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REVIEW

Using molecular diagnostic testing to personalize the treatment of patients with
gastrointestinal stromal tumors
Amber E. Bannon, Lillian R. Klug, Christopher L. Corless and Michael C. Heinrich

Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, OR, USA

ABSTRACT
Introduction: The diagnosis and treatment of gastrointestinal stromal tumor (GIST) has emerged as
a paradigm for modern cancer treatment (‘precision medicine’), as it highlights the importance of
matching molecular defects with specific therapies. Over the past two decades, the molecular
classification and diagnostic work up of GIST has been radically transformed, accompanied by the
development of molecular therapies for specific subgroups of GIST. This review summarizes the
developments in the field of molecular diagnosis of GIST, particularly as they relate to optimizing
medical therapy.
Areas covered: Based on an extensive literature search of the molecular and clinical aspects of GIST,
the authors review the most important developments in this field with an emphasis on the differential
diagnosis of GIST including mutation testing, therapeutic implications of each molecular subtype, and
emerging technologies relevant to the field.
Expert commentary: The use of molecular diagnostics to classify GIST has been shown to be
successful in optimizing patient treatment, but these methods remain under-utilized. In order to
facilitate efficient and comprehensive molecular testing, the authors have developed a decision tree
to aid clinicians.
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1. Introduction

Although not widely recognized before 1998, gastrointest-
inal stromal tumor (GIST) now represents the most common
mesenchymal tumor of the gastrointestinal (GI) tract, with
more than 5000 new cases diagnosed annually in the
United States [1]. GISTs have become a paradigm for the
use of molecular diagnostics and targeted therapy. The
molecular classification of a patient’s GIST informs therapeu-
tic decision-making and predicts treatment responses.
Unfortunately, less than 15% of patients have their tumors
genotyped, potentially leading to suboptimal care [2].

Most GISTs are driven by activating mutations in either
of two receptor tyrosine kinases (RTKs), KIT or platelet-
derived growth factor receptor alpha (PDGFRA). Following
the discovery of these mutations as tumor drivers, GIST
was the first solid tumor to be successfully treated with
small molecule tyrosine kinase inhibitors (TKIs). We now
know that there are other molecular drivers of GIST patho-
genesis including deficiency of succinate dehydrogenase
(SDH) or neurofibromatosis type I (NF1), activating muta-
tions in the RAS/RAF/MEK pathway, and translocations
involving the kinase domain of RTKs other than KIT/
PDGFRA (e.g. NTRK3). Optimal treatment of patients with
GIST requires molecular subclassification. This review
focuses on advances in the diagnosis and characterization
of GIST and how molecular testing should be used to
guide patient care.

2. Initial diagnosis using immunohistochemistry
(IHC)

GISTs most commonly arise in the stomach (60%), but can also be
found in the small intestine (25%), rectum (5%), and elsewhere in
the GI tract, including esophagus, colon, appendix, and gallblad-
der. Occasionally, GISTs arise outside the wall of the gut, desig-
nated extraintestinal GIST. Even more rare are reports of primary
GISTs that originate outside the abdominal cavity, including
reports of a primary GIST of the pleura or pericardium [3–5].

Historically, GISTs were classified as smooth muscle tumors
(leiomyoma or leiomyosarcoma) because of their predomi-
nantly spindle cell morphology and their association with
the muscularis propria of the bowel wall. However, studies
using electron microscopy and IHC differentiated these tumors
from classic leiomyosarcoma, leading Mazur and Clark to pro-
pose the term ‘stromal tumor’ in 1983 [6]. The subsequent
discovery that most stromal tumors arising in the GI tract are
CD34-positive provided further evidence for their distinction
from CD34-negative leiomyosarcoma.

During the 1990s, several investigators observed similarities
between GIST cells and a unique population of cells in the gut
wall known as the interstitial cells of Cajal (ICC). ICC are the
pacemaker cells of the gut, responsible for coordinated peri-
stalsis. Normal ICC express KIT (CD117) and are developmen-
tally dependent on the expression of both KIT and its cognate
ligand, stem cell factor (SCF). Mice deficient in KIT or SCF
expression have a marked reduction in certain populations
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of ICC [7]. In 1998, two separate groups reported that GISTs
commonly express CD117 [8,9]. It is now well established that
95% of GISTs are immunohistochemically positive for CD117.

In 2004, another highly specific marker for GISTs was
described. Anoctamin-1 (ANO1 or DOG1) is a calcium-acti-
vated chloride channel that is highly expressed in ICC and in
98% of GIST, regardless of CD117 expression levels [10].
Conveniently, only a small number of non-GIST sarcomas
express ANO1. The combination of CD117 and ANO1 expres-
sion by an abdominal sarcoma is essentially diagnostic of GIST
[10,11].

The use of CD117 and ANO1 has helped define the full
range of cellular morphology associated with GIST (see
Table 1). Although most GISTs consist of a uniform population
of spindled cells, some cases have an epithelioid appearance
and others are a mixture of spindled and epithelioid cells.
Tumor cellularity varies widely among GISTs. Low-grade
lesions may show areas of central calcification, or demonstrate
band-like alignment of nuclei mimicking a schwannoma. High-
grade tumors often ulcerate the overlying mucosa and may
undergo significant hemorrhagic necrosis. This variety in GIST
histology dictates a broad morphologic differential diagnosis;
therefore, judicious use of CD117 and ANO1 IHC is key to
making an accurate diagnosis.

In 2008, a subset of GISTs were found to be immunohisto-
chemically negative for the expression of SDH subunit B (SDHB)
[12]. An additional subset of SDHB-deficient tumors also lacks
SDH subunit A (SDHA) expression. The implications and impor-
tance of these findings are discussed later. The use of IHC
markers used in the diagnosis of GIST is summarized in Table 1.

