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Abstract

Evolutionarily stable strategy (ESS) is an important solution
concept in game theory which has been applied frequently
to biology and even cancer. Finding such a strategy has been
shown to be difficult from a theoretical complexity perspec-
tive. Informally an ESS is a strategy that if followed by the
population cannot be taken over by a mutation strategy that
is initially rare. We present an algorithm for the case where
mutations are restricted to pure strategies. This is the first pos-
itive result for computation of ESS, as all prior results are for
computational hardness.

1 Introduction
While Nash equilibrium has emerged as the standard solu-
tion concept in game theory, it is often criticized as being too
weak: often games contain multiple Nash equilibria (some-
times even infinitely many), and we want to select one that
satisfies other natural properties. For example, one popular
concept that refines Nash equilibrium is evolutionarily stable
strategy (ESS). A mixed strategy in a two-player symmetric
game is an evolutionarily stable strategy if, informally, it is
robust to being overtaken by a mutation strategy. Formally,
mixed strategy x∗ is an ESS if for every mixed strategy x
that differs from x∗, there exists ε0 = ε0(x) > 0 such that,
for all ε ∈ (0, ε0),

(1−ε)u1(x, x∗)+εu1(x, x) < (1−ε)u1(x∗, x∗)+εu1(x∗, x).
(1)

From a biological perspective, we can interpret x∗ as a distri-
bution among “normal” individuals within a population, and
consider a mutation that makes use of strategy x, assuming
that the proportion of the mutation in the population is ε. In
an ESS, the expected payoff of the mutation is smaller than
the expected payoff of a normal individual, and hence the
proportion of mutations will decrease and eventually disap-
pear over time, with the composition of the population re-
turning to being mostly x∗. An ESS is therefore a mixed
strategy of the column player that is immune to being over-
taken by mutations. ESS was initially proposed by mathe-
matical biologists motivated by applications such as popu-
lation dynamics (e.g., maintaining robustness to mutations
within a population of humans or animals) (Maynard Smith
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and Price 1973; Maynard Smith 1982). A common exam-
ple game is the 2x2 game where strategies correspond to an
“aggressive” Hawk or a “peaceful” Dove strategy. A paper
has recently proposed a similar game in which an aggres-
sive malignant cell competes with a passive normal cell for
biological energy, which has applications to cancer eradica-
tion (Dingli et al. 2009).

While Nash equilibrium is defined for general multiplayer
games, ESS is defined specifically for two-player symmetric
games. ESS is a refinement of Nash equilibrium. In particu-
lar, if x∗ is an ESS, then (x∗, x∗) (i.e., the strategy profile
where both players play x∗) is a (symmetric) Nash equi-
librium (Maschler, Solan, and Zamir 2013). Of course the
converse is not necessarily true (not every symmetric Nash
equilibrium is an ESS), or else ESS would be a trivial re-
finement. In fact, ESS is not guaranteed to exist in games
with more than two pure strategies per player (while Nash
equilibrium is guaranteed to exist in all finite games (Nash
1950)). For example, while rock-paper-scissors has a mixed
strategy Nash equilibrium (which puts equal weight on all
three actions), it has no ESS (Maschler, Solan, and Zamir
2013) (that work considers a version where the payoffs are
1 for a victory, 0 for loss, and 2

3 for a tie).
There exists a polynomial-time algorithm for comput-

ing Nash equilibrium in two-player zero-sum games, while
for two-player general-sum and multiplayer games comput-
ing a Nash equilibrium is PPAD-complete (Chen and Deng
2006; 2005) and it is widely conjectured that no efficient
(polynomial-time) algorithm exists. However, several algo-
rithms have been devised that perform well in practice (Berg
and Sandholm 2017; Porter, Nudelman, and Shoham 2008;
Govindan and Wilson 2003; Sandholm, Gilpin, and Conitzer
2005; Lemke and Howson 1964). For ESS, there have been
some recent hardness results as well (note that in general
computing an ESS is at least as hard as computing a Nash
equilibrium since it is a refinement). The problem of com-
puting whether a game has an ESS was shown to be both
NP-hard and CO-NP hard and also to be contained in ΣP

