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Abstract—This paper studies the problem of computing a
minimum zero forcing set (ZFS) in undirected graphs and
presents new approaches to reducing the size of the minimum
ZFS via edge augmentation. The minimum ZFS problem has
numerous applications; for instance, it relates to the minimum
leader selection problem for the strong structural controllability
of networks defined over graphs. Computing a minimum ZFS
is an NP-hard problem in general. We show that the greedy
heuristic for the ZFS computation, though it typically performs
well, could give arbitrarily bad solutions for some graphs. We
provide a linear-time algorithm to compute a minimum ZFS in
trees and a complete characterization of minimum ZFS in the
clique chain graphs. We also present a game-theoretic solution
for general graphs by formalizing the minimum ZFS problem
as a potential game. In addition, we consider the effect of edge
augmentation on the size of the ZFS. Adding edges could improve
network robustness; however, it could increase the size of the ZFS.
We show that adding a set of carefully selected missing edges to a
graph may actually reduce the size of the minimum ZFS. Finally,
we numerically evaluate our results on random graphs.

Index Terms—Zero forcing sets, dynamics over graphs, strong
structural controllability, edge augmentation.

I. INTRODUCTION

Dynamic coloring of vertices in graphs have recently gained
significant attention in network science and dynamical systems
due to their broad applicability. Such colorings are frequently
used to model and analyze various real-world phenomena, in-
cluding infection propagation, information spread, and control
of networked systems. In dynamic coloring, vertices change
their colors in discrete time intervals based on pre-defined
rules. Zero forcing is a popular coloring process with numerous
applications, for instance, in the control of quantum systems,
logic circuit design, sensor allocation, network controllability,
and information spread in social networks [2]–[5]. The main
idea of zero forcing in graphs is that each vertex is initially
colored black or white. Then, a black vertex with exactly one
white neighbor forces its only white neighbor to change the
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color to black. This process continues until no more color
changes are possible. A set of initial black vertices that forces
the entire vertex set to become black is called a zero forcing
set (ZFS) (explained in Section III).

Zero forcing in graphs offers remarkable insights into the
controllability of multiagent systems, which is related to con-
trolling a network of agents as desired by injecting external in-
put signals through a subset of agents called leaders. Network
controllability has been a central theme in network control
systems and network science. Several critical issues related to
network controllability have been explored in the literature,
including capturing the influence of network topology on
controllability, fundamental limits, and practical implications
of controlling networks [6]–[11]. Another crucial aspect of
network controllability is the computation of the minimum
set of leader agents to control the network, also referred
to as the minimum leader selection problem [12]–[14]. The
notion of ZFS in graphs adequately characterizes the leader
selection problem and provides conditions to select optimal
leader agents to control the network [5], [15]–[17].

As a result, the problem of computing a minimum ZFS in
graphs is crucial. It is well known that computing a minimum
ZFS, is NP-hard [18]. The ZFS problem has been an active
research topic in graph theory. However, most of the research
in ZFS revolves around finding upper and lower bounds on the
size of the minimum ZFS, called the zero forcing number, and
refining bounds for specific graph families (e.g., [19]–[21]).
In the literature, there are algorithms to compute a minimum
ZFS, for instance, the wavefront algorithm [22], [23], and
Integer Programming formulations [24]–[26]; however, they
are not suitable for large graphs due to their exponential time
complexities. Thus, one has to rely on efficient heuristics, such
as greedy, to obtain small-sized ZFS.

This paper studies the ZFS problem, including its computa-
tion and the effects of edge augmentation on ZFS. In particular,
we compute minimum ZFS in trees and other graph families,
and also provide heuristics to compute small ZFS in general
graphs using game-theory ideas. We also examine how to add
edges in a graph to reduce the size of the minimum ZFS.

• We show that a greedy solution, which typically performs
well, could give a ZFS whose size is arbitrarily large
compared to the minimum ZFS (Proposition 3.1).

• We provide a linear-time algorithm to compute minimum
ZFS in trees (Theorem 4.7). We also compute minimum
ZFS in a class of robust graphs called clique chains
(Proposition 4.8).
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• We present heuristics based on game-theoretic ideas for
computing a small-sized ZFS in graphs. For this, we
formulate the problem as a potential game and then use
a learning solution in games (Lemma 5.1, Theorem 5.2).
We also numerically evaluate our results, illustrating the
usefulness of the approach.

• We provide conditions in general and for k-connected
graphs, in particular, to strategically add missing edges
to reduce the size of their minimum ZFS (Theorem 6.2,
Proposition 6.3). Edge augmentation to reduce the zero
forcing number of graphs is studied here for the first time
to the best of our knowledge.

The rest of the paper is organized as follows: Section
II presents notation and preliminaries. Section III reviews
the connection between graph controllability and minimum
ZFS, and discusses greedy solution to the ZFS problem.
Section IV discusses the minimum ZFS in trees and clique
chains. Section V provides a game-theoretic formulation of
the minimum ZFS problem. Section VI studies the edge
augmentation in graphs to reduce the size of the minimum
ZFS. Finally, Section VII concludes the paper.

II. PRELIMINARIES

A. Notations and System Model

We consider a multiagent network modeled by an undirected
graph G = (V,E), where V is the set of nodes representing
agents and E ⊆ V × V is the edge set representing intercon-
nections between agents. The cardinality of the given set V
is denoted by |V |. The edge between u and v is denoted by
an unordered pair (u, v). The neighborhood of node u is the
set Nu = {v ∈ V |(u, v) ∈ E}. The degree of a node u is
defined as the size of its neighborhood, i.e., deg(u) = |Nu|.
A path of length k in a graph G is a sequence of nodes,
Pk =< v0, v1, v2, . . . , vk >, where (vi, vi+1) is an edge in
G for all 0 ≤ i ≤ k − 1. The distance d(u, v) between
nodes u and v is the number of edges in the shortest path
between them. The diameter of G is the maximum distance
between any two nodes in the graph. A node v in a graph G
with deg(v) = 1 is called a leaf node. We define a family of
symmetric matrices associated with graph G = (V,E), where
|V | = n, as following:

M(G) = {M ∈ Rn×n | M = M⊤, and for i ̸= j,

Mij ̸= 0 ⇔ (i, j) ∈ E(G)}.
(1)

Next, we define a finite dimensional leader-follower system
on G = (V,E) as follows:

ẋ(t) = Mx(t) +Bu(t). (2)

Here x(t) ∈ Rn is the system state, u(t) ∈ Rm is the input,
M ∈ M(G) (as in (1)), and B ∈ Rn×m is the input vector
describing which nodes are leaders (i.e., input nodes). For B,
let V ′ = {ℓ1, ℓ2, · · · , ℓm} ⊆ V = {v1, v2, · · · , vn} be the set
of leader nodes, then

[B]ij =

{
1 if vi = ℓj ,
0 otherwise. (3)

For a graph G, matrices in M(G) capture a broad class of
system matrices defined on undirected graphs and encountered
in several applications. For example, the adjacency and Lapla-
cian matrices of G also belong to M(G). We are interested in
finding a minimum set of leader nodes that make such systems
strong structurally controllable.

