merit to distinguish certain graph families. For
instance, Wang in [39] proves that every graph G satisfying a
constraint on the determinant of the controllability matrix C can
be distinguished by the collective spectrum (eigenvalues) of the
adjacency matrix A ∈ RN×N of graph G and its complement.
Theorem 1 in [40] states:

Theorem 4.1: Every graph in family FN can be determined
completely by its generalized spectrum, where

FN =

{
G | det(C)

2�
N
2

is an odd square-free integer

}
(11)

Wang et al. extends this theorem and proves in [41] that
the tournament networks belong to FN and can be identified
from the adjacency spectrum exhibiting the usefulness of con-
trollibility metrics in distinguishing graphs. Similarly, there are
numerous results in the literature providing insights into the
relationship between the network topology and the controllabil-
ity properties, thus, establishing the potential of controllability
ideas to distinguish graphs in various families. Some simple
examples to further illustrate the differentiating capabilities of
the control metrics are presented below.

Examples: We illustrate through examples that network con-
trollability depends on the topological organization of the net-
work and the location of leaders in it. Fig. 1 shows various
networks, each of which has eight agents, including a single
leader agent. The controllability properties of the resulting
follower networks, for instance, the rank and the trace of the
controllability Gramian, denoted by rank and tr, respectively,
vary in networks. The path network in Fig. 1(a) is completely
controllable with a single leader agent, which is one of the end
nodes. At the same time, the complete network in Fig. 1(c) is
least controllable as the rank of the controllability Gramian is
1. Similarly, in other networks, the controllability attributes are

Fig. 1. Controllability metrics are functions of the underlying network graph.

Fig. 2. Controllability metrics vary with leader selection

functions of the network graph. Along with the network topol-
ogy, leader selection also affects the network controllability, as
illustrated in Fig. 2. We consider a network of 10 agents, of
which one is a leader agent, which means Nf = 9. In Fig. 2(b),
the dimension of the controllable subspace is 9, which means
that the follower network is completely controllable. The edges
between a leader and follower nodes, which decide the structure
of B matrix in (5) are shown in red. In Fig. 2(c), we choose a
different leader and observe that the network remains completely
controllable; however, the trace ofW changes.

To collect valuable information about the graph structure, we
need to probe the network effectively. This can be achieved by
varying the number and locations of leader nodes and observing
the resulting controllability behavior using measures tr(W),
μj(W), rank(W) and ld(W). In the next section, we use these
controllability metrics collected by various choices of leader
selection to construct useful graph representations.

Remark 1: The consensus dynamics over the network can be
defined in several other ways, for instance, by considering the
overall state of the network (instead of only the followers’ states
xf) and therefore, selecting −L as the system matrix.

We have discussed various controllability metrics, including
the Gramian trace, eigenvalues, rank, and resolvability, which
capture important characteristics of the graph in this section. As
illustrated above, these measures provide valuable insights into
the structure and dynamics of the corresponding graph. Now,
armed with this knowledge, we will present how we can utilize
these metrics to construct expressive graph representations in
the next section.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

SAID et al.: NETWORK CONTROLLABILITY PERSPECTIVES ON GRAPH REPRESENTATION 4121

V. GRAPH REPRESENTATION DESIGN

This section describes how we design our graph representa-
tion based on controllability characteristics defined in the previ-
ous section. If the graph is not connected, then the systems matrix
−A in (5) might not be stable for some choice of leader agents.
Consequently, the solution of (10) might not exist. Therefore,
we assume that the input network graph is connected. However,
some real-world phenomena may generate networks that are
disconnected. To handle such cases, we perform a preprocessing
step in which we introduce a new vertex in such a graph and
add an edge from this new vertex to all other vertices in the
graph. This ensures that the graph becomes connected. Simi-
larly, for extremely tiny graphs (with less than ten vertices), we
perform a cloning step in which multiple copies of the original
graph are generated to ensure that the input graph contains at
least ten vertices. This is not an ideal solution as it tampers
with the graph’s structure, but we believe this preprocessing
is rarely needed, and it retains enough structural information
from the original graph, as we illustrate in the evaluation
section.

We have two main probes to explore the controllability aspects
of a network graph: the number of leader agents and their
locations in the network. For molecular datasets, we utilize node
information and the leader selection process is deterministic. For
the rest of the datasets, the leader selection process is uniformly
random and the features of the Gramian are calculated for several
different number of leaders. The details of this leader selection
process for each dataset are provided in Section VI.

For a given set of leader agents, we first compute the corre-
sponding system matrices, i.e., −A and −B by partitioning the
Laplacian matrix as in (4). Then, we compute the corresponding
controllability Gramian W as in (10). We note that to solve
the Lyapunov (10), efficient algorithms and solvers exist that
scale well to large networks [42], [43]. We record the trace,
rank, minimum (non-zero), and maximum eigenvalues of the
Gramian. Along with these controllability measures, we also
include a few easy-to-compute statistics about the input graph
that are mentioned in Algorithm 1. A step-wise description of the
embedding, which we call CTRL, is given in Algorithm 1. We
provide further details of the measures we use in the embeddings
in supplementary materials. We cater any structural changes to
the input graph due to the preprocessing step by also designing
an enhanced version, called CTRL+. In CTRL+, we simply con-
catenate the information in CTRL with another graph embedding
that may have better expressiveness for disconnected and small
graphs. For this work, we use a recent graph embedding called
Higher-Order Structure Descriptor (HOSD), which is easy to
implement and contains the count of various small subgraphs
present at multiple scales in the network [14]. Since CTRL is
reasonably sized, concatenating with HOSD does not create any
severe computational overheads.

