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Phase-slip memory effects in dissipation-free superflow
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~Received 3 December 1996!

Critical superflow, preceding a free ringing superfluid oscillation, induces a remnant stochastic uncertainty in
the oscillation amplitude. We demonstrate that the distribution function for the oscillation’s velocity amplitude
reflects both the quantized size of the underlying phase-slip dissipation events, as well as the stochastic nature
of the processes which nucleate the slips@S0163-1829~97!04014-9#
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Flow in superfluid4He is often without dissipation below
some critical velocity. Anderson1 suggested that above th
critical velocity, the dissipative process involves the creat
and subsequent motion of quantized vortex filaments.
showed that if such a filament crosses the streamlines p
ing through a restricted passage, the energy in the flow
decrease by a fixed amount, corresponding to a 2p decrease
in the quantum phase difference across the passage. Rec
it has been possible to detect these individual 2p phase-slip
dissipation events in superfluid Helmholtz-typ
oscillators.2–4 It is the purpose of this paper to show that t
discrete nature of the phase slips can also be detecte
dissipation-free flow that follows dissipative flow. Th
dissipation-free flow contains a memory of the prior qua
tized dissipative flow.

A commonly used technique to study superflow involv
driving fluid through a constricting path~e.g., a thin film or a
small aperture! under the influence of a relaxing pressu
head.5,6 A flow transient is typified by an~almost pressure
head-independent! constant critical-velocity relaxation.7 This
dissipative part of the transient, is often followed by a ligh
damped, oscillatory, free ringing response, which is due
the exchange between the kinetic energy in the flow and
potential energy in the driving mechanism~e.g., gravity or a
stretched membrane!. The initial velocity amplitude of the
resulting oscillation corresponds to the critical veloci
which is the slope of the transient immediately before
oscillation begins.

The experiment described here concerns superfluid4He
flowing through a submicron aperture.8 Figure 1 is a sche-
matic diagram of the basic apparatus which is the sam
that used to study the stochastic nucleation of phase sl9

The fabrication details are described in Ref. 10. T
aperture11 couples two superfluid reservoirs: inside to ou
side. A flexible, metalized, Kapton diaphragm, in a partiti
between the reservoirs, is manipulated by the application
electrostatic forces by a nearby electrode. The diaphrag
position is monitored by detecting changes in the inducta
of an adjacent superconducting coil. For small fluid velo
ties in the aperture, the device behaves as a simple harm
oscillator of the Helmholtz variety, with a resonant fr
quency of 40.7 Hz. The restoring force is determined by
diaphragm’s tension and the inertia is dominated by the fl
moving in the aperture. The experiment is cooled by
adsorption-pumped3He refrigerator.
550163-1829/97/55~13!/8094~4!/$10.00
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Figure 2 shows a typical measured transient. At the po
marked A, the flexible Kapton diaphragm is pulled towa
the fixed actuator electrode by the application of a volta
step. This action causes a hydrostatic pressure head,DP, to
appear across the aperture. The resultant superflow is
recorded by monitoring the diaphragm’s motion with t
sensitive superconducting quantum interference dev
based displacement transducer. The superflow show
nearly constant velocity relaxation~B!, and a free ringing
oscillation ~C!. We find that as a result of the prior dissip
tive flow, this free ringing amplitude will be uncertain by a
amount that reflects both the quantized nature of the ph
slippage and the stochastic nature of the vortex nuclea
process.

Discrete phase slips are nucleated stochastically when
superfluid velocity approaches a critical velocity.12 The flow
through the aperture is expected to evolve in a manner s
lar to that shown in Fig. 3. Figure 3~a! shows the velocity
versus time of a calculated transient,13 where the diaphragm
position versus time is essentially identical to that of Fig.
At the point marked A, the driving pressure is applied a
the superfluid quickly accelerates. At point B, the veloc
has reached the critical velocity. The ‘‘hair’’ in the subs
quent period of time comes from the quantized dissipati
The fluid is alternately accelerated due to the~diminishing!
pressure, head and then abruptly decelerated as a quan
vortex is nucleated and then passes across the aperture
nally, at point C,~almost! all of the initial potential energy

FIG. 1. Cell schematic: A is the outer brass box filled wi
superfluid4He, B is the inner silicon box, C is the aperture, 1.25m
30.38 mm, D is the flexible, 8mm thick, Kapton diaphragm, E is
the electrode, F is the superconducting coil displacement sens
8094 © 1997 The American Physical Society
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55 8095BRIEF REPORTS
has been dissipated, and the free ringing begins. Figure~b!
shows an expanded picture near the onset of the oscilla

The discrete 2p dissipation events are triggered by st
chastic processes~thermal14 or quantum15,16! each time the
superfluid velocity in the aperture approaches the crit
value vc . Each phase slip results in a decrease in the fl
energy,

dE5korsvca, ~1!

whereko5h/m4 is the circulation quantum,rs is the super-
fluid density, anda is the area of the aperture. The avera
rate of these phase slips is given by the Josephson-Ande
frequency, f JA5D/Prko, where DP is the instantaneou
pressure difference across the aperture.

FIG. 2. Typical recorded transient at a temperature of 0.61 K
indicates the sudden application of driving pressure, B is ne
constant velocity superflow, C indicates free ringing.