B. Controllable Graphs and Minimum Leaders Problem

An LTI system in (2) is controllable if there exists an input
driving the system from any initial state x(t0) to any final
state x(tf ), and we say that (M,B) is a controllable pair.
A pair (M,B) is controllable if and only if the rank of the
controllability matrix Γ(M,B) is |V | = n (i.e., full rank).

Γ(M,B) =
[
B MB M2B · · · Mn−1B

]
. (4)

Since leader nodes V ′ define the input matrix B, with a slight
abuse of notations, we sometimes use (M,V ′) is controllable
to denote that (M,B) is a controllable pair.

Definition 2.1. (Controllable Graph) Given a graph G =
(V,E) and a leader set V ′ ⊆ V , we say that (G,V ′) is
controllable if and only if (M,V ′) is controllable for all
M ∈ M(G) (as defined in (1)).

We note that the controllable graphs notion is akin to the
strong structural controllability of undirected networks [5],
[16]. Also, in Definition 2.1, if we just require the existence
of some M ∈ M for which (M,V ′) is controllable, then G is
referred to as weak structurally controllable with a leader set
V ′ [10]. Clearly, strong structural controllability is a stronger
notion and implies weak structural controllability. We are
interested in computing and characterizing the minimum set
of leader nodes rendering the graph controllable (strong struc-
turally controllable), which is also referred to the minimum
leader selection problem, as stated below:

V ′
min = argmin

{V ′⊆V |(G,V ′) is controllable}
|V ′| (5)

In the next section, we define ZFS and review the connec-
tions between graph controllability and ZFS.

III. GRAPH CONTROLLABILITY AND ZERO FORCING

We begin by defining the zero forcing process in graphs.

Definition 3.1. (Zero forcing Process) Given a graph G =
(V,E) whose nodes are initially colored either black or white.
Consider the following node color changing rule: If v ∈ V is
colored black and has exactly one white neighbor u, change
the color of u to black. Zero forcing process is the application
of the above rule until no further color changes are possible.

If the color of white node u is changed to black due to a
black node v, we say v forced u, and denote it by v 7→ u.

Definition 3.2. (Derived Set) Consider a graph G = (V,E)
with V ′ ⊆ V be the set of initial black nodes. Then, the set
of black nodes obtained at the end of the zero forcing process
is the derived set denoted by der(G,V ′).
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The set of initial black nodes V ′ is also referred to as the
input set. For a given input set, the derived set is unique [27].

Definition 3.3. (Zero Forcing Set (ZFS)) Consider a graph
G = (V,E) and V ′ ⊆ V . Then, V ′ is a ZFS if and only if
der(G,V ′) = V . The size of the minimum zero forcing set is
called the zero forcing number ζ(G).

We summarize the zero forcing related notions below:
V ′(G) input set / leader nodes
der(G,V ′) derived set of V ′;
Z(G) zero forcing set of G;
ζ(G) zero forcing number of G;

When the context is clear, we drop G from the above
notations. Figure 1 illustrates these ideas.
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Fig. 1: (a) V ′ = {v1, v4} and der(V ′) = {v1, v4, v5, v7}.
Since der(V ′) ⊂ V , V ′ is not a ZFS. (b) Z = {v1, v4, v7} is
a ZFS as der(Z) = V .

ZFS characterizes the leader selection for the graph control-
lability [5], [15], [16]. A direct consequence of [15, Thm. IV.4,
Thm. IV.8, Prop. IV.9] is that a graph G = (V,E) with a leader
set V ′ ⊆ V is controllable (in the sense of Definition 2.1)
if and only if V ′ is a ZFS of G. Thus, among numerous
applications, the minimum ZFS problem is significant for
network controllability. The following subsection reviews the
ZFS computation results and presents graphs for which greedy
heuristics can return ZFS of very large sizes.

A. ZFS Computation and Greedy Heuristics

Computing a minimum ZFS and ζ(G) are NP-hard prob-
lems in general [18]. One of the best-known algorithms to
compute ζ(G) (and minimum ZFS) is the wavefront algo-
rithm [22], [23]. It is also shown in [23, Theorem 5] that
in the worst case, the wavefront algorithm is the same as
enumerating all possible subsets of vertices. Other competi-
tive approaches based on integer programming, satisfiability
(SAT)-based models, and branch-and-bound techniques have
also been presented, whose performances rely on various graph
characteristics such as the existence of certain subgraphs,
density, and other structural constraints [23]–[26]. Though
these methods are exact, they are feasible only for small graphs
due to their significant time complexities. Thus, there is a need
to design more practical heuristics that return small ZFS.

We can utilize a simple greedy approach to iteratively select
a ZFS [24]. The main idea is that in each iteration, change the

color of a white node to black to maximize the size of the
derived set. Continue this process until a ZFS is obtained. As
a final step, remove redundant nodes in a ZFS to achieve a
minimal ZFS.

Algorithm 1: Greedy Heuristic for ZFS

1 : given: G
2 : initialization: Z = ∅.
3 : while |der(Z)| < n
4 : v∗ = argmaxvi∈V \Z der(Z ∪ {vi})

(ties are broken arbitrarily.)
5 : Z = Z ∪ {v∗}
6 : end while

--------- removing redundancies -------
7 : for all vi ∈ Z
8 : if |der(Z \ {vi})| = n
9 : Z = Z \ {vi}
10 : end if
11 : end for
12 : return Z

The simple greedy solution (lines 1–6) above could contain
redundant nodes, and as a result, the ZFS returned might not
be minimal. Therefore, we improve the solution by removing
the redundant nodes (lines 7–11). For computation time, we
note that for a given set of leader nodes, the derived set can be
computed in O(n+m) time, where n and m are the numbers
of nodes and edges in G, respectively [23, Proposition 1].
Also, in each (while) iteration, the derived set is computed
O(n) times. Finally, the derived set increases by at least one
in each (while) iteration. As a result, the time complexity of
the greedy heuristic is O(n2(n + m)). The greedy heuristic
generally performs well; however, we can construct instances
for which the greedy solution performs poorly in the worst
case. Proposition 3.1 presents such instances.

Proposition 3.1. Let Zgr(G) denotes the ZFS returned
by the greedy heuristic. Then, there are graphs for which
|Zgr(G)|/ζ(G) can be arbitrarily large.

Proof. Consider G = (X∪Y,E), where X and Y are distinct
sets of n and m ≤ n nodes, respectively. Nodes in X induce
a path < x1, x2, · · · , xn >, and similarly, nodes in Y induce
a path < y1, y2, · · · , ym >. Moreover, each node in X is
adjacent to all the nodes in Y . Figure 2 illustrates the graph.
It is easy to verify that Y ∪{x1} is a ZFS; thus, ζ(G) ≤ m+1.
Similarly, X∪{y1} is a ZFS obtained by the greedy heuristic.
To see this, consider all nodes to be white initially. Making
any node black would increase the size of the derived set by
one. So, select x1 to be black. In the next iteration, changing
any white node to black will again increase the size of the
derived set by one. So, include x2 in the solution. This trend
continues for the first n iterations, thus, making all nodes in
X black. In the (n+ 1)th iteration, changing the color of y1
to black will change the colors of all the remaining nodes
to black due to the zero-forcing process. Thus, Zgr(G) =
X ∪ {y1} and |Zgr(G)| = n + 1. Since we can choose n to
be arbitrarily large, n+1

m+1 can also be arbitrarily large, which
proves the desired claim.
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Fig. 2: A graph G with |Zgr|
ζ = n+1
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IV. OPTIMAL ZFS IN TREES AND CLIQUE CHAINS

This section studies the minimum ZFS problem on two im-
portant graph families, trees and clique chains. Trees represent
the sparse connected graphs, while clique chains belong to a
generally dense family of graphs. For both of these extreme
families, we provide algorithms to compute ZFS optimally.
Here, we use the word “optimal” to mean two things: the
ZFS returned is the smallest possible, and the algorithms are
asymptotically the most efficient in computational complexity.