3. Molecular classification

The vast majority of GISTs (75–80%) harbor gain-of-function
KIT mutations [8]. The second most common class of muta-
tions, representing 5–10% of GIST, affects PDGFRA, an RTK
homologous to KIT. The remaining 10–15% of GISTs do not
have mutations in KIT nor PDGFRA; these tumors historically
have been referred to as wild-type (WT) GIST (Figure 1).
Increasingly, the term WT GIST is confusing, as modern testing

can actually identify a pathogenic mutation in most of these
cases. An updated molecular classification of GIST summarized
in Table 2 may be helpful for diagnostic, prognostic, and
treatment planning purposes.

3.1. Kit-mutant GIST

KIT is a type III RTK, belonging to the family that also includes
PDGFRA, PDGFRB, Colony stimulating factor 1 receptor
(CSF1R), and FLT3. Upon binding its cognate ligand, SCF, two
KIT polypeptides dimerize and transactivate each other by
tyrosine phosphorylation. The resultant fully activated kinase
complex initiates downstream signaling through multiple pro-
proliferative and pro-survival pathways, including PI3K/AKT
and RAS/RAF/MEK.

The functional importance of KIT mutations in GIST patho-
genesis is supported by multiple lines of evidence. First, phos-
phorylated KIT, indicative of activated KIT, is readily detected
in extracts from clinical GIST specimens and GIST cell lines [13].
Second, mutant KIT can transform Ba/F3 cells, supporting their
growth in nude mice [8]. Third, mice engineered to express KIT
with activating mutations like those found in human GISTs
develop diffuse ICC hyperplasia of the stomach and intestines
and also develop GIST-like tumors [14,15]. The histologic pat-
tern of diffuse ICC hyperplasia and focal GIST formation in
these mice is similar to that seen in individuals who inherit
germ line KIT-activating mutations [16,17]. Fourth, when exo-
genously expressed in cell lines, mutant forms of KIT show
constitutive kinase activity in the absence of SCF, as shown by
auto-phosphorylation and activation of downstream signaling
pathways [8,18,19]. Fifth, treatment of GIST cell lines or pri-
mary GIST cell cultures with KIT kinase inhibitors or interfering
RNA against KIT results in decreased proliferation and
increased apoptosis [19,20]. Finally, TKI-resistant, KIT-mutant
GIST typically harbors secondary KIT mutations that confer
drug resistance but maintain kinase activity, suggesting that
even in the advanced state, GISTs require maintenance of KIT
signaling (see Section 4.4 for additional discussion of resis-
tance mutations) [20].

Table 1. Immunohistochemistry in differential diagnosis of GIST.

Diagnosis KIT (CD117) ANO1 SDHB SDHA Desmin S-100

KIT-, BRAF-, NF1- mutant GIST Positive Positive Positive Positive Negative Negative
PDGFRA-mutant GIST Sometimes

lowa
Positive Positive Positive Negative Negative

SDHB/C/D-mutant GIST Positive Positive Negative Positive Negative Negative
SDHA-mutant GIST Positive Positive Negative Negative or positiveb Negative Negative
RTK-WT/SDHB positive Positive Positive Positive Positive Negative Negative
Quintuple WT Positive Positive Positive Positive Negative Negative
Leiomyoma Negative Negative Positive Positive Positive and uniform Negative
Leiomyosarcoma Negative Negative Positive Positive Usually positive Negative
Schwannoma Negative Negative Positive Positive Negative Positive and uniform
Desmoid fibromatosis Negative Negative Positive Positive Negative Negative

Multiple immunohistochemical markers can be used in the differential diagnosis of GIST. However, the combination of CD117 (KIT) and ANO1 expression by an
abdominal sarcoma is essentially diagnostic of GIST. SDH IHC is useful in further distinguishing subtypes of GIST.

aSometimes low KIT indicates that some cases of PDGFRA-mutant GIST are KIT low/negative, whereas many cases are KIT positive.
bNegative SDHA indicates the presence of an SDHA mutation but SDHA mutation can also be present when SDHA IHC is positive. SDHA mutation is always
accompanied by SDHB deficiency.

ANO1: anoctamin-1; GIST: gastrointestinal stromal tumor; NF1: neurofibromatosis type I; PDGFRA: platelet-derived growth factor receptor alpha; RTK: receptor
tyrosine kinase; SDH: succinate dehydrogenase; SDHA: succinate dehydrogenase subunit A; SDHB: succinate dehydrogenase subunit B; WT: wild type.
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3.1.1. KIT exon 11 mutations
Mutations in KIT exon 11 are the most common type of
oncogenic mutation found in GIST, occurring in approximately
67% of cases. These mutations include point mutations, in-
frame deletions and/or insertions. Exon 11 encodes the juxta-
membrane portion of KIT that prevents the kinase activation
loop from swinging into the active state, thus favoring the
auto-inhibited conformation. Mutations of KIT exon 11 disrupt
this auto-inhibition, allowing spontaneous kinase activation in
the absence of SCF ligand [21].

KIT exon 11-mutant GISTs arise throughout the GI tract, but the
most common site is the stomach. Tumors with KIT exon 11
mutations typically have spindled rather than epithelioid cell mor-
phology. After complete resection, these tumors have a higher rate
of recurrence than other genotypically defined GIST subgroups.
Correspondingly, GISTs with KIT exon 11 deletions, particularly
deletions involving codons 557 and/or 558, have a worse prog-
nosis than those with exon 11 and point mutations [22].

