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Phase-slip memory effects in dissipation-free superflow
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Critical superflow, preceding a free ringing superfluid oscillation, induces a remnant stochastic uncertainty in
the oscillation amplitude. We demonstrate that the distribution function for the oscillation’s velocity amplitude
reflects both the quantized size of the underlying phase-slip dissipation events, as well as the stochastic nature
of the processes which nucleate the s[i§§163-18207)04014-9

Flow in superfluid*He is often without dissipation below Figure 2 shows a typical measured transient. At the point
some critical velocity. Andersdrsuggested that above this marked A, the flexible Kapton diaphragm is pulled toward
critical velocity, the dissipative process involves the creatiorfhe fixed actuator electrode by the application of a voltage
and subsequent motion of quantized vortex filaments. H&tP. This action causes a hydrostatic pressure heRdfo
showed that if such a filament crosses the streamlines pas&PPear across the aperture. The resultant superflow is then

ing through a restricted passage, the energy in the flow will€c0rded by monitoring the diaphragm’s motion with the
sensitive superconducting quantum interference device-

Qecrease by a fixed am.ount, corresponding toralécrease based displacement transducer. The superflow shows a
in the quantum phase difference across the passage. Recerfiyarly constant velocity relaxatiofB), and a free ringing
it has been possible to detect these individualghase-slip  gscillation (C). We find that as a result of the prior dissipa-
dissipation events in  superfluid  Helmholtz-type tive flow, this free ringing amplitude will be uncertain by an
oscillators?>~*1t is the purpose of this paper to show that the amount that reflects both the quantized nature of the phase
discrete nature of the phase slips can also be detected giippage and the stochastic nature of the vortex nucleation
dissipation-free flow that follows dissipative flow. The process.
dissipation-free flow contains a memory of the prior quan- Discrete phase slips are nucleated stochastically when the
tized dissipative flow. superfluid velocity approaches a critical velocifyThe flow

A commonly used technique to study superflow involvesthrough the aperture is expected to evolve in a manner simi-
driving fluid through a constricting patfe.g., a thin film ora  lar to that shown in Fig. 3. Figure(@ shows the velocity
small aperturk under the influence of a relaxing pressureVersus time of a calculated transiéftyhere the diaphragm
head®® A flow transient is typified by artalmost pressure- PoOsition versus time is essentially identical to that of Fig. 2.
head-independentonstant critical-velocity relaxatiohThis At the point marked A, the driving pressure is applied and
dissipative part of the transient, is often followed by a lightly e superfluid quickly accelerates. At point B, the velocity
damped, oscillatory, free ringing response, which is due t(paS reached the'crltlcal velocity. The halr. In th? ;ub;e-
the exchange between the kinetic energy in the flow and th uent period of time comes from the quantized dissipation.

. : o . . he fluid is alternately accelerated due to tdéminishing
potential energy in the driving mechanideng., gravity or a .
stretched membraneThe initial velocity amplitude of the pressure, head and then abruptly decelerated as a quantized

. I . - vortex is nucleated and then passes across the aperture. Fi-
resulting oscillation corresponds to the critical velocity,

. o ) Ily, at point C,(al Il of the initial potential
which is the slope of the transient immediately before thena y. at point C,(aimos} all of the initial potential energy

oscillation begins. A

The experiment described here concerns superflidd
flowing through a submicron apertuteFigure 1 is a sche- B C
matic diagram of the basic apparatus which is the same as x

that used to study the stochastic nucleation of phase %lips.
The fabrication details are described in Ref. 10. The

aperturé! couples two superfluid reservoirs: inside to out- E

side. A flexible, metalized, Kapton diaphragm, in a partition D

between the reservoirs, is manipulated by the application of — Y —
electrostatic forces by a nearby electrode. The diaphragm’s (0000000) E

position is monitored by detecting changes in the inductance
of an adjacent superconducting coil. For small fluid veloci- I
ties in the aperture, the device behaves as a simple harmonic To Squid
oscillator of the Helmholtz variety, with a resonant fre-
quency of 40.7 Hz. The restoring force is determined by the F|G. 1. Cell schematic: A is the outer brass box filled with
diaphragm’s tension and the inertia is dominated by the fluiduperfluid*He, B is the inner silicon box, C is the aperture, 1,25

moving in the aperture. The experiment is cooled by anx0.38 um, D is the flexible, §um thick, Kapton diaphragm, E is

adsorption-pumpedHe refrigerator. the electrode, F is the superconducting coil displacement sensor.
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FIG. 2. Typical recorded transient at a temperature of 0.61 K: A 0+— ;m,@yj —— %&_ .