A. ZFS Tree Algorithms

A tree is an acyclic-connected graph and always contains
leaf nodes. Since a leaf node has only one neighbor, it can
immediately force its only white neighbor if the leaf node is
included in a ZFS. This observation gives an easy scheme to
select a ZFS in trees: a ZFS consists of all leaf nodes in a
tree. The set of all leaf nodes is indeed a ZFS because leaf
nodes can force their only neighbors, the predecessors of the
leaf nodes, which in turn can force their predecessors until all
nodes in the tree are colored black. This is an efficient scheme
since all leaf nodes in a tree can be computed in linear time.
However, if we run this algorithm on a path graph, we will
select both end nodes of a path as a ZFS, while only one
end node suffices. Therefore, the ZFS returned is not optimal.
Finally, we note that the ZFS returned by this scheme can be
significantly worse than the optimal solution.

Remark 4.1. Let Zℓ(T ) be a ZFS of a tree consisting of
leaf nodes. Then, there exist trees whose zero forcing number
is almost half of |Zℓ(T )|. For instance, consider the tree in
Figure 3. A root node u is adjacent to n nodes, each of which
is adjacent to a pair of leaf nodes. There are 2n leaf nodes. A
minimum ZFS consists of node u and n leaf nodes, as shown in
Figure 3. As a result, ζ(T ) = n+1 compared to |Zℓ(T )| = 2n.

· · ·

u

︸ ︷︷ ︸
2n leaf nodes

Fig. 3: A minimum ZFS (dark colored nodes) consists of root
node u and n leaf nodes.

ZFS of tree graphs is also equivalent to another well-known
graph parameter: path cover number [28]. Some previous

works report algorithms to compute the path cover number,
and hence, the zero forcing number of trees [28], [29].
However, these algorithms are discussed primarily from the
existence perspective without the complexity analysis and
implementation details. In the following, we present a simple
linear-time algorithm to compute a minimum ZFS in trees.
Though our results are applied to tree graphs here, they may
also help in improving the performance of algorithms for
general graphs by reducing the input graph size. We first show
that a path of length two can be contracted to an edge without
increasing the zero forcing number of the graph.

Lemma 4.2. Let G = (V,E) be a graph, and let u, v be two
non-adjacent nodes with a path of length two < u,w, v >,
and deg(w) = 2. Let H = (V ′, E′) be another graph, where

V ′ = V \ {w}, E′ = (E \ {(u,w), (w, v)}) ∪ {(u, v)},

i.e., H is constructed from G by replacing the two length path
< u,w, v > with an edge (u, v). Then, ζ(G) ≥ ζ(H).

Proof. Let X be a ZFS of G. If w /∈ X , then we claim that
X is also a ZFS of H . During the zero forcing process in
G, at least one of u, v, is colored black when w is the only
white neighbor of that node. So, either u forces w, which
in turn forces v, or v forces w and w in turn may force u.
Clearly, for the same zero forcing process in H , instead of
w, the node v will be able to force u, or the node u will be
able to force v. The remaining zero forcing process evolves
as in G. Therefore, in this case, X is also a ZFS of H . On
the other hand, if w ∈ X , then at most one of u, v can be in
the ZFS as anyone of them along with node w can color the
third node black during the zero forcing process. If both these
nodes are not in X , then during the zero forcing process, w
can not color any node black on its own until one of them
(i.e., u or v) is forced black by some other node. One of the
u, v must be colored black by one of their other neighbors, and
then w can color the remaining white neighbor black. Assume
without loss of generality that u is colored first, and w then
colors v, then (X \ {w}) ∪ {v} is a ZFS in H with coloring
of w skipped. However, if u ∈ X , then v is the only white
neighbor of w that can be colored black in the first step of the
zero forcing process. In this case, (X \ {w}) ∪ {v} is a ZFS
of H and zero forcing process of G can be replicated in H
from the second step onwards as u, v are both colored black
before the start of the process. Therefore, ζ(G) ≥ ζ(H).

Remark 4.3. Given the conditions of Lemma 4.2, in general,
it is not true that ζ(G) = ζ(H). In other words, the degree
two vertices can not be collapsed in general without affecting
the zero forcing number. To claim that, we need slightly more
strict conditions as outlined below.

In the following, we show that in a particular case, when
one of the nodes on a path of length two is a leaf, the path
can be contracted to an edge and the zero forcing number will
not change.

Lemma 4.4 (Collapsing Lemma). Let < u,w, v > be a path
in a graph G = (V,E), with deg(w) = 2,deg(v) = 1. Let
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H = (V ′, E′) be an other graph, where

V ′ = V \ {w}, E′ = (E \ {(u,w), (w, v)}) ∪ {(u, v)},

i.e., H is constructed from G by replacing the two length path
< u,w, v > with an edge (u, v). Then, ζ(G) = ζ(H).

Proof. It follows from Lemma 4.2 that ζ(G) ≥ ζ(H), so we
only need to show that ζ(G) ≤ ζ(H). We show a slightly
stronger statement that the ZFS of H is also a ZFS of G.
Let Y be a ZFS of H . If v ∈ Y , then Y is a ZFS of G as
well because the coloring process in H can be started at v,
which colors its only neighbor u, and the process continues
as required. The coloring process in G can be started by v
coloring its only neighbor w, which in turn colors its only
white neighbor u, and the process continues as it does in H .
If v /∈ Y , then at some point during the zero forcing process
of H , u is colored black while v is its only white neighbor.
This means that if we follow the zero forcing process of H
exactly on G, u would be colored black while w is its only
white neighbor. At that point, w would also be colored black.
Since u is already black, v is the only white neighbor of w;
thus, it can also be colored black. The rest of the coloring
process proceeds as it does in H . We conclude that any ZFS
of H is a ZFS of G. This completes the proof.

Definition 4.1. A pendant Sk = (Vs, Es) in a graph G =
(V,E) is an induced star graph, where Vs = {a, b1, · · · , bk}
and Es = {(a, bi)| 1 ≤ i ≤ k} with the added condition that
all bi’s are leaf nodes in G.

We observe that most of the nodes of any arbitrary pendant
of a graph must be included in a ZFS.

Lemma 4.5. Let Sk be a pendant in graph G with nodes
a, b1, b2, . . . , bk, k > 1, where bi are the leaf nodes. At least
k − 1 of the leaf nodes of Sk must be in a ZFS of G.