Next, we analyze some of the properties of CTRL that are vital
for the network classification task as discussed in Section III-A.

Permutation Invariance: The CTRL uses the spectrum (set
of eigenvalues) of the controllability Gramian to calculate the
feature descriptors of the given graph G. For a given graph G

Algorithm 1: CTRL: (Control Embedding).

Input: Graph G = (V,E), |V | = N , num_iterations
Output: Graph embeddingR
1: L← Laplacian of G.
2: InitializeR as an empty list.
3: Create a list of leader sets using the leader selection

strategy (see experimental setup).
4: for each Vl in the list of leader sets do
5: Compute the corresponding system matrices −A,−B

(as in (5)).
6: Compute the GramianW (as in (9) and (10)).
7: Compute the rank, trace, minimum non-zero

eigenvalue, μmin, and maximum eigenvalue, μmax, of
W .

8: Compute the Resolvability (number of unique
distance-to-leader vectors from [7]) of G
corresponding to selected leader nodes

9: Compute rank, trace, μmin, μmax, Resolvability value
and concatenate to the listR.

10: end for
(Adding some simple stats about the
graph structure to R.)

11: Concatenate N , |E|, number of bi-connected
components, the Laplacian spectrum. (We add
three smallest and largest
eigenvalues), Laplacian energy, eccentricity
spectrum, eccentricity energy, Wiener index, trace
degree sequence of G, and cycles information.

12: ReturnR

with N nodes and given leaders Vl, the Gramian is defined as:

W(Vl)
G =

∫ ∞

0

e−Aτ (−BVl
)(−BVl

)T e−A
T τdτ (12)

where BVl
∈ RNf×Nl for Vl leaders. We show that when we

select the leader nodes uniformly at random, the expectation of
spectrum of the Gramian remains independent of the permuta-
tion of vertices in the adjacency and Laplacian matrices.

Proposition 5.1: The expected spectrum of the Gramian of
follower dynamics (as in (12)) of a leader-follower network G,
in which the leaders selection is uniform random, is permutation
invariant.

Proof: For uniform random selection of leaders, the expecta-
tion of the Gramian matrixW(j)

G is:

E[WG] =
1

Kl

Kl∑
j=1

∫ ∞

0

e−Aτ (−BVj
)(−BVj

)T e(−Aτ)T dτ

(13)

where Kl =
(
N
Nl

)
is the number of choices for a leader set

of size Nl, and BVj
is the input matrix corresponding to Vj

leader set. A permutation matrix Π is a square matrix, I , formed
by a reordering of the rows of the identity matrix of the cor-
responding dimensions. If G = (V,E) and G′ = (V ′, E ′) are
isomorphic graphs, then there exists a permutation matrix Π

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

4122 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

such that Π L Π−1 = L′, where L and L′ are the corresponding
Laplacian matrices of G and G′ respectively. Recall that Π
satisfies the property Π ΠT = ΠTΠ = I . Let Πf ∈ RNf×Nf be
an arbitrary permutation matrix corresponding to the follower
agents. The Gramian WG′ of the follower dynamics obtained
from a permuted copy of the Laplacian matrix L′ = ΠLΠ−1 is

W(j)
G′ =

∫ ∞

0

e−A
′τ (−B′Vj

)(−B′Vj
)
T
e(−A

′τ)T dτ

=

∫ ∞

0

e−ΠfAτΠ−1f (−B′Vj
)(−B′Vj

)
T
e(−ΠfAτΠ−1f)T dτ

= Πf

∫ ∞

0

e−AτΠT
f (−B′Vj

)(−BVj
)TΠfe

(Aτ)T dτΠT
f

where Π−Tf = (Π−1f)T = (ΠT
f)

T = Πf . Further, we can write,

= Πf

(∫ ∞

0

e−Aτ (ΠT
f B

′
Vj
)(ΠT

f B
′
Vj
)TΠfe

(Aτ)T dτ

)
ΠT

f

Note that the summation of expectation in (13) is over all
choices of leader sets of size Nl. For each (ΠT

f B
′
Vj
), there is a

unique 1 ≤ j′ ≤ Kl such that (ΠT
f B

′
Vj
) = BV ′j . Therefore,

E[WG′] =
1

Kl

Kl∑
j′=1

ΠfW(j′)
G ΠT

f

E[WG′] = Πf (E[WG]) Π
T
f .

Thus, the expected Gramian of a permuted graph is same as
the the permutation of the expected Gramian of the original
graph. Since the spectrum of a matrix is invariant to linear
transformations, we conclude that the expected spectrum of the
Gramian is preserved under vertex permutations.

Moreover, a simple numerical analysis on Erdős-Rényi (ER)
graphs shows that the CTRL descriptor converges towards the
mean value with fairly low variance for uniformly random leader
selection. We randomly generate 25 graphs with N = 30 nodes
and the probability p of an edge between any two nodes to be
0.18. We plot the mean and variance of rank and trace of the
Gramian for all the leaders combinations from 1 to 5 as shown in
Figs. 3(a) and (b). We also generate 25 ER graphs withN = 100
and p = 0.18. For these larger graphs, we uniformly randomly
select 50000 leaders sets for number of leaders from 1 to 30
and plot the mean and variance values of rank and trace of the
Gramian shown in Figs. 3(c) and (d), respectively. Interestingly,
the rank has very low variance for both graphs sizes. The variance
of the trace value is relatively high for lower number of nodes
(because of lower number of leaders combinations), but drops
for higher number of leaders.