3.1.2. KIT exon 9 mutations
The second most common class of mutations affects KIT exon
9 (8–10% of GISTs), which encodes the KIT proximal extracel-
lular domain. More than 95% of GIST-associated KIT exon 9
mutations consist of an insertion of six nucleotides, resulting
in duplication of amino acids 502 and 503. Rare cases of amino
acid substitutions involving codon 476 have also been
reported [23]. Most GISTs harboring KIT exon 9 mutations
arise from the small or large bowel and KIT exon 9-mutant
tumors make up 25–30% of intestinal GISTs. In contrast, KIT
exon 9 mutations make up less than 2% of gastric GISTs [23].
KIT exon 9 mutations result in constitutive kinase activation by
mimicking the conformational change that the extracellular
domain undergoes after ligand binding. The kinase domain
conformation in exon 9-mutant KIT is believed to be the same
as for WT KIT.

3.1.3. Other KIT mutations
Primary mutation of KIT exon 13, which encodes part of the
kinase adenosine triphosphate (ATP)-binding pocket, occurs in
approximately 1% of GISTs. The substitution K642E accounts
for the vast majority of primary KIT exon 13 mutations. KIT
exon 13-mutant GISTs are most commonly found in the sto-
mach but can arise throughout the GI tract. KIT exon 13-
mutant tumors typically have a spindle cell appearance, but
occasionally have epithelioid or mixed histology.

Primary mutations affecting KIT exon 17, which encodes the
kinase activation loop, are found in approximately 1% of
GISTs. Substitutions at codons 820, 822, or 823 are the most
common mutation sites in this exon. Almost all of these
tumors have a spindle cell appearance and most are located
in the small bowel, but can arise in the stomach as well [24].

Rarely, mutations occur in KIT exon 8, which encodes part
of the KIT extracellular domain. The majority of these GISTs
occur outside of the stomach, in the duodenum or small
intestine [25].

3.2. PDGFRA-mutant GIST

Mutations in PDGFRA are the most common non-KIT onco-
genic mutations associated with GIST. PDGFRA is a close
homolog of KIT and uses similar downstream signaling path-
ways to drive proliferation. PDGFRA mutations found in GIST
result in constitutive kinase activation and are mutually exclu-
sive with KIT mutations [26,27]. The most common location for
PDGFRA-mutant GISTs is the stomach, but they can arise in the
small or large intestine. Histologically, PDGFRA-mutant GISTs
usually have an epithelioid or mixed epithelioid/spindle
appearance, commonly accompanied by a myxoid stroma
[28]. Some, but not all, PDGFRA-mutant GISTs express low or
undetectable levels of KIT as assessed by IHC (so-called KIT-
negative GIST); however, these tumors retain expression of

Figure 1. Mutational subclassification of GIST. The percentage of GIST cases within each mutation-based subclass is depicted.
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ANO1. Other similarities between PDGFRA-mutant and KIT-
mutant GISTs include expression of Protein kinase C (PKC)-
theta and activation of the RAS/MAPK and PI3K pathways
[23]. In addition, these tumors tend to have similar cytogenetic
abnormalities, including monosomy of chromosome 14 [26].
However, gene expression profiling of KIT-mutant and
PDGFRA-mutant GISTs has shown subtle differences that may
relate to some of the differences in clinical behavior [29]. In a
population-based series of 492 primary GISTs in France, the
frequency of PDGFRA mutations was 15%, whereas only 2% of
cases in two large clinical series of metastatic GIST were driven
by PDGFRA mutations [30]. These observations, which have
been confirmed in other series, suggest that PDGFRA-mutant
GISTs generally have a lower risk of recurrence than KIT-
mutant GIST. As with KIT mutations, rare families with germ
line PDGFRA mutations and susceptibility to developing GIST
have been reported [31].

3.2.1. PDGFRA exon 18 mutations
The most common PDGFRA mutations in GIST involve exon 18,
and are thought to stabilize the kinase activation loop in a
conformation that favors kinase activation [32]. A single muta-
tion, D842V, accounts for at least 70% of all PDGFRA mutations
seen in GIST [33]. Curiously, D842V mutations are found only
in tumors arising in the stomach, omentum, and mesentery.

3.2.2. PDGFRA exon 12 mutations
Mutations affecting exon 12 of PDGFRA are found in approxi-
mately 1% of GISTs [30,33]. PDGFRA exon 12 is homologous to
KIT exon 11 and point mutations or in-frame insertion/deletion
mutations of this region lead to loss of the auto-inhibitory
function of the juxtamembrane domain [23,32].

3.2.3. PDGFRA exon 14 mutations
Less than 1% of GISTs have activating mutations in PDGFRA
exon 14, making these tumors some of the rarest types of RTK-
mutant GIST. By homology with KIT exon 13, mutations in
PDGFRA exon 14 may interfere with the auto-inhibitory func-
tion of the juxtamembrane domain.

3.3. RTK-WT GIST

3.3.1. Historical perspective
Beginning in 1998, GISTs were classified as KIT-mutant versus
WT, based on the original description of KIT exon 11 muta-
tions. When PDGFRA-mutant GISTs were identified in 2003, the
definition of WT GIST was revised to mean those tumors
lacking KIT or PDGFRA mutations. As detailed later, other
gain- or loss-of-function pathogenic mutations have since
been discovered in GIST lacking KIT or PDGFRA mutations. In
light of these newer mutations, categorizing GISTs as WT has
become confusing and misleading. They are perhaps better
referred to as RTK-WT with further subclassification dependent
on the results of additional molecular testing, as discussed
later (see Table 2).