Proof. We prove the claim by contradiction. Assume that bi, bj
are a pair of leaf nodes of Sk that are not in a ZFS X of G.
Since a is the only neighbor of these white-colored nodes, a
must be colored black during the zero forcing process while
both of them are still white. However, there are two white
neighbors of a; therefore, a can not color either of them black,
and they will remain white at the end of the coloring process.
This contradicts the assumption that X is a ZFS. We conclude
that at least k − 1 leaf nodes of Sk are in any ZFS of G.

Based on Lemma 4.5, we outline a scheme to reduce the
size of a graph by removing a pendant from a graph while
computing its effect on the zero forcing number.

Lemma 4.6 (Pruning Lemma). Let Sk be a pendant in graph
G with nodes a, b1, b2, . . . , bk, k > 1 where bi are the leaf
nodes. Let H be constructed from G by removing the nodes
a, b1, b2, . . . , bk of G. Then, ζ(G) = ζ(H) + k − 1

Proof. (i) ζ(H) ≤ ζ(G)− (k−1): From Lemma 4.5, we may
assume without the loss of generality that b1, b2, . . . , bk−1 are
in a ZFS, X , of G. If bk is not in X , then all nodes in N(a)\Sk

must be colored black before bk. Further, all of these nodes are
colored black due to their neighbors that are not in Sk (recall

that while a may itself be colored black at this time but it may
not force any white nodes in N(a)\Sk because it has another
white neighbor in bk). Therefore, X \ {b1, b2, . . . , bk−1} is a
ZFS of G \ Sk, which is H . On the other hand, if bk is in
X , then a may color a node black when there is only one
white node left in N(a) \ Sk. Let bk+1 be the last node that
is colored black in N(a), then (X \ {b1, b2, . . . bk})∪ {bk+1}
is a ZFS of H of the required size.
(ii) ζ(H) ≥ ζ(G)−(k−1): Let Y be the ZFS of H . We claim
that Y ∪ {b1, b2, . . . , bk−1} is a ZFS of G. Let us color node
a black in the first step of the coloring process of G. Now,
using nodes in Y , we can color all other nodes black except
bk. Once all other neighbors of a are colored black, bk can be
colored black in the last step. Thus, Y ∪ {b1, b2, . . . , bk−1} is
a ZFS of G. This concludes the proof.

Next, using the above results, we present an optimal algo-
rithm to compute the minimum ZFS of a tree.

Algorithm: We begin by constructing a Breadth-First
Search (BFS) Tree and the corresponding Queue of nodes
in the input tree graph starting from any arbitrary root node.
Then, we iterate back from the end of the BFS Queue (recall
that the last node in this Queue represents a node at the farthest
distance from the root). Next, we check if the parent node in
the BFS Tree of the last node v has any children other than the
node v. If the parent node of v, denoted by π(v), has no other
descendants, and π(v) is not a leaf, we have a < u,w, v >
path that meets the requirements of Lemma 4.4. Therefore,
we remove the last node from Queue and repeat this step. If
π(v) is also a leaf node then π(v) can force v and we can
remove the last node v from the Queue. Otherwise, we add
all descendants of π(v) except v to our ZFS, and remove the
parent π(v) and all its descendants from the BFS Tree and the
Queue. We repeat this until the Queue is empty or contains a
single node. If the Queue has a single node, we add this node
to our ZFS; otherwise, we do not add anything. At this point,
we return a ZFS. These steps are summarized in Algorithm 2.

Algorithm 2: ZFS for Tree Graph

1 : given: G
2 : initialization: Z = ∅.
3 : T = BFS Tree(G), Q = BFS Queue(G).
4 : while |Q| > 1
5 : v = last node in Q
6 : π(v) = parent of v, Cπ(v) =Children of π(v)
7 : Z = Z ∪ (Cπ(v) \ {v})
8 : Remove Cπ(v) from Q,T
7 : if Cπ(v) ⊃ {v}
8 : Remove π(v) from Q,T
7 : end if
9 : end while
10 : return Z

Theorem 4.7. Algorithm 2 computes a minimum ZFS in Tree
graphs in (optimal) linear time.

Proof. The correctness of the algorithm follows directly from
Lemma 4.6. We construct a BFS Tree and Queue in time
O(|V |). We iterate over the nodes in the Queue and in each
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iteration spend constant time. Since the Queue contains |V |
nodes, the total run time of the algorithm is O(|V |).

B. Optimal ZFS in Clique Chains

Next, we consider the minimum ZFS problem in a class of
graphs called clique chains, which are widely studied and are
significant due to their robustness properties. For instance, for
a given number of nodes n and diameter D, graphs with the
maximum robustness (measured by the algebraic connectivity
or the Kirchhoff index of the graph) are necessarily clique
chains [30], [31]. Similarly, these graphs also have other
extremal properties [30]–[32]. We define clique chains below.

Definition 4.2. For a given a set of positive inte-
gers {n1, n2, · · · , nD+1}, a clique chain, denoted by
C(n1, · · · , nD+1) is a graph obtained from a path graph with
D + 1 nodes as following: Replace the ith node in the path
graph with a clique of ni nodes,1 i.e. Kni

. Then, make nodes
in distinct cliques adjacent if and only if the corresponding
nodes in the path graph are adjacent.

Note that the diameter of C(n1, · · · , nD+1) is D. Figure 4
shows an example of a clique chain C(2, 3, 3, 2). We present
the zero forcing number and optimal ZFS in clique chains.

Proposition 4.8. Let C(n1, · · · , nD+1) be a clique chain
with n =

∑D+1
i=1 ni nodes and D diameter. Let X be a set

consisting of one node (arbitrarily chosen) from each clique
Kni

, where i ∈ {2, · · · , D + 1}. Then,

ζ(C(n1, · · · , nD+1)) = n−D,

Moreover, an optimal ZFS consists of all nodes in
C(n1, · · · , nD+1) excluding the nodes in X .

Proof. (Necessity) Assume ζ < n − D, then one of the
following must be true: (1) there is some Kni

with at least
two white nodes, or (2) each Kni has at least one white
node. In (1), since all nodes in a clique Kni have the same
neighborhood, the two white nodes in the same clique can not
be forced by any black node. In case (2), consider a white node
from each Kni

. Note that such white nodes induce a path, say
P , of length D. Also, observe that each of the remaining nodes
in the clique chain is adjacent to at least two nodes in P . Thus,
no black node can force any of the white nodes in P . Hence,
the number of nodes in a ZFS must be at least n−D.

(Sufficiency) In the given solution set, all nodes in Kn1

are black (included in ZFS) and there is exactly one white
node in Kni , ∀i ∈ {2, · · · , D+1}. Thus, the only white node
in Kn2

becomes black (gets infected) by some node in Kn1
,

which means all nodes in Kn2
become black. Subsequently,

the only white node in each of the Kni
becomes black due to

some node in Kni−1 (whose all nodes have already become
black). Thus, all nodes in the clique chain become black, and
the given set containing n−D nodes is indeed a ZFS.

Note that Proposition 4.8 also provides a way to construct
an optimal ZFS in clique chains, as Figure 4 illustrates.

1A clique is a subset of nodes in a graph such that every two nodes in a
clique are pairwise-adjacent.