Scale Invariance: For certain families of graphs, some of the
control descriptor features have the capability to be consistent
with the variation of the size of the graphs. For instance, the
Gramian is full rank when either terminal node of a path graph
is selected as a leader [6]. Liu et al. in [44] provides a relation
for rank(W) for path graphs when Nl = 1 and the leader is not
a terminal node. Theorem 1 of [44] states that

Theorem 5.2: Suppose PN = (V,E) be the path graph
where V = {v1, . . . , vN}, and (vi, vi+1) ∈ E ∀i = 1, . . . , N ,

Fig. 3. (a) and (b) Show the mean and variance of the Rank and Trace obtained
for the ER graphs withN = 30 for all combinations of leaders. (c) and (d) Show
the same features for the ER graphs with N = 100 for uniformly randomly
selected 50,000 leader sets.

and FN = {f1, . . . , fm}, f1 > f2 > . . . > fm > 1, represent
the set of the odd factors of N except for 1. If there exists a
set Mi whose element m belongs to {2, 3, . . . , N − 1} and fi
is the greatest common factor of 2m− 1 and N , and if j ∈Mk,
where k ∈ {1, . . . ,m}, then the rank(W) = N − (fk − 1)/2.

Hence, the rank(W) normalized by the size of the path graph
N is fairly independent of the size of the path graphs. Likewise,
for cycle graphs CN with N nodes, the Gramian is strictly full
rank if any two adjacent nodes are selected as leader nodes
whereas for a single leader, the rank(W) is always �N/2 [4].
For the controllable subspace with two non-adjacent leaders in
a cycle graph, the parity is important. Liu et al. in [44] discuss
this controllability of a cycle with two leaders as a function of
distances between the leaders. Theorem 4 of [44] states that

Theorem 5.3: Suppose CN = (V,E) be the cycle graph
where V = {v1, . . . , vN}, (vi, vi+1) ∈ E ∀i = 1, . . . , N ,
(v1, vN) ∈ E. Let Ik = {mk|m ∈ N+}, and Ink = {x|x ∈ Ik &
x ≤ [N/2]}. For evenN , let FE

N = {f1, . . . , fm}denote all even
factors of N except for 2, where N = f1 > f2 > . . . > fm > 3
and let FE

1 = INf1/2, FE
k = INfk/2\∪mi=1F

E
i and k = 2, . . . ,m.

Let d(vi, vj) be the number of edges in the shortest path
between vi and vj . If d(v1, v2) ∈ FE

k , where Vl = {v1, v2},
then rank(W) = N − fk/2 + 1.

The same procedure can be followed for odd N , thus, exhibit-
ing the scale-invariance of the normalized rank(W) for cycle
graphs to large degree.

VI. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed embeddings
on graph classification tasks and compare the results with the
state-of-the-art graph representation methods. We consider clas-
sification accuracy as an evaluation metric and use 10-fold cross-
validation in our experimental setting. We repeat the experiments
ten times and report the mean of the best results of each iteration.
CTRL and CTRL+embeddings are implemented in Python and
all the experiments are performed on the Amazon Web Services
instance (c5.24xlarge) with 96-cores and 192 GB of RAM.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

SAID et al.: NETWORK CONTROLLABILITY PERSPECTIVES ON GRAPH REPRESENTATION 4123

TABLE I
STATS OF THE DATASETS, INCLUDING THE NUMBER OF GRAPHS, AVERAGE

NUMBER OF NODES AND EDGES, MINIMUM AND MAXIMUM NUMBER OF

VERTICES, AND NUMBER OF CLASSES

Datasets: We perform experiments on 10 standard graph
classification benchmark datasets. MUTAG, PTC_MR, PRO-
TEINS, ENZYMES, NCI1, and DD, are six bioinformatics
datasets. IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY,
and REDDIT-MULTI-5 K are four social network datasets [45].
The bioinformatics datasets describe small molecules and chem-
ical compounds that belong to two classes except for the EN-
ZYMES dataset which consists of six classes. Among the social
network datasets, IMDB-BINARY and IMDB-MULTI describe
actors’ ego-networks while REDDIT-BINARY and REDDIT-
MULTI are chosen subreddits from an online social network.
The graphs in IMDB-BINARY and REDDIT-BINARY are la-
beled with two classes and there are three and five classes in
IMDB-MULTI and REDDIT-MULTI datasets, respectively. We
provide basic stats of the datasets in Table I.

Source code and data including the precomputed CTRL
embeddings on all the datasets are released to the research
community for easier reproducibility of the results.2

Baselines: We consider six graph embeddings methods:
Shortest Path (SP) [10], SVM theta [46], GK [47], NetSIM-
ILE [48], NetLSD [18], and FGSD [17] for comparing the
performance of the proposed method. Among them, the first
three are state-of-the-art graph kernel methods while the later
are recently proposed graph descriptors. NetLSD and FGSD
use graphs’ spectral features to extract graph information. Net-
SIMILE is a graph descriptor that is based on seven simple
graph statistics including average vertex degree, average clus-
tering coefficient, and standard deviation of the two-hops neigh-
borhood. To evaluate the performance against state-of-the-art
and recent GNN methods, we also consider nine Graph Neu-
ral Networks (GNNs) models: DGCNN [49], DiffPool [50],
ECC [51], GIN [36], Nested Graph Neural Network (NGNN)
with GIN [52], Cell Isomorphism Networks (CIN) [53], Mes-
sage Passing Simplicial Networks (SIN) [54], Structural Seman-
tic Readout (SSRead) [55] with SUM, and RepPool [56] for
comparison. The GNNs models chosen for comparison include
well-known and recent models showing promising results on the
graph classification task.