2
(the class of decision problems that can be solved in non-
deterministic polynomial time given access to an NP ora-
cle) (Etessami and Lochbihler 2008). Subsequently it was
shown that the exact complexity of this problem is that it
is ΣP

2 -complete (Conitzer 2013). Note that this result is for
the complexity of determining whether an ESS exists in a



given game (as discussed above there exist games which
have no ESS), and not for the complexity of actually com-
puting an ESS in games for which one exists. Furthermore
we are not aware of any algorithms or heuristics for ap-
proximating an ESS (while several exist for Nash equilib-
rium despite the computational hardness). In this work we
describe the first positive result for ESS computation. We
present an algorithm that computes an ESS that satisfies a
less restrictive condition that only pure strategy mutations
cannot successfully invade the population (while standard
ESS rules out all mixed strategy mutations). The algorithm
is based on modeling the problem as a mixed-integer non-
convex quadratically-constrained feasibility program.

2 Evolutionarily stable strategies against
pure mutations

We define an Evolutionarily Stable Strategy against Pure
Mutations (ESSPM) as in Equation 1 except that we only
require that the inequality holds for all pure strategies x that
differ from x∗. In order to model the problem of computing
an ESSPM as an optimization problem, we recall a widely-
known alternative definition of ESS that has been proven to
be equivalent to the initial one (Maschler, Solan, and Zamir
2013).
Definition 1. A mixed strategy x∗ in a two-player sym-
metric game is an evolutionarily stable strategy (ESS) if
for every mixed strategy x that differs from x∗ there exists
ε0 = ε0(x) > 0 such that, for all ε ∈ (0, ε0),

(1−ε)u1(x, x∗)+εu1(x, x) < (1−ε)u1(x∗, x∗)+εu1(x∗, x).

Theorem 1. A strategy x∗ is evolutionarily stable if and
only if for each x 6= x∗ exactly one of the following con-
ditions holds:
• u1(x, x∗) < u1(x∗, x∗)

• u1(x, x∗) = u1(x∗, x∗) and u1(x, x) < u1(x∗, x)

Definition 2. A mixed strategy x∗ in a two-player symmetric
game is an evolutionarily stable strategy against pure muta-
tions (ESSPM) if for every pure strategy x that differs from
x∗ there exists ε0 = ε0(x) > 0 such that, for all ε ∈ (0, ε0),

(1−ε)u1(x, x∗)+εu1(x, x) < (1−ε)u1(x∗, x∗)+εu1(x∗, x).
(2)

Theorem 2. A strategy x∗ is evolutionarily stable against
pure mutations if and only if for each pure strategy x 6= x∗

exactly one of the following conditions holds:
• u1(x, x∗) < u1(x∗, x∗)

• u1(x, x∗) = u1(x∗, x∗) and u1(x, x) < u1(x∗, x)

The proof of Theorem 2 follows from similar reasoning as
the proof of Theorem 1 (Maschler, Solan, and Zamir 2013).

(Note that technically the statements of Theorem 1 and 2
can be logically weakened to require that only “at least” as
opposed to “exactly” one of the conditions holds, since it is
impossible for both to hold simultaneously.)

There are also known results that allow us to categorize
ESS with respect to the more common solution concept
Nash equilibrium (Maschler, Solan, and Zamir 2013):

Theorem 3. If x∗ is a an evolutionarily stable strategy in
a two-player symmetric game, then (x∗, x∗) is a symmetric
Nash equilibrium of the game.

Theorem 4. In a symmetric game, if (x∗, x∗) is a strict sym-
metric Nash equilibrium then x∗ is an evolutionarily stable
strategy.

Recall that in a Nash equilibrium x∗, we have that
u1(x, x∗) ≤ u1(x∗, x∗) for all mixed strategies x (and sim-
ilarly for the other players). In a strict equilibrium this re-
quirement changes to u1(x, x∗) < u1(x∗, x∗).

Clearly every ESS is also an ESSPM, and so therefore
ESS is a refinement of ESSPM. We can straightforwardly
show a similar result to Theorem 3 for ESSPM. This shows
that ESSPM is a refinement of Nash equilibrium.

Theorem 5. If x∗ is a an ESSPM in a two-player symmetric
game, then (x∗, x∗) is a symmetric Nash equilibrium.