Kn1 Kn2 Kn3 Kn4

Fig. 4: A clique chain C(n1, n2, n3, n4), where n1 = n4 = 2,
and n2 = n3 = 3. Here, n = 10 and diameter D = 3. Nodes
in an optimal ZFS are colored gray.

V. ZFS HEURISTICS USING POTENTIAL GAMES

We present a game-theoretic approach for finding an optimal
ZFS in a distributed manner on arbitrary graphs. Given a graph
G = (V,E) with n nodes, V = {v1, . . . , vn}, let a ∈ {0, 1}n
be an indicator of the node colors. Accordingly, ai = 1 if vi
is black, and ai = 0 if vi is white. Next, we define a function,
ϕ(a), whose maximization is equivalent to finding an optimal
ZFS as we will show in Lemma 5.1:

ϕ(a) =
1

n

(
|der(a)| −

n∑
i=1

ai

)
, (6)

which is equal to 1/n times the size of the derived set, der(a),
minus the number of black nodes when the colors are assigned
as per a. We use der(a) to denote the derived set of black
nodes indicated by a, and the scaling term 1/n is used for
keeping ϕ(a) finite regardless of the network size.

Lemma 5.1. Let G = (V,E) be a connected graph and let
a ∈ {0, 1}n represent the node colors, i.e., ai = 1 if vi is
black. A vector a ∈ {0, 1}n is a maximizer of ϕ in (6), i.e.,
ϕ(a) ≥ ϕ(a′),∀a′ ∈ {0, 1}n, if and only if a indicates an
optimal ZFS.

Proof. (⇒ :) Let a ∈ {0, 1}n be a maximizer of ϕ in (6).
We will first show that a necessarily indicates a ZFS, i.e.,
der(a) = V . For the sake of contradiction, suppose that this
is not true and der(a) ⊂ V . Then, pick any vj /∈ der(a) and
define a new vector a′ ∈ {0, 1}n as follows: a′i = 1 if ai = 1
or vi /∈ der(a) ∪ {vj}, and a′i = 0 otherwise. In other words,
the black nodes under a′ comprise of all the black nodes under
a and all the nodes other than vj that are not included in the
derived set der(a). Accordingly, the resulting increase in the
number of black nodes is

n∑
i=1

a′i −
n∑

i=1

ai = n− |der(a)| − 1. (7)

Since every black node under a is also black under a′, we have
der(a) ⊆ der(a′). Furthermore, since every node other than
vj that are not included in der(a) are also selected as black,
then either der(a′) = V or der(a′) = V \ {vj}. However,
der(a′) = V \ {vj} is not possible since it implies that the
zero forcing process ends with a single white node vj , which
is guaranteed to be the only white neighbor of a black node
in the end since G is connected. Such a node vj must become
infected. Accordingly, using (6) and |der(a′)| = n, we obtain

ϕ(a′)− ϕ(a) =
1

n

(
n− |der(a)| −

n∑
i=1

a′i +

n∑
i=1

ai

)
. (8)
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Note that (7) and (8) together imply ϕ(a′)−ϕ(a) = 1/n > 0,
which contradicts with a being a maximizer of ϕ(a). Hence,
a must indicate a ZFS.

Next, we will show that a must indicate an optimal ZFS,
i.e., a ZFS with the fewest possible number of nodes. For
the sake of contradiction, suppose that a does not correspond
to an optimal ZFS. Then, there exists a′ ∈ {0, 1}n which
corresponds to a ZFS and has fewer black nodes compared to
a. Accordingly, |der(a)| = |der(a′)| and

∑n
i=1 a

′
i <

∑n
i=1 ai,

which imply ϕ(a′) > ϕ(a). Hence, once again we obtain a
contradiction with a being a maximizer of ϕ. Consequently,
any maximizer of ϕ is an optimal ZFS.

(⇐:) If any two vectors, a and a′, both indicate optimal
ZF sets, then ϕ(a) = ϕ(a′) for ϕ in (6) since |der(a)| =
|der(a′)| = n and, by definition, both a and a′ have
the minimum number of leaders among the ZF sets (hence∑n

i=1 a
′
i =

∑n
i=1 ai). Since every optimal ZFS have equal ϕ

and we have already shown that any maximizer of ϕ(a) is
necessarily an optimal ZFS, we conclude that every optimal
ZFS is a maximizer of ϕ.

Based on Lemma 5.1, an optimal ZFS can be obtained by
searching for a maximizer of ϕ(a) in (6). Such a maximization
can be achieved in a distributed manner by using a game-
theoretic formulation (e.g., [33]). More specifically, the prob-
lem of finding an optimal ZFS can be formulated as a potential
game with the potential function ϕ(a) and a learning algorithm
such as log-linear learning [34] can be used to find an optimal
a. Before presenting such a game-theoretic approach, we first
provide some preliminaries.

A. Game Theory Basics

A finite strategic game Γ = (I, A, U) has three components:
(1) a set of players (agents) I = {1, 2, . . . , n}, (2) an action
space A = A1×A2×...×An, where each Ai is the action set of
player i, and (3) a set of utility functions U = U1, U2, . . . , Un,
where each Ui : A → R is a mapping from the action space
to real numbers. For any action profile a ∈ A, we use a−i to
denote the actions of players other than i. Using this notation,
an action profile a can also be represented as a = (ai, a−i).

A class of games that is widely utilized in solving coop-
erative multi-agent problems is the potential games. A game
is called a potential game if there exists a potential function,
ϕ : A → R, such that the change of a player’s utility resulting
from its unilateral deviation from an action profile equals the
resulting change in ϕ. More precisely, for each player i, for
every ai, a′i ∈ Ai, and for all a−i ∈ A−i,

Ui (a
′
i, a−i)− Ui (ai, a−i) = ϕ (a′i, a−i)− ϕ (ai, a−i) . (9)

In game-theoretic learning, the agents start with arbitrary
initial actions and follow a learning algorithm to update
their actions based on past observations in a repetitive play
of the game. For potential games, noisy best-response type
algorithms such as log-linear learning (LLL) or Metropolis
learning (e.g., [34]–[36]) can be used to have the agents
spend most of their time at the global maximizers of ϕ(a).
More specifically, these algorithms induce an irreducible and

aperiodic Markov chain over the action space A such that the
limiting distribution, µϵ, satisfies

lim
ϵ→0+

µϵ(a) > 0 ⇐⇒ ϕ(a) ≥ ϕ(a′),∀a′ ∈ A, (10)

where ϵ > 0 is the noise parameter of the algorithm.

B. ZFS Game

We formulate the problem of finding an optimal ZFS as a
game, ΓZFS = (I, A, U), where the set of players is the set
of nodes, i.e., I = V , and the action space is A = {0, 1}n.
Accordingly, the action of each agent vi is a binary variable
indicating its initial color in the zero forcing process, i.e.,
black (ai = 1) or white (ai = 0). Finally, we need to define
the utility functions Ui(a) such that ΓZFS = (I, A, U) is a
potential game whose potential function is ϕ(a) in (6). While
there are also other methods to design such utility functions
(e.g., wonderful life utility [37]), one choice is to set all the
utilities equal to the global objective, i.e.,

Ui(a) =
1

n

(
|der(a)| −

n∑
i=1

ai

)
, ∀i ∈ I. (11)

One can easily verify that the resulting game, ΓZFS , is a
potential game with the potential function ϕ(a) in (6), i.e.,
the utilities in (11) satisfy (9). Accordingly, an optimal ZFS
can be found by employing a noisy best-response algorithm
such as LLL in a repetitive play of the resulting game, ΓZFS .