Experimental setup:
To obtain the control features, we consider different leader

selection techniques. The leader set selection process is as
follows:

2https://github.com/Anwar-Said/Control-Graph-Embedding

� For molecular datasets i.e. MUTAG, PTC, and NCI1, we
use node types for leaders selection process. We take all
the nodes as leaders of the same type and repeat for all
the distinct types of nodes in the dataset. For the EN-
ZYMES dataset, the first node feature is considered as node
type.

� For the rest of the datasets, the leader selection process is
random. There are exponentially many choices to select
Nl leaders among a set of N vertices. Therefore, we make
this choice randomly. Formally, we uniformly select Nl

leader nodes from the vertex set and repeat this random
selection process c times for a given number of leaders.
We first consider a fixed number of leaders, i.e., 1, 2, 5, 9,
and then consider a fraction of overall nodes to be leaders,
that is, 2%, 5%, 10%, 20%, 30% of the total nodes. For
each random leader sets choice, we repeat the experiment
30 times. Every time a set of leader nodes is selected, we
record graph measurements presented in the Algorithm 1.
We use minimum, maximum, and average values of these
measures over c iterations in our graph embedding.

We ensure through a preprocessing step that each graph has at
least 10 nodes and is connected. We use the Random Forest (RF)
algorithm with grid search for the classification and reported
10−fold cross validation accuracy and their standard deviation.
In the hyper-parameter setting of RF, we choose

√
d features for

building a tree, where d is the feature vector’s size, and the classi-
cal Gini impurity is used as a metric to build the tree. The number
of estimators is chosen from {50, 100, 500} and total number of
samples for a split in a tree is chosen from the set {2, 3, 4, 5}. In
FGSD experiments, we set 0.0001 bin-width as recommended
in [18]. For NetLSD, we use all variants mentioned in their paper
and report the best results by utilizing the entire eigenspectrum.
For NetSIMILE, we use their publicly available source codes
and reproduce the results using our experimental setup. For
graph kernel results, we use GraKel [57] library for computing
kernel matrices and then use RF with the same setting for the
classification. For GNNs, we reproduced the result of NGNN,
CIN [53], SIN [54], GCN-SSRead [55] and RepPool [56] with
10-fold cross validation using the source codes made publicly
available by the authors. The hyper-parameters are same as in
the original papers. Here, we would like to note that due to the
unavailability of a few datasets in the desired formats, we were
not able to reproduce some of the results, hence N/A is reported.
For DGCNN [49], DiffPool [50], ECC [51] and GIN [36], we
consider the results in [58] that are obtained through identical
frameworks.

Classification results:
We present the classification results of our evaluation in

Tables II and III. We conclude from the results that the pro-
posed embeddings either outperform or achieve comparable
performance in terms of prediction accuracy on all benchmarks.
Specifically, in comparison to the embedding methods, CTRL
and CTRL+rank top on eight out of ten datasets. On the re-
maining datasets, the results are within 2% of the top results.
In comparison to GNN models in Table III, we observe the
superior performance of both CTRL and CTRL+on ENZYMES
and REDDIT-B datasets. On the remaining datasets except

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Anwar-Said/Control-Graph-Embedding

4124 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

TABLE II
GRAPH CLASSIFICATION ACCURACY COMPARISON OF CTRL AND CTRL+ AGAINST SPECTRAL AND STATISTICAL GRAPH REPRESENTATION METHODS

TABLE III
GRAPH CLASSIFICATION ACCURACY WITH STANDARD DEVIATION COMPARISON AGAINST GNNS

IMDB-M, CTRL and CTRL+achieve second or third place.
Although the proposed descriptor did not place in the top three
on the IMDB-M dataset, the results are within 3% of the top
results. These results clearly demonstrate the effectiveness of
the proposed descriptor for graph classification.

We expect the results to further improve when combined with
existing graph embeddings (spectral, statistical or GNNs). Our
results empirically confirm that the spectral information of the
network Gramian is effective for constructing graph representa-
tions.

VII. DISCUSSION

Our results reveals that the proposed control theoretic ap-
proach demonstrates promising results within the scope of both
bioinformatics and social networks. This work represents a novel
advancement, as it effectively combines control theory with
graph machine learning, thereby offering a potent avenue for
the enrichment of the graph representation domain. In the forth-
coming sections, we delve into the computational complexity of
the proposed method, as well as address the issues of scalability
and randomness in the selection of leader nodes. Moreover,
we also discuss a potential use case of CTRL embeddings for
Self-Supervised Learning (SSL), which as an interesting avenue
for future research.

Computational Complexity: We provide the analysis of the
time complexity for each feature in Table I of the Supplemen-
tary material. Initially, we compute the system matrices, which
involve array slicing with a complexity ofO(N2)whereN is the
number of nodes in the graph. Subsequently, the CTRL features,
including the Gramian matrix and its properties, are computed
for each set of leaders (as depicted in the for loop in line 4 of
the algorithm). The computation of the Gramian matrix entails
solving the generalized Sylvester equation and has a complexity
ofO(N3) for sparse matrices [59]. For dense matrices, there are
several iterative methods to compute the Gramian matrix [60].
One widely used method is the Bartels-Stewart method [61].
Its complexity is O(f(σ)×N3) where f(σ) is a linear func-
tion of σ, the average number of iterations to ensure solution
convergence. The computation of eigenvalues and other matrix
properties also has a complexity of O(N3). The calculation
of resolvability also exhibits a time complexity of O(N3).
Therefore, the total computational cost of features for each set
of leaders/followers is generallyO(K × f(σ)×N3), where K
represents the number of distinct leader sets for each graph.
For bioinformatics datasets, K is the number of vertex types
in the whole dataset. Whereas, for the social network datasets,
K = c× 9where c = 30 as explained in the experimental setup.
The simple statistics about the graph structure have a time
complexity of O(N3). These statistics are independent of the