indicates the sudden application of driving pressure, B is near- 42 4.4 46 438 5.0
constant velocity superflow, C indicates free ringing. Velocity (m/sec)

has been dissipated, and the free ringing begins. Figime 3 FIG. 4. Distribution function of phase-slip critical velocity mea-
shows an expanded picture near the onset of the oscillatiorfured by observing individual dissipation events.

The discrete zr d|SS|pa‘11t|on events are triggered by sto-  As the diaphragm approaches its final equilibrium posi-
chastic processeghermat* or quantum®!9 each time the tion, the pressure head steadily diminishes with a corre-
superfluid velocity in the aperture approaches the criticakponding decrease in phase-slip frequency. Finally, there is
valuev.. Each phase slip results in a decrease in the flovone last phase slip occurring at some instant, marked D in

energy, Fig. 3b). This is followed by the damped oscillatory re-
sponse of the, now linear, Helmholtz oscillator. The subse-
SE=kopsvca, ) guent damping of this oscillation is due primarily to linear,
thermal-mechanical dissipatidh.
wherek,=h/m, is the circulation quantunp is the super- The phase slips induce an uncertainty in the oscillation

fluid density, anda is the area of the aperture. The average2Mplitude in two ways. The dissipation is quantized, but the
rate of these phase slips is given by the Josephson-Anders&fal initial potential energy is a continuous function of the

frequency, f;,=A/Ppk,, where AP is the instantaneous mitial.applied voltage step. After th_e last slip, thg system i;
pressure difference across the aperture left with some small residual potential energy. This energy is

not sufficient to accelerate the superfluid to the critical value.

However, there is an uncertainty in the energy dissipated in

] B ¢ each slip. This is a result of the distribution of the phase-slip

; critical velocity (typically o/v. is about 2 % arising from

29 the stochastic nature of the vortex nucleation progsse

Eqg. (1)]. Consequently the residual energy, after many phase

1 A slips® will have a rectangular-shaped distribution function

2] which isis bounded by the size of one phase slip.

] In addition to the distribution in oscillation amplitudes

4] caused by the quantized nature of the dissipation, there is
' ' T ' i ' : also an effect from the stochastic nucleation of the individual
0.0 0.1 0.2 03 . . .

Time (s20) p_hase slips. Because of the stochast_lc _nycleatlo_n mecha-
nisms, both thermal and quantum, the individual slips occur
with a distribution of critical velocities. The uncertainty in
the velocity which nucleates the final slip will have the effect

D of spreading the rectangular distribution caused by the quan-
}Ill/f/l//l/l/l/I/’////////////// tization of the dissipation. Thus, if many oscillation tran-
: sients are recorded, a histogram of the initial oscillation am-
457 plitudes should be determined by a convolution of the finite
quantization and the stochastic nucleation.
1 In our experiment we can directly measure both the sto-
40 —— chastic distribution function for phase-slip critical velocities
0.138 0.140 0.142 0.144 0.146 0.148 and the phase-slip size. We use these numbers as input pa-
(b) Time (sec) rameters for the numerical simulation of a flow transient
such as that shown in Fig. 2. By repeating the simulation
FIG. 3. Simulated time evolution of the superfluid velocity in many times, we calculate the expected distribution in Helm-
the aperture(a) shows the entire transient: A is the application of holtz oscillation amplitudes. We compare this prediction to
driving force, B is critical velocity reached and phase-slip dissipa-the measured distribution of oscillation amplitudes of 350
tion begins, C indicates driving pressure exhausted and free ringingctual recorded flow transients.
Helmholtz oscillation begins. Details of phase slippage and transi- The distribution function of the individual phase slips is
tion is shown in(b): D marks transition to free ringing oscillation. measured by driving the Helmholtz oscillation on resonance
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with a fixed amplitude driving force, applied through the
actuator electrode. For temperatures below 1 K,@hef the 0.164
oscillator is quite high, often greater than*1@s the ampli-