3.3.2. SDHB-deficient, RTK-WT GIST
A major breakthrough in the understanding of non-RTK onco-
genic mechanisms in GIST arose from studies of patients with

Carney–Stratakis syndrome. This autosomal-dominant syn-
drome manifests as a susceptibility to develop both paragan-
glioma and GIST. Previous studies of familial paraganglioma
syndromes revealed germ line-inactivating mutations in the
genes encoding the SDH complex, which is composed of four
subunits: SDHA, SDHB, SDHC, and SDHD (collectively termed
SDHx) [34,35]. The SDHx genes are classic tumor suppressor
genes, requiring inactivation of both alleles of a specific SDH
subunit for loss of SDH activity. Typically, this is the result of a
combination of an inactivating germ line mutation (first hit)
with a somatic loss of heterozygosity or other inactivating
mutation affecting the other allele (second hit). Inactivation
of any of the SDHx subunits causes destabilization and loss of
enzymatic function of the entire complex, resulting in SDH
deficiency [12].

The mechanisms by which SDH deficiency initiates the
formation of GIST are incompletely understood. Loss of SDH
activity prevents the conversion of succinate to fumarate,
which leads to accumulation of succinate, an oncometabolite
that has been connected to two mechanisms of cancer patho-
genesis: (1) inhibition of prolyl hydroxylase, which leads to the
accumulation of the transcription factor Hypoxia-inducible
factor 1-alpha (HIF1α); and (2) inhibition of DNA demethylases,
resulting in DNA hypermethylation and gene deregulation.
Oncometabolite initiation of GIST is believed to be indepen-
dent of KIT signaling and this has implications for treatment of
SDH-deficient GIST as noted later.

Several investigators have shown that the absence of
immunohistochemical staining for SDHB is a reliable method
to identify SDH-deficient GIST [36–39]. Overall, SDHB-deficient
GISTs have distinct clinical and pathologic characteristics,
including gastric origin, epithelioid morphology, a multifocal
nodular growth pattern, and frequent involvement of local
lymph nodes [40,41]. Miettinen et al. reported that 7.5% of
756 gastric GISTs were SDHB immunonegative, while no cases
of SDHB deficiency were found among 378 non-gastric GISTs
[39]. Many SDHB-deficient GISTs arise in patients younger than
20 years. In contrast, gastric GIST diagnosed in patients older
than 40 years is rarely SDHB-deficient [38,39]. SDHB staining is
retained in GIST with KIT or PDGFRA mutations and in GISTs
with other oncogenic mutations, as discussed later and in
Table 1.

Absence of SDHA immunostaining generally correlates with
loss-of-function SDHA mutations, most of which seem to be
inherited [41–45]. In rare cases, SDHA staining is retained in an
SDHA-mutant tumor that lacks SDHB staining [41]; presum-
ably, this is because the mutant-SDHA protein, although dys-
functional, is not degraded. Of 127 SDHB-deficient GISTs, 28%
also lacked SDHA expression, suggesting that SDHA mutations
account for more than a quarter of SDH-deficient GISTs [41]. In
contrast, 0 of 556 cases of SDHB-positive GISTs lacked SDHA
protein expression. Compared to patients with SDHA-positive/
SDHB-negative GISTs, those with SDHA-/SDHB-negative GISTs
have an older median age (34 vs. 21 years), lower female/male
ratio, and a slower course of disease, despite a slightly higher
rate of liver metastases.

Unlike mutations in KIT and PDGFRA, the mutations seen in
SDHx are varied. Loss-of-function mutations are found
throughout the coding regions and do not cluster around
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specific amino acids. Indeed, one of the challenges in evaluat-
ing SDHx variants in SDH-deficient tumors is determining
which ones are responsible for the disease. Functional assays
to determine their effects on SDH complex activity would be
useful to guide genetic counseling for these patients and their
families [46,47].

A subset of SDHB-deficient GISTs have no detectable SDHx
mutations. The majority of these are thought to have SDHC
promoter-specific CpG island hypermethylation, referred to as
SDHC epimutation. Tumors with SDHC epimutation have
decreased SDHC mRNA expression compared with normal
controls [48]. Decreased SDHC protein expression leads to
SDH complex instability and the secondary loss of SDHB pro-
tein expression as assessed by IHC. All known cases of GIST
with an SDHC epimutation are SDHB-deficient. The mechan-
isms leading to increased SDHC promoter hypermethylation
remain unknown at this time, but are likely post-zygotic
because the risk for these tumors is not inherited [48].
Patients with SDHC epimutation often manifest Carney triad,
which consists of gastric GIST, paraganglioma, and pulmonary
chondroma [49]. Given that both Carney–Stratakis syndrome
and Carney triad are characterized by GIST and paragan-
glioma, it is challenging to determine which condition is
responsible for development of these tumors in a given
patient without appropriate molecular testing.

Identification of SDHB immunonegative GISTs is important
for several reasons. First, given the increased frequency of
SDHx mutations in these tumors, genotyping can be used to
guide subsequent testing for the presence of germ line muta-
tions (Carney–Stratakis syndrome). Clinical screening guide-
lines have been described for patients with familial
paraganglioma/GIST [50]. Second, conventional risk stratifica-
tion of SDHB-deficient tumors using tumor size and mitotic
index is poorly predictive of tumor behavior. These tumors
frequently metastasize but often have an indolent clinical
course. In addition, lymph node metastases are common in
SDHB-deficient tumors, but extremely rare in SDHB-positive
tumors [40,51].