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

SAID et al.: NETWORK CONTROLLABILITY PERSPECTIVES ON GRAPH REPRESENTATION 4125

TABLE IV
TOTAL TIME TAKE TO COMPUTE CTRL EMBEDDINGS

CTRL features and are computed only once for the entire graph.
The overall time complexity of Algorithm 1 can be expressed
as:

O(K × f(σ)×N3) +O(N3) +O(N3)

= O(K × f(σ)×N3)

We present the timing information for computing the CTRL
features on various datasets in Table IV. We note that the DD
dataset has three graphs of sizes 2495, 4152, and 5749 that take a
total time of 19.32 hrs to compute the CTRL feature embeddings.
The CTRL features for the remaining 1175 graphs are computed
in about an hour.

Computing CTRL features requires computing the controlla-
bility Gramian of the network control system defined on the
graph. This step is computationally the most expensive and
requires solving a matrix equation called the Sylvester equation.
There are several approaches that can efficiently approximate the
Sylvester equation. These approximations enable the proposed
method to scale effectively on large graphs. We discuss some of
them in more detail in the next subsection.

Scalability – The major step involved in the computation of the
proposed representations is the computation of the infinite hori-
zon controllability Gramian (9). Since it requires matrix multi-
plication (10), the overall time complexity is super-quadratic in
Nf . Though it was not an issue for the graph classification tasks
considered in the paper, the method could pose computational
challenges for very large graphs.

We note that the scalability issue was not the main focus
of this work, instead, a new approach relying on the control
behavior of networks through external perturbations to encode
graph structure was the main consideration. Nonetheless, there
are several ways to deal with it and would be included in future
extensions. Lyapunov equation, whose solution is the controlla-
bility Gramian, is a particular case of a more general Sylvester
equation. While solving the Sylvester equation through standard
methods (e.g., Bartels-Stewart, Hammarling) could be com-
putationally expensive in large networks, several techniques
have been developed over the years to significantly improve the
computation time for approximately solving Lyapunov equa-
tions (LE) with reasonable accuracy. These techniques utilize
the additional structure of LE, which includes the low-rank

condition of the matrix (as the number of leaders is typically
quite small), stability and sparsity of the system matrix, and
so on. Some of these methods include iterative methods (e.g.,
cyclic low-rank Smith method), alternating directions implicit
(ADI) methods, Krylov subspace methods, projection methods
(e.g., extended Arnoldi or Glarekin method), see [62] and the
references therein.

Leader Selection Mechanism –In the proposed work, we
mainly considered random leader selection, albeit there can be
other systematic ways; one being leader selection based on node
types used for molecular datasets. Optimizing leader selection
to maximize the performance for the task at hand could pose a
significant computation overhead as leader selection problems
are typically computationally challenging. For instance, it is
NP-hard to determine if a graph with a fixed number of leader
nodes is completely controllable or not. Thus, we desire a
simple and computationally efficient scheme that gives good
performance for a wide range of applications.

We note that in the control framework, leader nodes provide a
mechanism to probe the network externally so that we can record
the network control behavior and use it for graph embedding.
In the absence of optimal leader selection, it is a reasonable
proposition to probe the network fairly from all directions to
achieve this objective. Random leader selection achieves these
objectives, that is, efficient computation and fair probing of the
network. However, improved results can be expected with a
more standardized leader selection. We note an increase of about
10% accuracy in NCI1 dataset with a systematic leader selection
process defined in Section VI. It would be an interesting question
to devise an optimal leader selection problem for specific tasks
and study rigorously the trade-off between the accuracy and
computational costs.

Self-Supervised Learning – Self-supervised learning (SSL)
has emerged as a promising solution for challenging data label-
ing scenarios, offering a novel approach to address the problem
of limited labeled data. SSL harnesses the inherent structure
and unique characteristics of data to craft valuable representa-
tions without the need for explicit labels. Contrastive learning
has been a popular approach in SSL, effectively extracting
meaningful representations from unlabeled data by comparing
positive and negative samples. For graph representation learning,
Graph Contrastive Learning (GCL) has recently gained atten-
tion, maximizing agreement between similar nodes and infor-
mative embeddings capturing the graph structure [63]. Although
existing graph contrastive learning approaches mainly focus on
node-level embeddings, our proposed CTRL representation can
have the potential for graph-level embeddings to be used for
SSL.

Following the successful trend of contrastive learning in
several other fields [63], [64], [65], [66], we believe that the
CTRL embeddings has a potential to be used for learning
meaningful graph embeddings with contrastive loss. Using the
CTRL embeddings, we can train an encoder by maximizing
agreement between learned embeddings of the original graph
G and their augmented version G′ in a new embedding space.
The augmented version of a graph can be obtained using various
transformations including complementing, node dropping, edge

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

4126 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

perturbation, subgraph sampling, etc [63]. As the control prop-
erties of a graph heavily depend on the topology of the graphs,
one possibility would be to use the complement of the graph as
the appropriate transformation since it mitigates any randomness
during the transformation. By computing CTRL embeddings for
both the original graph G and its transformed counterpart G′,
we can generate positive pairs, and the transformed counterpart
of every other graph in a dataset will serve as a negative sample.
The aim is to learn representations in a new embedding space
that minimizes the InfoNCE loss [67], capturing meaningful
graph representations effectively using CTRL embeddings of
these positive and negative pairs. Overall, the incorporation
of CTRL embeddings into SSL provides a novel approach for
addressing graph classification tasks and we aim to pursue it
further in future works.