Theorem 5.2. Let ΓZFS be the ZFS game on a connected
G = (V,E). Then, log-linear learning (LLL) induces a
Markov chain over the action space A = {0, 1}n whose
limiting distribution, µϵ, satisfies

lim
ϵ→0+

µϵ(a) > 0 ⇐⇒ a corresponds to an optimal ZFS,
(12)

where ϵ > 0 is the noise parameter of LLL.

Proof. Since ΓZFS is a potential game with the potential
function ϕ(a) in (6), LLL is known to induce a Markov chain
over the action space A = {0, 1}n whose limiting distribution,
µϵ, satisfies (10) [34]. Due to Lemma 5.1, the maximizers of
ϕ(a) in (6) are the optimal ZF sets. Consequently, we conclude
that limϵ→0+ µϵ(a) > 0 if and only if a corresponds to an
optimal ZFS.

In light of Theorem 5.2, when a is updated via LLL with
a sufficiently small noise parameter ϵ, it indicates an optimal
ZFS with a very high probability as the number of iterations
goes to infinity. However, since there is only a finite amount
of time to search for an optimal ZFS in real-life problems,
we propose an LLL-based heuristic that has three steps: 1)
following LLL to update a for a finite number of iterations,
2) if the resulting a does not indicate a ZFS, then switching
all the nodes in V \der(a) to black (a becomes a ZFS), and 3)
removing the redundant black nodes in a. In our next result,
we show that this heuristic returns an optimal ZFS with an
arbitrarily high probability for any connected graph G when
the algorithm parameters, k̄ and ϵ, are selected properly. Such
a performance guarantee is the main advantage of this heuristic
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when compared with the greedy heuristic in Algorithm 1,
which may produce arbitrarily poor results for some graphs
as we have shown in Proposition 3.1.

Algorithm 3: Log-Linear Learning (LLL) Heuristic for ZFS

1 : given: G = (V,E), #iterations k̄ (large), noise ϵ > 0 (small)
2 : initialization: arbitrary a ∈ {0, 1}|V |

----- running LLL for k̄ iterations ----
3 : for k = 1 to k̄
4 : Pick a random node vi.
5 : Randomize ai based on the utility function in (11):

Pr[ai = a′
i] ∼ exp

(
Ui(a

′
i, a−i)

ϵ

)
, ∀a′

i ∈ {0, 1}.

6 : end for
7 : Z = {vi ∈ V | ai = 1},

-- adding leaders if Z is not a ZFS --
8 : Z = Z ∪ (V \ der(Z)),

--------- removing redundancies -------
9 : for all vi ∈ Z
10 : if |der(Z \ {vi})| = n
11 : Z = Z \ {vi}
12 : end if
13 : end for
14 : return Z

Corollary 5.3. For any connected G = (V,E), Algorithm 3
always returns a ZFS. Furthermore, let Pr[Z is optimal; k̄, ϵ]
be the probability that the set of nodes Z ⊆ V returned by
Algorithm 3 is an optimal ZFS for a specific choice of the algo-
rithm parameters k̄ (number of iterations) and ϵ (noise). Then,
Pr[Z is optimal; k̄, ϵ] approaches 1 as ϵ becomes smaller and
k̄ gets larger, i.e.,

lim
ϵ→0+,k̄→∞

Pr[Z is optimal; k̄, ϵ] = 1. (13)

Proof. We will first prove that Algorithm 3 always returns a
ZFS. To this end, consider any Z ⊆ V that may be obtained
at line 7 of Algorithm 3. In line 8, adding all the nodes that
remain white under the zero-forcing process when staring with
Z as the initial set of black nodes, i.e., V \der(Z), to Z clearly
results in a ZFS. In the final recursive part of the algorithm
(lines 9-13), a node vi is removed from Z only if the the Z\vi
is also a ZFS. Hence, the final Z returned by Algorithm 3 is
guaranteed to be a ZFS. Next, we prove that this output, Z,
also satisfies (13).

Algorithm 3 starts with an arbitrary a ∈ A = {0, 1}n, which
is then updated by following log-linear learning (LLL) for k̄
iterations (lines 3-6). In light of Theorem 5.2, this part induces
induces a Markov chain over the action space A = {0, 1}n
whose limiting distribution, µϵ, satisfies (12). Note that, as k̄
goes to infinity, the probability that these iterations result in a
specific a ∈ A is equal to µϵ(a). Accordingly, for the resulting
Z in line 7 of Algorithm 3, we obtain

lim
ϵ→0+,k̄→∞

Pr[Z is optimal; k̄, ϵ] = 1. (14)

When Z computed in line 7 is an optimal ZFS, the remainder
of Algorithm 3 does not make any further modifications to
Z. Hence, we conclude that the set of nodes Z returned by
Algorithm 3 satisfies (13).

Remark 5.4. Variants of Algorithm 3 can be obtained by
replacing LLL (lines 3-6) with any other noisy best-response
type algorithm (e.g., Metropolis learning) that induces the
same limiting behavior in (10). While the resulting algorithms
may have some differences in their transient behavior (e.g.,
[36]), they would all yield the same performance guarantee
in Corollary 5.3.

Our potential game-based solution (Algorithm 3) is similar
to [38] in that both methods are based on inducing a Markov
chain whose limiting distribution accumulates over the set of
states corresponding to optimal ZFS as the noise/temperature
parameter diminishes. However, the two methods use different
cost/objective and transition probability functions. Further-
more, our game theoretic approach is a distributed method that
relies on agents/nodes randomly updating their own variables
(their initial color in the zero forcing process).

C. Numerical Evaluation

In this section, we compare the LLL-based ZFS solution
with the greedy solution. First, we compute the ZFS of
graphs discussed in Proposition 3.1 using LLL. These are the
graphs for which the greedy heuristic performed poorly. In our
experiments, the LLL solution returned a ZFS, whose size is at
most one more than the minimum ZFS. For instance, consider
G = (X ∪ Y,E) (as in Proposition 3.1), where |X| = 40 and
|Y | = 10, the greedy heuristic returned ZFS with 41 nodes,
whereas LLL returned ZFS with 11 nodes, which is optimal.
Figure 5 illustrates the potential function as a function of the
number of iterations in LLL for the above example. The value
of ϵ used is 0.004. As shown in Figure 5, after about 250
iterations the potential function equals 0.78 most of the time,
which is the maximum possible value of (6) for this example.

Fig. 5: An example of potential function as a function of
number of iterations in LLL.