3.3.3. RTK-WT/SDHB-positive GIST
3.3.3.1. RAS/RAF/MAPK. GISTs that are RTK-WT and SDHB-
positive are uncommon, but nevertheless comprise a geneti-
cally diverse group. Some harbor alterations that hyperacti-
vate the RAS/RAF/MAPK pathway. Among these are mutations
in the gene NF1, which encodes the tumor suppressor neuro-
fibromin that serves as a negative regulator of the activity of
the RAS pathway. Approximately 7% of patients with germ
line NF1 mutations develop RTK-WT GIST (frequently multiple)
of the small bowel [52,53]. As expected, NF1-associated GISTs
are uniformly SDHB-positive [54]. Interestingly, there have
been reports of sporadic KIT-mutant GISTs in patients with
NF1, and this has treatment implications, as discussed later
[55]. Therefore, GIST developing in patients with clinical NF
should be subjected to molecular analysis for KIT/PDGFRA
mutations, to distinguish between sporadic GIST and NF-asso-
ciated GIST due to loss of the WT NF1 allele. NF1 mutations
have also been reported in GIST in patients without clinical NF;
this may occur either due to unrecognized NF or as a sporadic
cause of GIST without germ line NF1 mutation [56,57]. NF1 loss

may be under-recognized as a potential molecular cause of
GIST, due to the large size of the NF1 gene and the frequent
occurrence of intragenic (and sometimes flanking region)
microdeletions that are not detectable by sequencing, espe-
cially using exome-focused sequencing panels [58].

BRAF V600E mutations have been reported in 7–15% of
RTK-WT GISTs, but comprise less than 2% of overall GIST
diagnoses [59–61]. There do not seem to be any common
anatomic or pathologic associations for BRAF-mutant GIST.
Rare cases of RAS-mutant GIST have also been described
[23,62].

3.3.3.2. RTK translocations. Approximately 5% of GISTs lack
mutations in all genes currently linked to GIST development
(KIT, PDGFRA, SDHx, and RAS pathway). These GISTs have been
termed ‘quadruple WT’ [63]. In 2016, two groups identified
oncogenic RTK translocations in a subset of quadruple-WT
GISTs. Brenca et al. used transcriptome sequencing to identify
the fusion of exon 4 of ETV6 to exon 14 of NTRK3 in one
quadruple-WT GIST that arose in the rectum [64]. Shi et al.
identified four cases of quadruple-WT GIST with oncogenic
RTK translocations: two with ETV6-NTRK3 fusions, one with a
fibroblast growth factor receptors 1 (FGFR1)-TACC1 fusion, and
the final case had a FGFR1-HOOK3 fusion [65]. All of these
translocations are known or predicted to result in constitutive
kinase activation. Despite the novel molecular findings, these
tumors were otherwise typical for GIST in terms of morphol-
ogy and IHC testing results, indicating that these tumors
comprise a new molecular subclass of GIST rather than a
different form of sarcoma. Given the small size of these two
series, it is possible that additional gene fusions of these or
other kinases may be involved in GIST pathogenesis.

3.3.3.3. Quintuple WT. As outlined earlier, it is imperative
that the molecular classification of GIST be defined during the
diagnostic process to better define therapeutic options for
individual patients. However, there is still a small subset of
GIST that is wild type for all known genes causing GIST includ-
ing KIT, PDGFRA, SDH, RAS-pathway, and RTK translocations.
We propose that these GISTs be termed quintuple-WT GIST.
This group likely represents only 1% of GISTs [65].

4. Using molecular classification to optimize clinical
treatment

There are three treatment scenarios in which molecular classi-
fication of GIST is important: therapy for advanced disease,
adjuvant therapy following primary GIST resection, and pri-
mary/secondary resistance. Although molecular classification
is beneficial in all three circumstances, it is the most powerful
for optimizing clinical treatment in advanced disease (Table 2).
The relevance of molecular classification in each scenario is
discussed later.

4.1. Therapy for advanced disease

While many GISTs are controlled by surgery with or without
adjuvant imatinib, treatment of GIST in the advanced setting
has improved greatly when patients are stratified by molecular
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subtype. Preclinical and clinical data demonstrate therapeutic
responses differ significantly between GISTs with different
molecular defects or advanced disease; there are currently
three approved small-molecule therapies to treat GIST of any
classification: imatinib (first line), sunitinib (second line), and
regorafenib (third line); all are TKI small molecules that have
variable potency against mutations in KIT or PDGFRA. In gen-
eral, these treatments have been shown to be most effective
in RTK-mutant GIST. As we further understand what drives
these tumors, we are able to effectively inhibit their growth.
The preclinical and clinical studies that inform the treatment
of each GIST subtype are summarized later (see also Table 2).

4.1.1. KIT-mutant GIST
KIT exon 11-mutant GISTs have the most robust and durable
response to front-line treatment with imatinib compared with
other types of GIST. In vitro assays of KIT exon 11-mutant
kinases have confirmed that mutations found in GIST tumors
are tenfold more sensitive to KIT inhibitors, such as imatinib,
than the WT isoform [66]. These in vitro findings are reflected
in the clinic, where primary resistance to imatinib treatment
(defined by progression within the first 6 months of therapy) is
seen in only 5% of cases of advanced KIT exon 11-mutant GIST,
compared with 16% of KIT exon-9 mutant and 43% of KIT/
PDGFRA WT cases [67,68]. Correspondingly, the objective
response rate to imatinib is 67–83% for KIT exon 11-mutant
GIST versus 35–48% for KIT exon 9-mutant GIST [68]. The
median time to progression on first-line imatinib therapy for
KIT exon 11-mutant GIST is approximately 25 months, and the
current median overall survival for patients with KIT exon 11-
mutant GIST is at least 60 months. The molecular mechanisms
leading to secondary drug resistance in KIT exon 11-mutant
GISTs are discussed later.