VIII. CONCLUSION AND FUTURE WORK

This work proposes that the networked dynamical system
perspective, in particular, the network controllability paradigm
offers a unique approach to encode the network structure for
representing graphs. There are several directions to advance
the controllability framework for graph representations. For
instance, instead of Laplacian dynamics, one can consider dif-
ferent dynamical processes over networks. Similarly, we can use
other controllability notions, such as, structural controllability,
output, or target controllability, which concerns controlling a
focused set of (target) nodes instead of the entire network [68],
[69]. Also, there are alternative metrics that can be used to
express the network’s dynamical behavior, for instance, control
centrality [70], Gramian-based edge centrality, control range
index [71], and others (e.g., [38], [72]). Network control and
graph learning communities share several scientific grounds, and
viewing graph learning problems from the lens of control theory
offers fresh perspectives and approaches to advance the field.

REFERENCES

[1] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton, NJ, USA: Princeton Univ. Press, 2010.

[2] S. Ahmadizadeh, I. Shames, S. Martin, and D. Nešić, “On eigenvalues of
laplacian matrix for a class of directed signed graphs,” Linear Algebra its
Appl., vol. 523, pp. 281–306, 2017.

[3] M. Egerstedt, S. Martini, M. Cao, K. Camlibel, and A. Bicchi, “Interacting
with networks: How does structure relate to controllability in single-leader,
consensus networks?,” IEEE Control Syst. Mag., vol. 32, no. 4, pp. 66–73,
Aug. 2012.

[4] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex
networks,” Nature, vol. 473, no. 7346, pp. 167–173, 2011.

[5] F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics, limita-
tions and algorithms for complex networks,” IEEE Trans. Control Netw.
Syst., vol. 1, no. 1, pp. 40–52, Mar. 2014.

[6] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability of
multi-agent systems from a graph-theoretic perspective,” SIAM J. Control
Optim., vol. 48, no. 1, pp. 162–186, 2009.

[7] A. Yazıcıoğlu, W. Abbas, and M. Egerstedt, “Graph distances and con-
trollability of networks,” IEEE Trans. Autom. Control, vol. 61, no. 12,
pp. 4125–4130, Dec. 2016.

[8] J. C. Nacher and T. Akutsu, “Analysis of critical and redundant nodes in
controlling directed and undirected complex networks using dominating
sets,” J. Complex Netw., vol. 2, no. 4, pp. 394–412, 2014.

[9] N. Monshizadeh, S. Zhang, and M. K. Camlibel, “Zero forcing sets and
controllability of dynamical systems defined on graphs,” IEEE Trans.
Autom. Control, vol. 59, no. 9, pp. 2562–2567, Sep. 2014.

[10] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on graphs,” in
Proc. IEEE Int. Conf. Data Mining, 2005, pp. 74–81.

[11] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K.
M. Borgwardt, “Weisfeiler-lehman graph kernels,” J. Mach. Learn. Res.,
vol. 12, pp. 2539–2561, 2011.

[12] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proc.
21th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2015,
pp. 1365–1374.

[13] R. Kondor, N. Shervashidze, and K. M. Borgwardt, “The graphlet spec-
trum,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 529–536.

[14] A. Ahmed, Z. R. Hassan, and M. Shabbir, “Interpretable multi-scale graph
descriptors via structural compression,” Inf. Sci., vol. 533, pp. 169–180,
2020.

[15] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results
and efficient alternatives,” in Proc. 16th Annu. Conf. Learn. Theory,
Washington, DC, USA, 2003, pp. 129–143.

[16] N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on graph kernels,”
Appl. Netw. Sci., vol. 5, no. 1, pp. 1–42, 2020.

[17] S. Verma and Z.-L. Zhang, “Hunt for the unique, stable, sparse and fast
feature learning on graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 88–98.

[18] A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, and E. Müller, “NetLSD:
Hearing the shape of a graph,” in Proc. 24th SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2018, pp. 2347–2356.

[19] M. Togninalli, M. E. Ghisu, F. Llinares-López, B. Rieck, and K. M.
Borgwardt, “Wasserstein weisfeiler-lehman graph kernels,” in Proc. Adv.
Neural Inf. Process. Syst., 2019.

[20] H. P. Maretic, M. E. Gheche, G. Chierchia, and P. Frossard, “GOT: An
optimal transport framework for graph comparison,” in Proc. Adv. Neural
Inf. Process. Syst., 2019.

[21] R. Flamary, N. Courty, A. Rakotomamonjy, and D. Tuia, “Optimal trans-
port with laplacian regularization,” in Proc. Workshop Optimal Transport
Mach. Learn., 2014.

[22] T. Yu, J. Yan, Y. Wang, W. Liu, and B. Li, “Generalizing graph matching
beyond quadratic assignment model,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 853–863.

[23] A. Said, S.-U. Hassan, S. Tuarob, R. Nawaz, and M. Shabbir, “DGSD:
Distributed graph representation via graph statistical properties,” Future
Gener. Comput. Syst., vol. 119, pp. 166–175, 2021.

[24] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques, and applications,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616–1637, Sep. 2018.

[25] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A com-
prehensive survey on graph neural networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

[26] A. Negro, Graph-Powered Machine Learning. New York, NY, USA:
Simon and Schuster, 2021.