tude grows in time, one can plot the amplitude of alternate ]
half cycles. When a single phase slip occurs the oscillation  0.12-
amplitude is seen to abruptly drép.We can thus record the ]
critical oscillation amplitude X, at which a single phase
slip occurs. This corresponds to a critical velocity
v:.=wX;. By observing thousands of slips one can make a
histogram of the critical velocity values. A typical phase-slip
distribution function, measured at 0.57 K, is shown in Fig. 4.  0.044 I
At this temperature we find the parametefs-4.67 m/s and ]
0=0.079 m/s, with a slip size of 0.17 m/s. The displacement 1 1.1 T
transducer noise in these measurements produces an uncer- 090 A — T T T 1"
tainty in each measurement of of 0.004 m/s. This uncer- 0403 02 01 00 01 02 03
tainty is negligible compared to the intrinsic stochastic un- Shifted Helmholtz Amplitude (m/sec)

certal_nty. T FIG. 5. Distribution of initial oscillation amplitudes. The solid
Using these measured phase-slip distribution parameterg,q js predicted from the simulation using the measured phase-slip

we predict the distribution function for free ringing Helm- 5 ameters. The circles are direct measurements from free ringing

holtz oscillation amplitudes. We do this by inserting theseyansients. Both curves have been shifted to allow comparison of
parameters into the numerical simulation in which we inte-the distribution shape.

grate the equation of motion of the diaphragm with the ad- o ) ) )
dition of quantized, phase-slip dissipation. This dissipation i€f the initial velocity amplitude. To compare this measure-

and phase-slip size. Theredicteddistribution of 20 000 it-  ©f the measured distribution to accommodate the temperature

differencé® between that of the discrete phase-slip data7

K) and that of the flow transieni®.61 K). The final mea-

d sured distribution is shown in Fig. 5 plotted on top of the
predicted distribution function.

It is apparent that the predicted and measured distribution
functions are the same. This demonstrates that, as explained
above, the amplitude of the free ringing oscillations reflects
both the quantized nature and stochastic distribution of the
determine the initial amplitude of the free ringing oscilla- underlying phase slippage in the dissipative regime. Th's

agreement provides further support for the model that relies

tions with high precision. We do this by digitally recording ) ; R
an oscillation for 1.24 s, sampling every 1.46 ms. Then wen discrete phase slippage events as the dissipative mecha-

calculate the Fourier transform of the free ringing osciIIationnézmofﬁééhiﬁﬁgT'Egtlzgcigsggrt'\éi?u?m partr]ggf;f|itra2\s,fnr]é
and integrate the power around the Helmholtz frequency t(élrepundet.ected ingthe dissi pati\)//e recurs%rpﬂow thepmemor
calculate the amplitude of the oscillatibhWith a free ring- P P : Y

ing amplitude of 2.4 10~1° m, we have a signal to noise of of the underlying fundamental dissipation process remains in

~500. This is quite adequate to resolve the underlying stat-he oscillator amplitude.

tistical fluctuations in the amplitude. We are grateful for the helpful comments and discussions

By analyzing many transients we make the histogram ofnith S. Davis, S. Vitale, and S. Backhaus. This work was
the initial oscillation amplitude. By multiplying the initial partially supported by the National Science Foundation and
amplitudes by the angular frequency we obtain the histograrthe Office of Naval Research.
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erations of this simulation is shown as the solid line in Fig. 5.
The Helmholtz oscillation distribution function iea-
sured as follows. The free ringing oscillation is excite
(T=0.61 K) by applying a large fixed step potential to the
actuator electrode(=19.1 volts, corresponding to an initial
driving pressureAP=4.5 mPa, and a final diaphragm dis-
placement of 12 nm A transient like that shown in Fig. 2
results. Since th@ of the oscillator is large;-2000, one can
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