Exon 9-mutant KIT shows decreased in vitro sensitivity to
imatinib compared with exon 11-mutant KIT [69,70]. In agree-
ment with these data, results from randomized Phase 3 stu-
dies showed that patients with KIT exon 9-mutant GIST had a
significantly improved progression-free survival, approxi-
mately 1 year longer, when treated with a higher total daily
dose of 800 mg of imatinib compared with patients treated
with 400 mg [71]. Sunitinib, the second-line KIT inhibitor
approved for GIST, has a greater potency than imatinib against
KIT exon 9-mutant kinases. Consistent with this, patients with
KIT exon 9-mutant GIST represent the most likely subset of
patients with imatinib-resistant tumors to benefit from sec-
ond-line sunitinib therapy [66].

Treatment of GIST with mutations in KIT exons 13 and 17
can be informed by preclinical and clinical observations as
well. In vitro data indicate that KIT exons 13 and 17 are
sensitive to imatinib, but perhaps less so than KIT exon 11-
mutant kinases [23,24,67,72]. If there is no response to imati-
nib at 400 mg/day, it is reasonable to consider dose escalation
to 800 mg/day, if tolerated.

4.1.2. PDGFRA-mutant GIST
The mutations seen in PDGFRA exon 18 differ markedly in their
imatinib sensitivity [33,73]. D842V confers resistance to imati-
nib and all other approved KIT TKIs in vitro [67]. After D842V,
the next most common mutation of exon 18 is deletion of

codons 842–845, which is imatinib-sensitive [33,73]. Other
more rare mutations in exon 18 are imatinib-resistant, includ-
ing D846Y, N848K, and Y849K.

While the majority of PDGFRA exon 18 mutations are
resistant to imatinib and other approved KIT TKIs, a novel
PDGFRA-selective kinase inhibitor, crenolanib, was found to
have in vitro potency against D842V and other imatinib-
resistant PDGFRA mutations. Based in part on these results,
a Phase 3 clinical study of this agent to treat advanced
GIST with the PDGFRA D842V mutation has been initiated
[73] (ClincalTrials.gov Identifier NCT02847429). Even more
promising, BLU-285 has demonstrated higher potency and
specificity against PDGFRA exon 18 mutants than any exist-
ing small molecule inhibitors, including crenolanib. Early
results from a Phase 1 clinical of this agent reported an
impressive objective response rate of this agent for
PDGFRA D842V-mutant metastatic GIST [74]. Further study
is needed to confirm these results and determine the dur-
ability of the reported responses. Based on the lack of
response of PDGFRA D842V-mutant GIST to conventional
agents, consideration of referral to an appropriate clinical
study should be strongly considered, even in untreated
patients.

In vitro, PDGFRA exon 12-mutant kinases are as sensitive to
imatinib as KIT exon 11-mutant kinases. While there are only
rare reports of clinical outcomes for patients with metastatic
PDGFRA exon 12-mutant GISTs treated with imatinib, the avail-
able clinical data suggest that patients have high response
rates and durable disease control [27,33,67,68]. In vitro and
clinical study data suggest that exon 14-mutant kinase activity
is inhibited by imatinib [33].

4.1.3. RTK-WT GIST
For patients with metastatic GIST that lacks a KIT/PDGFRA
mutation, we recommend referral to a high-volume-GIST treat-
ment center. Patients with BRAF mutant, NTRK3-translocated,
or FGFR1-translocated mutant GIST should be considered for
enrollment in a study of an appropriate agent. Based on a
single case report as well as our personal results from treating
BRAF-mutant GIST, consideration of off-label use of a BRAF
inhibitor or combined BRAF and MEK inhibitor treatment
could be considered.

Currently, there is no validated effective treatment for
patients with RAS-mutant or NF1-mutant GIST. Theoretically,
these tumors might respond to a MEK inhibitor, but there are
no published data on this approach. In our experience, these
patients do not respond to imatinib therapy. Potentially, KIT/
vascular endothelial growth factor receptors (VEGFR) inhibitors
might have better activity than imatinib in this setting but this
has not been proven. In these cases, use of serial surgical
debulking to control disease could be considered.

Treatment of SDH-deficient GIST with imatinib results in a
very low response rate (~2%) [75]. There are some data to
suggest that these patients actually have a better response to
second-line sunitinib than front-line imatinib [76]. This could
reflect VEGFR inhibition by sunitinib, as increased HIF1α in
these tumors leads to VEGF upregulation. In the future, treat-
ments directed at the oncometabolites and/or cellular hyper-
methylation may yield superior results to current therapy. In
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some cases, metastatic disease can behave quite indolently;
therefore, selected patients may benefit from observation
and/or serial surgical debulking. Given the rarity of this type
of GIST and the complexity of molecular classification, genetic
counseling, and therapeutic decision-making, referral of such
patients to a high-volume GIST treatment center is
recommended.

In addition, patients with SDHB-deficient tumors should
undergo additional testing to determine if their tumor has
loss-of-function mutations involving an SDH subunit. For
patients with tumor-associated SDH mutations that are felt
to result in loss of SDH-complex function, we recommend
genetic counseling and consideration of testing for an under-
lying germ line SDH subunit mutation (i.e. Carney–Stratakis).
Patients with germ line loss-of-function mutations of an SDH
subunit should undergo additional genetic counseling to dis-
cuss screening with other family members and to review
recommendations for surveillance for the potential develop-
ment of paraganglioma, pheochromocytoma, or additional
GIST [77,78].

RTK translocations in GIST have only recently been identi-
fied and the only clinical treatment data using inhibitors tar-
geting these translocations exist in case report format. In that
report, a patient with ETV6-NTRK3-translocated GIST had a
robust clinical response to treatment with LOXO-101 (Loxo
Oncology, Stamford, CT, USA), the only selective TRK inhibitor
in clinical development, in a Phase I trial (NCT 02122913) [65].
There are no reported data for treatment of FGFR1-translo-
cated GIST, but we would predict that such GIST would be
inhibited by an FGFR1 inhibitor. When feasible, patients with
RTK-translocated GIST should be referred to clinical trials test-
ing appropriate inhibitors of these activated kinases.