[27] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations,
2017.

[28] S. Zhang and L. Xie, “Improving attention mechanism in graph neural
networks via cardinality preservation,” in Proc. Int. Joint Conf. Artif.
Intell., 2020, Art. no. 1395.

[29] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec, “Graph convolutional
policy network for goal-directed molecular graph generation,” in Proc.
Adv. Neural Inf. Process. Syst., 2018, pp. 6410–6421.

[30] Y. Liu et al., “Graph self-supervised learning: A survey,” IEEE Trans.
Knowl. Data Eng., vol. 35, no. 6, pp. 5879–5900, Jun. 2023.

[31] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” 2015, arXiv:1506.05163.

[32] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learn-
ing on large graphs,” in Proc. Adv. Neural Inf. Process. Syst.., 2017,
pp. 1024–1034.

[33] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[34] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” 2017, arXiv: 1710.10903.

[35] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 249–270, Jan. 2022.

[36] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?,” 2018, arXiv: 1810.00826.

[37] T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and
controllability in complex dynamical networks,” IEEE Trans. Control
Netw. Syst., vol. 3, no. 1, pp. 91–101, Mar. 2016.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

SAID et al.: NETWORK CONTROLLABILITY PERSPECTIVES ON GRAPH REPRESENTATION 4127

[38] E. Wu-Yan, R. F. Betzel, E. Tang, S. Gu, F. Pasqualetti, and D. S. Bassett,
“Benchmarking measures of network controllability on canonical graph
models,” J. Nonlinear Sci., vol. 30, pp. 2195–2233, 2018.

[39] W. Wang, “Generalized spectral characterization of graphs: Revisited,”
Electron. J. Combinatorics, vol. 20, no. 4, 2013, Art. no. P4.

[40] W. Wei, “A simple arithmetic criterion for graphs being determined by
their generalized spectra,” J. Combinatorial Theory, Ser. B, vol. 122,
pp. 438–451, 2017.

[41] W. Wang and L. Qiu, “Spectral characterizations of tournaments,” Discrete
Math., vol. 345, no. 8, 2022, Art. no. 112918.

[42] J.-R. Li and J. White, “Low rank solution of lyapunov equations,” SIAM
J. Matrix Anal. Appl., vol. 24, pp. 260–280, 2002.

[43] B. Vandereycken and S. Vandewalle, “A riemannian optimization approach
for computing low-rank solutions of lyapunov equations,” SIAM J. Matrix
Anal. Appl., vol. 31, no. 5, pp. 2553–2579, 2010.

[44] X. Liu and Z. Ji, “Controllability of multiagent systems based on path and
cycle graphs,” Int. J. Robust Nonlinear Control, vol. 28, no. 1, pp. 296–309,
2018.

[45] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M.
Neumann, “Tudataset: A collection of benchmark datasets for learning
with graphs,” in Proc. Workshop Graph Representation Learn. Beyond,
2020.

[46] F. Johansson, V. Jethava, D. Dubhashi, and C. Bhattacharyya, “Global
graph kernels using geometric embeddings,” in Int. Conf. Mach. Learn.,
2014, pp. 694–702.

[47] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borg-
wardt, “Efficient graphlet kernels for large graph comparison,” in Proc.
Int. Conf. Artif. Intell. Statist., 2009, pp. 488–495.

[48] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos, “Network
similarity via multiple social theories,” in Proc. IEEE/ACM Int. Conf. Adv.
Social Netw. Anal. Mining, 2013, pp. 1439–1440.

[49] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proc. AAAI Conf. Artif.
Intell., 2018.

[50] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
arXiv preprint 2018, arXiv: 1806.08804.

[51] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in
convolutional neural networks on graphs,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 29–38.

[52] M. Zhang and P. Li, “Nested graph neural networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2021.

[53] C. Bodnar et al., “Weisfeiler and lehman go cellular: CW networks,” in
Proc. Adv. Neural Inf. Process. Syst., 2021.

[54] C. Bodnar et al., “Weisfeiler and lehman go topological: Message
passing simplicial networks,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 1026–1037.

[55] D. Lee, S. Kim, S. Lee, C. Park, and H. Yu, “Learnable structural semantic
readout for graph classification,” in Proc. IEEE Int. Conf. Data Mining,
2021, pp. 1180–1185.

[56] J. Li, Y. Ma, Y. Wang, C. Aggarwal, C.-D. Wang, and J. Tang, “Graph
pooling with representativeness,” in Proc. IEEE Int. Conf. Data Mining,
2020, pp. 302–311.

[57] G. Siglidis, G. Nikolentzos, S. Limnios, C. Giatsidis, K. Skianis, and M.
Vazirgiannis, “GraKel: A graph kernel library in python,” J. Mach. Learn.
Res., vol. 21, no. 54, pp. 1–5, 2020.

[58] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair comparison of
graph neural networks for graph classification,” 2019, arXiv: 1912.09893.

[59] J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler, “Solution of
the sylvester matrix equation AXB T + CXD T= E,” ACM Trans. Math.
Softw., vol. 18, no. 2, pp. 223–231, 1992.

[60] P. Benner and J. Saak, “Numerical solution of large and sparse continuous
time algebraic matrix riccati and lyapunov equations: A state of the art
survey,” GAMM-Mitteilungen, vol. 36, no. 1, pp. 32–52, 2013.

[61] R. H. Bartels and G. W. Stewart, “Solution of the matrix equation AX +
XB= C [F4],” Commun. ACM, vol. 15, no. 9, pp. 820–826, 1972.