Proof. Consider taking the limit as ε → 0 in Equation 2.
From the continuity of the utility function (which is a stan-
dard assumption in game theory), this gives u1(x, x∗) ≤
u1(x∗, x∗) for all pure strategies x. This condition is suf-
ficient to show that x∗ is a Nash equilibrium; if a player
could profitably deviate from x∗ to a mixed strategy x′, then
for all the pure strategies in the support of x′ he would ob-
tain higher payoff against x∗ than by following x∗, which
contradicts the fact that u1(x, x∗) ≤ u1(x∗, x∗) for all pure
strategies. So (x∗, x∗) is a Nash equilibrium, and is symmet-
ric because the strategies for the players are the same.

We can also show a result similar to Theorem 4:

Theorem 6. In a symmetric game, if (x∗, x∗) is a strict sym-
metric Nash equilibrium then x∗ is an ESSPM.

Proof. If (x∗, x∗) is a strict symmetric Nash equilibrium,
then x∗ satisfies the first condition from Theorem 2 for all
mixed strategies, and therefore also satisfies the condition
for all pure strategies x. Therefore, x∗ is an ESSPM.

A B C
A (2,2) (1,2) (1,2)
B (2,1) (0,0) (4,4)
C (2,1) (4,4) (0,0)

Figure 1: Strategy A is evolutionarily stable against B or
against C alone, but against a mutant 1

2B + 1
2C, A does worse

than the mutant strategy.

Figure 1 gives an example of a game that has an ESSPM
but no ESS, which shows that the two are not equivalent
and that ESSPM is in fact a strictly weaker solution con-
cept (note that it can be shown relatively easily that ESSPM
and ESS are equivalent for 2x2 games). Strategy A is evo-
lutionarily stable against both pure strategies B or C (both
attain 2 against A but obtain 0 against themselves while A
obtains 1). However, consider the mixed-strategy mutation
that plays B and C with probability 1

2 . This strategy obtains
expected payoff 1

22 + 1
22 = 2 against A (which is the same



payoff that A obtains against itself). Against itself this strat-
egy obtains expected payoff 1

4 (0 + 4 + 4 + 0) = 2, while A
obtains payoff of 1

2 (1 + 1) = 1 against it.

3 Algorithm
Given the formulation from Theorem 2, we can cast the
problem of computing an ESSPM as the following feasibil-
ity program:

u1(x, x
∗) ≤ u1(x

∗, x∗)− εx1 +Mx1yx for all x ∈ [1, . . . ,m]

(3)

u1(x, x
∗) ≤ u1(x

∗, x∗) +Mx2(1− yx) for all x ∈ [1, . . . ,m]
(4)

u1(x
∗, x∗) ≤ u1(x, x

∗) +Mx3(1− yx) for all x ∈ [1, . . . ,m]
(5)

u1(x, x) ≤ u1(x
∗, x)− εx2 +Mx4(1− yx) for all x ∈ [1, . . . ,m]

(6)

x∗i ≥ 0 for all i ∈ [1, . . . ,m] (7)∑
i

x∗i = 1 (8)

yi binary for all i ∈ [1, . . . ,m] (9)

We assume that we are initially given an m×m matrix A
of utilities to player 1 (we assume that the game is symmetric
since ESS is defined only for symmetric games, so payoffs
to player 2 are given by matrix B = AT ). If v and w are
pure strategies, the expression u1(v, w) corresponds to the
v’th row and w’th column of matrix A. In general if v and w
are vectors of mixed strategies (i.e., probability distributions
over pure strategies), then the utility for player 1 is given
by u1(v, w) = vTAw. Without loss of generality we can
assume that all values in A are nonnegative and between 0
and 1 (note that any affine transformation does not affect
strategic aspects of the game, so we can add a sufficiently
large constant to all entries and normalize by dividing by the
largest entry to achieve this condition).

The variables in the formulation are x∗i and yi for 1 ≤
i ≤ m. The x∗i correspond to the ESSPM for player 1 (and
equivalently player 2) that we are seeking to compute, and
yi correspond to indicator variables denoting which of the
conditions holds from Theorem 2 for the given component.