Next, we consider Erdös-Rényi (ER) random graphs with
n = 50 nodes. Figure 6(a) plots the size of ZFS returned
by greedy and LLL solutions as functions of p, where p is
the probability of having an edge between any two nodes
in the graph. Each point on the plots is an average of 25
randomly generated instances. In LLL solution, ϵ = 0.005
and the 2000 iterations are performed in each instance. We
observe that LLL produces ZFS of smaller size compared to
the greedy solution. Similarly, in Figure 6(b), the same results
are plotted for the ∆-disk proximity graphs with n = 50
nodes. In such a graph, nodes u and v are adjacent whenever
the Euclidean distance between them is at most ∆. In our
simulation, nodes are randomly placed in a planar region of
area 15×15 [unit length]2. Again, each point on the plots is an
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average of 25 randomly generated instances. For LLL, we used
ϵ = 0.008 and 2000 iterations in each instance. Again, the LLL
solution outperforms the greedy solution. We note that greedy
heuristics typically provide ZFS of small sizes. However, as
illustrated in the plots, LLL based solution can outperform
greedy when ϵ is chosen properly and the algorithm runs for
a sufficient number of iterations.

(a) ER graphs (b) ∆-disk graphs

Fig. 6: Comparison of the greedy and LLL based heuristics
for ZFS in (a) ER graphs and (b) ∆-disk graphs.

VI. EDGE AUGMENTATION TO REDUCE ZFS

In this section, we study a design problem: how to add edges
in a graph to reduce the size of the zero forcing number of
the graph. To the best of our knowledge, edge augmentation
to reduce the zero forcing number of a graph has not been
studied. Several factors motivate this issue.

First, it is plausible that adding edges in a graph increases
the zero forcing number of the resulting graph (as in a ZF
process, a colored node can force another node if and only if
there is a unique white node in its neighborhood). Additionally,
it is typically observed that the zero forcing number of dense
graphs tend to be higher. For instance, Figure 7 plots the ZF
number as a function of p in Erdös-Rényi (ER) random graphs
Gn,p, and as a function of m in Barabási-Albert (BA) graphs,
where m is the number of edges added to the graph with
each new node addition. The considered graphs consist of 100
nodes; each point on the plots averages 25 randomly generated
instances. Thus, it is compelling to identify missing edges in
a graph whose addition does not increase but reduces the zero
forcing number of the graph (given that such edges exist).

(a) ER (b) BA

Fig. 7: ζ(G) in ER and BA random graphs of 100 nodes.

Second, adding edges improves the network’s robustness to
faults and failures [31]. However, edge augmentation might
deteriorate the network controllability since adding edges
might increase the zero forcing number of the resulting graph,
which describes the minimum number of input nodes for

network controllability. Consequently, network controllability
and robustness properties could be conflicting at times [32],
[39]. Thus, identifying missing edges whose addition not only
avoids increasing the zero forcing number but reduces it is
significant in co-optimizing the network robustness and con-
trollability [40]–[42]. We begin edge augmentation to reduce
the zero forcing number by some useful notions below.

Definition 6.1. [43] Let Z be a ZFS of graph G = (V,E), we
define the following notions (and illustrate them in Figure 8):

• A chronological list of forces is a list of forces recorded
in the order in which they are performed to construct the
derived set.

• A forcing chain (for a given chronological list of forces) is
a sequence of nodes [v1, v2, · · · , vk] such that vi 7→ vi+1,
for i = 1, 2, · · · , k − 1.

• A maximal forcing chain is a forcing chain that is not a
proper subsequence of another zero forcing chain.

• A terminal set of Z, denoted by R(Z), is the set of
last vertices of the maximal zero forcing chains of a
chronological list of forces. A terminal node, is a node
in a terminal set R(Z).

v1

v2 v3

v4 v5

v6 v7v6

v6 7→ v2 7→ v4 7→ v5

v1 7→ v3 7→ v7

Fig. 8: A ZFS is Z = {v1, v6}. Two maximal forcing chains
are [v6, v2, v4, v5] and [v1, v3, v7]. The terminal set of Z is
R(Z) = {v5, v7}, which is also a ZFS.

An important observation regarding R(Z) is as follows.

Theorem 6.1. [43] If Z is a ZFS of G, then so is any terminal
set R(Z). Moreover, |Z| = |R(Z)|.

Next, we illustrate below that it is possible to add edges to
a graph G to obtain a graph G′ such that ζ(G′) < ζ(G).

Examples: Consider G in Figure 9(a), where black nodes
constitute a ZFS of G, and ζ(G) = 8. By adding four edges
to G, we obtain G′, as shown in Figure 9(b) with ζ(G′) = 4.
Thus, adding four edges reduced the size of ZFS by four.

We can also generalize this example as follows: Let
G1, · · · , Gk be a set of graphs, and each Gi has a minimum
ZFS Zi, and ZF number ζ(Gi) = ζi. Without loss of
generality, assume ζ1 ≥ ζ2 ≥ · · · ≥ ζk. Let G be a graph
obtained by adjoining a new vertex x to each Gi through some
vertex in R(Zi), for all i. Here, R(Zi) is a reversal of Zi as
defined above. An example is illustrated in Figure 9(a). The
ZF number of G is ζ(G) =

(∑k
i=1 ζi

)
− 1. Now, there exists

at least
(∑k

i=2 ζi

)
− 2 edges (missing in G) such that each

of those edges, if added to G, will reduce the size of its ZFS
by one. In other words, by adding

(∑k
i=2 ζi

)
− 2 edges to

G, we can obtain G′ such that ζ(G′) is at most ζ1 + 1. In
Figure 9(a), ζ(G) = 8 (as for each Gi, ζi = 3). By adding
four missing edges, we get G′ in Figure 9(b) with ζ(G′) = 4.
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G1

G2 G3

x

(a) G (b) G′

Fig. 9: (a) Colored nodes indicate a ZFS of G with ζ(G) = 8.
(b) Adding four (red) edges gives G′ with ζ(G′) = 4.

Next, we provide a condition to identify missing edges in a
graph whose addition reduces the zero forcing number of the
resulting graph. Figure 10 illustrates the result.

Theorem 6.2. Let G be a graph with a minimal ZFS Z. If
there exists a Z ′ ⊂ Z, with a derived set H containing a
terminal vertex with all neighbors colored black, then there is
a nonempty set of edges E′ such that the graph G′ = (V,E ∪
E′) has a ZFS strictly smaller than Z.

Proof. Let G,H,Z, Z ′ be as in the statement of the theorem.
Let x ∈ H be a terminal vertex for a zero forcing process with
input nodes Z ′, and x has no white neighbors. As Z ′ is a strict
subset of Z, there must be at least one input node y ∈ Z \Z ′.
Consider the graph G′ = (V,E ∪ E′), where E′ = {(x, y)}.
It is enough to show that Z \ {y} is a ZFS of G′.

We start the zero forcing process with the nodes in Z ′. At
some point in this process, all nodes in H including x will
be colored black. The edge (x, y) does not affect this zero
forcing process on G′ because node y is not in H and the
node x is a terminal node of zero forcing process, i.e., it is
not used to force any other node in the graph G′. Due to the
minimality of ZFS Z, we know that y /∈ H and should be
colored white at this point. Since x was a terminal node with
black neighbors in the corresponding zero forcing process in
G, y is the only white neighbor of black colored node x in G′

due to the addition of edge (x, y). According to the rules of
zero forcing process, x can color the only white neighbor y
now. At this point, the black colored nodes, Z ′′, in G′ include
H ∪Z \Z ′ which include all nodes in Z. The set Z ′′ is a ZFS
of G because Z ′′ ⊃ Z. Note that for two sets A ⊆ B, the
derived set of B can not be smaller than der(A) because one
can always start the zero forcing with the smaller input set A
and get the same set of black nodes that are in the derived
set der(A). Furthermore, Z ′′ is also a ZFS of G′ because the
added edge (x, y) is now between two already black nodes,
and the addition of edges among input nodes does not affect
the zero forcing process. Thus, Z \ {y} is a ZFS of G′.