Finally, we would note that currently 1% of patients will be
classified as having a ‘quintuple-WT’ GIST. As new molecular
classes of GIST are described in the future, tumors from
patients with metastatic disease should be retested to see if
this would change therapeutic decision-making. This recom-
mendation also applies to patients previously classified as KIT/
PDGFRA WT GIST based on limited genotyping for only KIT or
PDGFRA mutations.

4.2. Adjuvant therapy following primary GIST resection

Approximately 99% of GISTs can now be categorized based on
molecular diagnostics, informing therapeutic decisions in both
the adjuvant and advanced disease settings. For example, bio-
marker analyses of patients treated with adjuvant imatinib after
complete surgical resection of primary disease have indicated
that patients with primary KIT exon 11 mutations, especially
deletion mutations are the only proven subgroup to benefit
from adjuvant imatinib. Notably, patients with GISTs harboring
KIT exon 9 mutations, PDGFRA D842V mutations, or those
lacking mutations in either KIT or PDGFRA have no discernible
benefit with adjuvant imatinib therapy [79,80]. Based on these
results, and extrapolating from the clinical outcomes of
patients with advanced GIST treated with imatinib, we recom-
mend that physicians who are considering a recommendation
of adjuvant therapy for resected primary GIST should first
determine the genotype of the patient’s tumor. Patients with

moderate to high-risk KIT exon 11-mutant GIST should be
considered for treatment with 3 years of standard dose imati-
nib. In contrast, patients with PDGFRA D842V-mutant GIST or
whose tumor lacks any KIT/PDGFRA mutations should not be
treated with adjuvant imatinib. In addition, KIT exon 9-mutant
GIST patients have not been proven to benefit from the lower
standard dose (400 mg daily) of imatinib therapy in the adju-
vant setting. It is unknown patients with KIT exon 9-mutant
GIST would benefit from high-dose imatinib in the adjuvant
setting. Finally, we also recommend that patients with high-risk
GIST with imatinib-sensitive PDGFRA mutations (e.g. those
other than D842V) should also be offered at least 3 years of
adjuvant imatinib [33].

4.3. Primary resistance to front-line therapy

The treatment of metastatic GIST is limited by the eventual
emergence of resistance to one or more TKIs. Resistance to
front-line treatment with imatinib can be divided into two
categories: primary and secondary. Approximately 10% of
patients with GIST have primary resistance, defined as progres-
sion within the first 6 months of treatment. With proper
molecular subtyping, this resistance is typically foreseeable
and therapy can be adjusted in some cases. As discussed
earlier, clinical responses to imatinib correlates with the pri-
mary tumor genotype, with the probability of primary resis-
tance to imatinib for KIT exon 11, KIT exon 9, and RTK-WT
GISTs being 5%, 16%, and 23%, respectively [67,68,71,81].

Primary resistance is seen at high frequency in PDGFRA-
mutant GISTs. In vitro, the most common PDGFRA mutation in
GIST, D842V, is strongly resistant to imatinib [73]. This finding
is mirrored by clinical results with patients with PDGFRA
D842V-mutant GIST having low-response rates and very
short progression-free and overall survival during imatinib
treatment.

As discussed earlier, RTK-WT GISTs have mutations down-
stream of KIT or affecting entirely different pathways (e.g.
SDH) [38,60,61]. Hence, these GISTs have much lower response
rates to imatinib, but may respond to alternative agents, such
as KIT/VEGFR inhibitors for treatment of pediatric/SDH-mutant
GIST, and BRAF/MEK inhibitors for BRAF/RAS-mutant GIST [82].
Some patients with RTK-WT GIST have prolonged disease-free
and overall survival during front-line imatinib treatment.
Whether this situation is due to their underlying indolent
biology or by a subgroup of tumors with partial KIT depen-
dency remains unclear [68].

4.4. Secondary resistance to TKI therapy

After an initial benefit from imatinib, most patients eventually
experience disease progression caused by secondary resis-
tance. It is now established that acquired mutations in KIT or
PDGFRA account for the vast majority of cases of secondary
resistance in RTK-mutant GIST, and that these mutations occur
almost exclusively in the same allele as the primary oncogenic
driver mutation [23].

In a Phase II imatinib study for advanced GIST, 67% of the
patients whose tumor showed imatinib resistance had a sec-
ondary or acquired mutation in KIT. These mutations were
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common among tumors with a primary exon 11 mutation, but
were not observed in RTK-WT GISTs [20]. Indeed, secondary
mutations of KIT have never been reported in RTK-WT GIST.
Unlike primary mutations that activate KIT, which are predo-
minantly found in the exon 9 or 11, the secondary mutations
associated with TKI resistance are typically concentrated in
either the ATP-binding pocket (encoded by exons 13 and 14)
or the kinase activation loop (encoded by exons 17 and 18)
[20]. Drug resistance has also been observed in PDGFRA-
mutant GISTs, most commonly by acquiring a D842V mutation
(activation loop) [20,83]. However, there have been no reliable
reports of a secondary KIT mutation arising in a GIST with a
primary PDGFRA mutation, or vice versa, during treatment
with imatinib.