We set ε to be a very small floating point number slightly
larger than 0, such as ε = 0.00001. M denotes a con-
stant that exceeds the maximum difference in absolute value
of utility between two strategy profiles. We would prefer
to have M be as small as possible to make the inequality
tighter, so we will set M = 1 + ε, given our assumption that
all payoffs are between 0 and 1. Note that our framework is
flexible enough to allow for different selections for the dif-
ferent εxi andMxi parameters corresponding to the different
constraints if desired, though for simplicity we set them all
to be the same ε and M as described. The equivalence of
the feasibility program to the conditions of Theorem 2 fol-
lows from a rule for representing either-or constraints in a
mixed-integer program by adding in auxiliary binary indi-
cator variables (Bisschop 2006). If yx = 0, then the first
constraint ensures that u1(x, x∗) ≤ u1(x∗, x∗)− εx1, which

is equivalent to u1(x, x∗) < u1(x∗, x∗) since εx1 is negligi-
ble (note that strict inequalities must be converted to weak
inequalities to be solved by most standard optimization al-
gorithms). (Numerical precision considerations will be elab-
orated on further below.) And if yx = 1 then the constraint
states u1(x, x∗) ≤ u1(x∗, x∗) − εx1 + Mx1, which essen-
tially makes the constraint inactive since it will be true for
all strategies x∗ since we have chosenMx1 to be sufficiently
large. The translation between the other constraints and the
theorem can be obtained similarly. Note that this formula-
tion is a quadratically-constrained mixed-integer feasibility
program (QCMIP). It is quadratically constrained because
u1(x∗, x∗) equals x∗TAx∗, which is a quadratic form in-
volving a product of the variables x∗. It is mixed integral
because there are both continuous and binary variables. And
it is a feasibility program because there is no objective func-
tion, though there are several candidates that could poten-
tially be used that may help aid performance in practice.

To implement our algorithm we explored the QVXPY and
Gurobi software packages (Park and Boyd 2017; Gurobi Op-
timization, Inc. 2014) and will present analysis in Section 4.
Beyond finding a suitable optimization solver, there are sev-
eral further challenges for applying our algorithm. A game
may contain no ESSPM, in which case our algorithm should
return that the optimization model is infeasible. Due to de-
grees of approximation error and numerical precision there
is some chance of a false negative (our algorithm outputs
that the model is infeasible while an ESSPM actually ex-
ists). Note that if we were solving for a different solution
concept that is known to exist, such as Nash equilibrium, we
would know for sure that an output of infeasibility would
indicate a false negative; however for ESSPM we cannot be
sure whether the game actually has no ESSPM or we are
in a false negative (and so our algorithm is incomplete). We
will explore the extent of this issue in the experiments. A
second issue is that according to the alternative definition of
ESSPM given by Theorem 2, the conditions apply just to
x 6= x∗, which we do not encode directly in our algorithm,
which considers deviations for all x since it cannot readily
tell whether x = x∗. This can be problematic for the case
when x∗ is a pure strategy, and the conditions for x = x∗

would be enforced when they should not be (which would
lead to a false negative). To address this we will first apply
an efficient preprocessing procedure to determine if a pure
strategy ESSPM exists, which is described in Algorithm 1.

Algorithm 1 Preprocessing procedure for computing pure-
strategy ESSPM
Inputs: Payoff matrix M with m pure strategies per player.

for i = 1 to m do
for j = 1 to m, j 6= i do

Test whether the conditions of Theorem 2 hold us-
ing x∗ = i, x = j.

If the conditions held for all j, output i as pure-
strategy ESSPM.
Conditions of Theorem 2 did not hold for any pure strat-
egy, so there is no pure ESSPM



Since our algorithm has elements of approximation er-
ror and numerical imprecision, we must develop a metric
to evaluate the quality of the candidate solution. For ap-
proximating Nash equilibrium the standard metric is the
maximum amount a player can gain by deviating from
the candidate equilibrium strategy profile x∗, i.e., ε =
maxi maxj(ui(xj , x