[62] T. Penzl, “A cyclic low-rank smith method for large sparse lyapunov
equations,” SIAM J. Sci. Comput., vol. 21, no. 4, pp. 1401–1418,
1999.

[63] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph contrastive
learning with augmentations,” in Proc. Adv. Neural Inf. Process. Syst.,
2020, pp. 5812–5823.

[64] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proc. Int. Conf. Mach.
Learni., 2020, pp. 1597–1607.

[65] M. Caron et al., “Emerging properties in self-supervised vision transform-
ers,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 9650–9660.

[66] A. Radford et al., “Learning transferable visual models from natural lan-
guage supervision,” in Proc. Int. Conf. Mach. Learn., 2021, pp. 8748–8763.

[67] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” 2018, arXiv: 1807.03748.

[68] H. J. Van Waarde, M. K. Camlibel, and H. L. Trentelman, “A distance-
based approach to strong target control of dynamical networks,” IEEE
Trans. Autom. Control, vol. 62, no. 12, pp. 6266–6277, Dec. 2017.

[69] J. You, R. Ying, and J. Leskovec, “Position-aware graph neural networks,”
in Proc. Int. Conf. Mach. Learn., 2019, pp. 7134–7143.

[70] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Control centrality and
hierarchical structure in complex networks,” Plos One, vol. 7, 2012,
Art. no. e44459.

[71] B. Wang, L. Gao, and Y. Gao, “Control range: A controllability-based
index for node significance in directed networks,” J. Statist. Mechanics:
Theory Experiment, vol. 2012, no. 04, 2012, Art. no. P04011.

[72] C. Commault and J.-M. Dion, “Input addition and leader selection for
the controllability of graph-based systems,” Automatica, vol. 49, no. 11,
pp. 3322–3328, 2013.

Anwar Said received the master’s degree in computer
science from Quaid-I-Azam University, Islamabad,
Pakistan, in 2016, and the PhD degree in computer
science from Information Technology University, La-
hore, in 2021. He is currently a research scientist with
Institute for Software Integrated Systems, Vanderbilt
University, TN, USA. Prior to this role, he was a post-
doctoral research scholar with Vanderbilt University.
His research interests include primarily intersects the
fields of data science and machine learning, with a
focus on graph representation learning, social net-

work analysis, and graph theory with applications in Anhedonia detection, drug
discovery and development, and social networks and education. He actively
participates in top conferences and journals in these domains, contributing
through both publications and serving as a PC member and a reviewer.

Obaid Ullah Ahmad received the BS degree in elec-
trical engineering from the University of Engineering
and Technology, Lahore, Pakistan, in 2019, and the
MS degree in computer science from Information
Technology University, Lahore, Pakistan, in 2021.
He is currently working towards the PhD degree in
electrical engineering with the University of Texas
at Dallas, Richardson, TX, USA. He is currently a
research assistant with the University of Texas at
Dallas’ Control, Intelligence, Resilience in Networks
and Systems Lab, Richardson, TX, USA. His current

research interests include control-based approaches, for graph machine learning,
network optimization, and multi-agent robot systems.

Waseem Abbas (Member, IEEE) received the MSc
and PhD degrees in electrical and computer engineer-
ing from the Georgia Institute of Technology, Atlanta,
GA, in 2010 and 2013, respectively. He is an assistant
professor with the System Engineering Department,
University of Texas at Dallas, TX, USA. Previously,
he was a research assistant professor with the Van-
derbilt University, Nashville, TN, USA. He was a
Fulbright scholar from 2009 till 2013. His research
interests include the areas of control of networked
systems, resilience and robustness in networks, dis-

tributed optimization, graph machine learning, and graph-theoretic methods in
complex networks.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

4128 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 8, AUGUST 2024

Mudassir Shabbir received the PhD degree from the
Division of Computer Science, Rutgers University,
NJ, USA, in 2014. He is an associate professor with
the Department of Computer Science, Information
Technology University, Lahore, Pakistan and a re-
search assistant professor with Vanderbilt University,
Nashville TN. Previously, he has worked at the La-
hore University of Management Sciences, Pakistan,
Los Alamos National Labs, NM, Bloomberg L.P. New
York, NY and with Rutgers University. He was a Rut-
gers Honors fellow from 2011 to 2012. His research

interests include algorithmic and discrete geometry and has developed new
methods for the characterization and computation of succinct representations
of large data sets with applications in non-parametric statistical analysis. He
also works in Graph Machine Learning and Resilient Network Systems.

Xenofon Koutsoukos received the PhD degree in
electrical engineering from the University of Notre
Dame, in 2000. He is a professor and the chair
with the Department of Computer Science and a
senior research scientist with the Institute for Soft-
ware Integrated Systems (ISIS), Vanderbilt Univer-
sity, Nashville, TN, USA. He was a member of
research staff with the Xerox Palo Alto Research
Center (PARC) (2000–2002). His research work is
in the area of cyber-physical systems with emphasis
on learning-enabled systems, formal methods, dis-

tributed algorithms, security and resilience, diagnosis and fault tolerance, and
adaptive resource management. He has published more than 300 journal and
conference papers and he is a co-inventor of four US patents. He was a recipient
of the NSF Career Award in 2004, the Excellence in Teaching Award in 2009
from the Vanderbilt University School of Engineering, and the 2011 NASA
Aeronautics Research Mission Directorate (ARMD) Associate Administrator
(AA) Award in Technology and Innovation. He was named a Fellow of the
IEEE for his contributions to the design of resilient cyber-physical systems.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 04,2024 at 17:44:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