Additional studies using more sensitive assays have identi-
fied secondary mutations in more than 80% of drug-resistant
GIST lesions [23]. There can be significant heterogeneity of
resistance across different metastatic lesions in a patient, and
even within different areas of the same lesion [23]. For example,
there are reports of up to five different drug resistance

mutations in different portions of an individual lesion and up
to seven different secondary resistance mutations across multi-
ple tumors in the same patient [84]. This heterogeneity of
resistance significantly affects the efficacy of salvage TKI therapy
after front-line imatinib, because the diversity of resistant, min-
ority clones precludes the systemic eradication of GIST cells by
any particular TKI. Given the problems of tumor heterogeneity
and the limited predictive value of lesion genotyping to predict
response to changing medical therapy, biopsy of progressive
lesions solely to assay for secondary resistance mutations and
thereby select subsequent TKI therapy is not recommended. In
the future, the use of liquid biopsy techniques to characterize
secondary resistance mutations in circulating tumor DNA
(ctDNA) may be clinically useful (see Section 6).

5. Expert commentary

As discussed earlier, all GISTs with a significant risk of recurrence
should be molecularly tested. It is well established that tumor
genotyping plays an important role in defining the prognosis
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and treatment of patients with GIST. Nevertheless, molecular
diagnostic practices are currently underutilized in the manage-
ment of GIST patients [2,85]. Because of this, GIST patients may
receive less than optimal treatment and inadequate genetic
counseling. Figure 2 presents a molecular diagnostic decision
tree to help in guide the molecular workup of newly diagnosed
GIST. Since SDHB-deficient GISTs are limited to the stomach, we
recommend that SDHB IHC should be performed on all gastric
GISTs, as it prevents unnecessary sequencing for KIT and
PDGFRA mutations. SDHB-deficient GISTs should be submitted
for SDHx sequencing so that genetic counseling and follow-up
screening can be offered to these patients. If treatment with
imatinib is under consideration, then SDHB IHC-positive gastric
and all non-gastric tumors should be sequenced for KIT and
PDGFRA mutations. The remaining cases (less than 15%) are
candidates for additional testing for mutations in NF1, BRAF,
and the RAS genes. Many labs now offer next-generation
sequencing panels that cover all the genes relevant to GIST
[65,86]. However, screening for fusions involving the NTRK and
FGFR gene families is only currently available from a few speci-
alty labs. Following molecular classification, patients should be
treated in the adjuvant or metastatic setting as discussed above
for specific molecular subtypes of GIST.

6. Five-year view

As technology advances over the next 5 years, our ability to
diagnosis and treat molecular subtypes of resistant GIST will
also improve. Mutations that confer resistance to clinically
approved TKIs used to treat GIST have emerged as the major
factor limiting the survival of patients with metastatic GIST.
Currently, an invasive biopsy is needed in order to identify the
primary oncogenic mutation and usually is not repeated after
a patient relapses solely to identify an acquired resistance
mutation. Instead, each patient is treated with TKIs in the
same sequence (imatinib followed by sunitinib followed by
regorafenib), in accordance with standard professional and
health authority guidelines. However, these currently
approved inhibitors have serious potency issues against
some or all activation loop mutations that are known to be
associated with imatinib-resistant GIST. Thus, tumors with sec-
ondary activation loop mutations tend to become the domi-
nant clinical problem in patients with resistance to one or
more TKIs. Currently, a number of novel inhibitors with activity
against KIT activation loop mutations are in Phase 1 clinical
studies (NCT02508532, NCT02571036). Assuming that these or
other inhibitors prove to be safe and effective for treatment of
TKI-resistant GIST, one could envision a clinical scenario where
the choice of therapy for a given patient might be informed
by having information on which particular resistance muta-
tions exist among different tumors in a single patient.

Liquid biopsy, a technique to identify tumor mutations in
ctDNA, could allow a global assessment of the various types of
secondary mutations in a given patient with multifocal TKI-
resistant GIST. This diagnostic approach has been validated in
several types of solid tumors [87–91]. In the case of GIST, KIT
and PDGFRA mutations can be detected from plasma/blood
samples of GIST patients [92] including secondary KIT muta-
tions in patients undergoing imatinib therapy [93]. There is an

ongoing clinical trial to determine if there is an association
between changes in ctDNA with GIST disease progression, as
measured by conventional methods (NCT02443948). Clinical
decision-making based on this technology has not yet been
validated. Ultimately, some form of clinical study comparing
standard treatment versus ctDNA-guided treatment will be
needed to prove that genotype-guided therapy is superior to
current treatment guidelines. In addition to guiding manage-
ment of advanced disease, this technology could also be used
to monitor for recurrence after curative intent surgical resec-
tion. Monitoring for the primary KIT mutation associated with
a resected tumor could be used to supplement or replace
conventional imaging, assuming that ctDNA detection of
recurrence has a sensitivity that is similar or superior to ima-
ging studies.

Key issues

● IHC can distinguish GIST from other tumor types with simi-
lar histology but different clinical behavior. Molecular clas-
sification based on mutation testing is crucial for the
optimal treatment of GIST.

● Some GIST, particularly SDH-deficient tumors, can be
caused by a germ line mutation. Identification of individuals
with an inherited susceptibility to GIST allows for appropri-
ate genetic counseling, screening of other family member,
and surveillance strategies for early detection of other
tumors that can independently arise later in life.

● Known oncogenic drivers in GIST include mutations in KIT,
PDGFRA, SDHA/B/C/D, BRAF, RAS, NF1, and translocations
involving RTKs other than KIT/PDGFRA (e.g. NTRK3)

● Oncogenic driver mutations confer unique clinical features
requiring different treatment strategies

● The majority of GISTs have mutations in KIT or PDGFRA and
can be successfully treated with tyrosine kinase inhibitors

● In the future, precision medicine treatment of GISTs with
molecular abnormalities other than KIT/PDGFRA mutations
may become clinically available.

● ctDNA offers a potential strategy for detecting and charac-
terizing secondary mutations in patients treated with TKIs.
Future clinical studies are required to define the sensitivity
and clinical utility of this testing in the management of
patients with GIST tested
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