FIG. 3. Simulated time evolution of the superfluid velocity
the aperture.~a! shows the entire transient: A is the application
driving force, B is critical velocity reached and phase-slip dissi
tion begins, C indicates driving pressure exhausted and free rin
Helmholtz oscillation begins. Details of phase slippage and tra
tion is shown in~b!: D marks transition to free ringing oscillation
n.
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As the diaphragm approaches its final equilibrium po
tion, the pressure head steadily diminishes with a co
sponding decrease in phase-slip frequency. Finally, ther
one last phase slip occurring at some instant, marked D
Fig. 3~b!. This is followed by the damped oscillatory re
sponse of the, now linear, Helmholtz oscillator. The sub
quent damping of this oscillation is due primarily to linea
thermal-mechanical dissipation.17

The phase slips induce an uncertainty in the oscillat
amplitude in two ways. The dissipation is quantized, but
total initial potential energy is a continuous function of th
initial applied voltage step. After the last slip, the system
left with some small residual potential energy. This energy
not sufficient to accelerate the superfluid to the critical val
However, there is an uncertainty in the energy dissipated
each slip. This is a result of the distribution of the phase-s
critical velocity ~typically s/vc is about 2 %! arising from
the stochastic nature of the vortex nucleation process@see
Eq. ~1!#. Consequently the residual energy, after many ph
slips,18 will have a rectangular-shaped distribution functio
which is is bounded by the size of one phase slip.

In addition to the distribution in oscillation amplitude
caused by the quantized nature of the dissipation, ther
also an effect from the stochastic nucleation of the individ
phase slips. Because of the stochastic nucleation me
nisms, both thermal and quantum, the individual slips oc
with a distribution of critical velocities. The uncertainty i
the velocity which nucleates the final slip will have the effe
of spreading the rectangular distribution caused by the qu
tization of the dissipation. Thus, if many oscillation tra
sients are recorded, a histogram of the initial oscillation a
plitudes should be determined by a convolution of the fin
quantization and the stochastic nucleation.

In our experiment we can directly measure both the s
chastic distribution function for phase-slip critical velocitie
and the phase-slip size. We use these numbers as inpu
rameters for the numerical simulation of a flow transie
such as that shown in Fig. 2. By repeating the simulat
many times, we calculate the expected distribution in He
holtz oscillation amplitudes. We compare this prediction
the measured distribution of oscillation amplitudes of 3
actual recorded flow transients.

The distribution function of the individual phase slips
measured by driving the Helmholtz oscillation on resonan
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FIG. 4. Distribution function of phase-slip critical velocity mea
sured by observing individual dissipation events.
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with a fixed amplitude driving force, applied through th
actuator electrode. For temperatures below 1 K, theQ of the
oscillator is quite high, often greater than 104. As the ampli-
tude grows in time, one can plot the amplitude of altern
half cycles. When a single phase slip occurs the oscilla
amplitude is seen to abruptly drop.2,3We can thus record the
critical oscillation amplitude,Xc , at which a single phase
slip occurs. This corresponds to a critical veloc
vc5vXc . By observing thousands of slips one can mak
histogram of the critical velocity values. A typical phase-s
distribution function, measured at 0.57 K, is shown in Fig.
At this temperature we find the parametersvx54.67 m/s and
s50.079 m/s, with a slip size of 0.17 m/s. The displacem
transducer noise in these measurements produces an u
tainty in each measurement ofvc of 0.004 m/s. This uncer
tainty is negligible compared to the intrinsic stochastic u
certainty.

Using these measured phase-slip distribution parame
we predict the distribution function for free ringing Helm
holtz oscillation amplitudes. We do this by inserting the
parameters into the numerical simulation in which we in
grate the equation of motion of the diaphragm with the
dition of quantized, phase-slip dissipation. This dissipation
stochastically distributed with the above parameters,vc , s,
and phase-slip size. Thepredicteddistribution of 20 000 it-
erations of this simulation is shown as the solid line in Fig.

The Helmholtz oscillation distribution function ismea-
sured as follows. The free ringing oscillation is excite
(T50.61 K! by applying a large fixed step potential to th
actuator electrode (V519.1 volts, corresponding to an initia
driving pressureDP54.5 mPa, and a final diaphragm di
placement of 12 nm!. A transient like that shown in Fig. 2
results. Since theQ of the oscillator is large,;2000, one can
determine the initial amplitude of the free ringing oscill
tions with high precision. We do this by digitally recordin
an oscillation for 1.24 s, sampling every 1.46 ms. Then
calculate the Fourier transform of the free ringing oscillati
and integrate the power around the Helmholtz frequency
calculate the amplitude of the oscillation.19 With a free ring-
ing amplitude of 2.4310210 m, we have a signal to noise o
;500. This is quite adequate to resolve the underlying
tistical fluctuations in the amplitude.

By analyzing many transients we make the histogram
the initial oscillation amplitude. By multiplying the initia
amplitudes by the angular frequency we obtain the histog
rd
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of the initial velocity amplitude. To compare this measur
ment to the simulation prediction we slightly shift the me
of the measured distribution to accommodate the tempera
difference20 between that of the discrete phase-slip data~0.57
K! and that of the flow transients~0.61 K!. The final mea-
sured distribution is shown in Fig. 5 plotted on top of th
predicted distribution function.

It is apparent that the predicted and measured distribu
functions are the same. This demonstrates that, as expla
above, the amplitude of the free ringing oscillations refle
both the quantized nature and stochastic distribution of
underlying phase slippage in the dissipative regime. T
agreement provides further support for the model that re
on discrete phase slippage events as the dissipative me
nism for the seemingly constant-velocity part of the transi
response. Although the rapidly occurring phase-slip eve
are undetected in the dissipative precursor flow, the mem
of the underlying fundamental dissipation process remain
the oscillator amplitude.

We are grateful for the helpful comments and discussi
with S. Davis, S. Vitale, and S. Backhaus. This work w
partially supported by the National Science Foundation a
the Office of Naval Research.

FIG. 5. Distribution of initial oscillation amplitudes. The soli
line is predicted from the simulation using the measured phase
parameters. The circles are direct measurements from free rin
transients. Both curves have been shifted to allow compariso
the distribution shape.
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