Theorem 6.2 implies that we can reduce the size of a ZFS
whenever we can find a terminal node with all black neighbors
in the derived set of some subset of the ZFS (as shown in
Figure 10). In particular, we can repeatedly apply this result
to add multiple edges and reduce the size of ZFS.

Next, we consider the family of k-connected graphs and get
the following result. Figure 11 illustrates the result.

v1

v2 v3

v4

v5

v6

v8

v10

v7

v9

(a) G

v1

v2 v3

v4

v5

v8

v10

v7

v9

v6

(b)

y

x

(c)

v1

v2 v3

v4

v5

v6

v8

v10

v7

v9

(d) G′

Fig. 10: (a) Z(G) = {v1, v2, v7, v9}. (b) Consider Z ′ =
{v1, v7, v9}. (c) The colored nodes constitue the derived set
H of Z ′. Here, x = v6 is a terminal node with all black
neighbors. (d) G′ is obtained by adding an edge between x
and y = v2, and has a smaller ZFS than G.

Proposition 6.3. Let G be a k-connected graph with a mini-
mum vertex cut C and a minimal ZFS Z. Also, let G′ = G\C
be the disconnected graph after removing vertices in C from
G. If there exists a connected component X in G′ with more
than k vertices in (X ∩ Z) ⊂ Z, and X ∩ Z is also a ZFS
of the induced graph on X ∪C, then there exist edges whose
addition to G will strictly decrease the size of ZFS of the
resulting graph.

Proof. Let G,G′, C,X,Z be as in the proposition statement.
As (X ∩Z) is a strict subset of Z, there is at least one y that
is in Z but not in (X ∩Z). As (X ∩Z) is a ZFS of the graph
on X ∪ C, y can not be one of the cut vertices as they can
already be colored black by the nodes in (X ∩Z). Therefore,
there is at least one y ∈ Z \ (X ∪ C) due to the minimality
of ZFS Z. Also, there are exactly |X ∩ Z| terminal nodes of
the zero forcing process on X ∪ C. As |(X ∩ Z)| > |C|, at
least one of those terminal nodes, say x, is in the connected
component X . Note that all neighbors of x are in X ∪ C as
C is a vertex cut of G. We now show that Z \ {y} is ZFS of
G′ = G ∪ {(x, y)}, the graph G with added edge (x, y). We
start the zero forcing process with nodes in (X ∩Z). At some
point in this process, x will be a terminal node with no white
neighbors - recall that all neighbors of x are in X ∪ C that
lies in the derived set of (X ∩Z). It follows that y is the only
white neighbor of x and can be colored black. Therefore all
nodes in Z are colored black. As Z is a ZFS of G, Z ∪ {x}
is a ZFS of G. Further, Z ∪ {x} is also a ZFS of G′ because
the edge (x, y) between two input nodes does not affect the
coloring process. Thus, adding edge (x, y) to G reduces the
size of the ZFS by at least one. This completes the proof.

We note that repeated application of Proposition 6.3 may
potentially increase the density of a graph while reducing the
size of the input nodes. As a result we get the following:

Corollary 6.4. Let G be a graph with a vertex cut C of size
k (in particular but not necessarily when G is k-connected)
and a ZFS Z. Further, let G′ = G \ C be the disconnected
graph after removing vertices in C from G. If there exists a
connected component X in G′ with k + t, t > 0 vertices of
(X ∩ Z), and X ∩ Z is also a ZFS of the induced graph on
X ∪ C; then there exist

(
m
2

)
edges whose addition to G will
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Fig. 11: (a) G is 2-connected. A minimum ZFS is
{v1, v6, v7, v8}. (b) A cut set of G is {v4, v5}. The two
resulting components are C1 and C2. (c) {v6, v7, v8} is a
ZFS of the graph induced by vertices in C2 and the cut set.
(d) Adding edge (red) between v1 and v7 gives G′, which has
a minimum ZFS of three nodes {v6, v7, v8}.

reduce the size of ZFS of the resulting graph by at least m
where m = min(t, |Z \X|).

Proof. As in the proof of Proposition 6.3, if we start the zero
forcing process with nodes in (X ∩ Z), at some point in this
process, there are at least t terminal nodes x1, x2, . . . , xt with
no white neighbors - recall that all neighbors of xi are in
X ∪C that lies in the derived set of (X ∩Z). Similarly, there
are |Z \ X| nodes y1, y2, . . . , y|Z\X| outside X . Therefore,
there are at least m pairs of nodes xi, yj such that adding
edges {(xi, yj) : 1 ≤ i ≤ m, 1 ≤ j ≤ i} to G will reduce the
size of ZFS of the resulting graph by at least m as Z \ {yj :
1 ≤ j ≤ m} is a ZFS of the resulting graph.

Theorem 6.2, Proposition 6.3, and Corollary 6.4 can be used
to design an algorithm to iteratively add edges to a graph to
reduce its ZFS. Intuitively, these results can be used whenever
heterogeneity appears in a network, i.e., there is a non-uniform
distribution of edges, which is often the case in practical
networks. Typically, a denser part of the network requires more
input nodes for control. However, the potential of these input
nodes is somewhat underutilized, and strategically adding extra
edges within the network provides a way to utilize these input
nodes to control the rest of the network. To illustrate this point,
consider a graph consisting of two cliques on 100 nodes each
and connected by a single edge. The size of the minimum ZFS
of the graph is 197. However, we can add ε edges to the graph,

where 98 ≤ ε ≤
(
98

2

)
, such that the resulting graph has a

ZFS of size 99, which is a significant improvement compared
to the ZFS size of the original graph. While this is an extreme
example, we note that our results can exploit even a small
heterogeneity (non-uniformity) in the network density.

VII. CONCLUSION

We studied various aspects of the minimum ZFS problem
in undirected graphs. We provided a linear time algorithm to
solve the problem in trees optimally and also characterized the

minimum ZFS in clique chains. Further, we formulated the
problem as a potential game and utilized log-linear learning
(LLL) to solve the game. Adding edges could improve the
graph’s robustness; however, it could increase the size of
the minimum ZFS. We characterized missing edges in a
graph whose addition would reduce the size of ZFS. In the
future, we will extend these methods to combine graphs by
edge augmentations while exploring the trade-off between the
number of augmented edges and the size of the ZFS of the
combined graph. Another interesting direction to consider is
the extension of results to adversarial settings, i.e., how the
zero forcing process and the zero forcing number change due
to failures/attacks preventing nodes from forcing other nodes.
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[12] A. Y. Yazicioğlu and M. Egerstedt, “Leader selection and network
assembly for controllability of leader-follower networks,” in American
Control Conference, 2013, pp. 3802–3807.

[13] F. Lin, M. Fardad, and M. R. Jovanović, “Algorithms for leader selection
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