∗
−i) − ui(x

∗, x∗−i)) (where ui(x, y) is
the utility to player i when player i follows x and the op-
ponent(s) follow y, and x∗−i is the strategy vector for x∗ ex-
cluding player i). It is common for Nash equilibrium algo-
rithms to be analyzed by their convergence with respect to
this ε (Gilpin, Peña, and Sandholm 2012). As one notable
example an ε-Nash equilibrium has been computed for two-
player limit Texas hold ’em for a sufficiently small ε that a
human cannot differentiate between the approximation and
an exact equilibrium over a lifetime of human play (Bowling
et al. 2015). For ESSPM we propose a similar metric, given
by Algorithm 2. One challenge is that it may not be clear
which of the conditions to consider, since small amounts of
numerical instability can make it impossible to satisfy a hard
equality. To address this we include a precision parameter δ,
which we set equal to 10−7. Note that this could be set equal
to or different from the εxi of our algorithm (in general it
seems most appropriate to set δ to be smaller than the εxi).

Algorithm 2 Procedure to compute degree of approximation
error of candidate ESSPM strategy
Inputs: Payoff matrix withm pure strategies per player, candidate
ESSPM x∗, degree of precision δ

for i = 1 to m do
if u1(i, x∗)− u1(x∗, x∗) > δ then

θ[i]← u1(i, x∗)− u1(x∗, x∗)
else if u1(i, x∗)− u1(x∗, x∗) > (−1) · δ then

if u1(i, i)− u1(x∗, i) > 0 then
θ[i]← u1(i, i)− u1(x∗, i)

else
θ[i]← 0

return maxi θ[i]

4 Applying the algorithm to solve the
Mutation-Population Game

We first implemented the algorithm using the CVXPY
non-convex quadratically-constrained quadratic program
(QCQP) Suggest-and-Improve framework (Park and Boyd
2017), since it is the only publicly-available software we are
aware of for solving our QCMIP formulation (which is non-
convex). We considered all of their algorithms and found
best performance with the coordinate-descent algorithm, be-
cause it focuses more on trying to find and maintain fea-
sibility as opposed to the other algorithms which are more
focused on optimality. This is appropriate for our problem
since it is a feasibility program with no objective function.
We create an initial solution for the algorithm by solving the
semidefinite program (SDP) relaxation, which we then at-
tempt to improve iteratively using coordinate descent. For
the parameters we set εxi = 0.00001 and Mxi = 1 + εxi.

We tested this implementation on the well-studied
Mutation-Population game (Figure 2) (Maschler, Solan, and
Zamir 2013). In this game there are two types of animals:
hawks (who are aggressive), and doves (who are peaceful).
When an animal invades the territory of another animal of
the same species, a hawk will aggressively repel the invader,
while a dove will yield and be driven out of the territory. The
game has one symmetric Nash equilibrium in which Dove
is selected with probability 1

5 and Hawk 4
5 . This strategy

profile also constitutes an ESS and an ESSPM. (Note that
the game also has two asymmetric Nash equilibria (Dove,
Hawk) and (Hawk, Dove), both of which are neither ESS
nor ESSPM.)

Dove Hawk
Dove (4,4) (2,8)
Hawk (8,2) (1,1)

Figure 2: The Mutation-Population Game

When we ran our algorithm on this game, the initial so-
lution obtained from the SDP relaxation was (0.637, 0.363),
and the solution after the first iteration of the algorithm was
(0.245, 0.755). However, the solution varied drastically be-
tween iterations as the algorithm progressed and did not
converge over 1000 iterations, though the degree of vio-
lation of the constraints generally decreased. We therefore
concluded that the CVXPY-QCQP framework was not suit-
able for solving our problem, despite the fact that good per-
formance has been observed for previous benchmark do-
mains (Park and Boyd 2017)).

We next decided to run experiments with Gurobi’s
mixed-integer programming solver (Gurobi Optimization,
Inc. 2014). Gurobi does not have a solver for non-convex
quadratically-constrained programs; however, we can ap-
ply a known technique that approximates products of vari-
ables using piecewise linearization by adding additional
constraints known as “SOS2” constraints (Bisschop 2006).
This approach introduces an additional layer of approxima-
tion due to the piecewise-linear approximation of quadratic
variables, and also introduces an additional parameter to use
for the number of breakpoints in the linearization. How-
ever, it is able to quickly and effectively solve the mutation-
population game. For example, using k = 20 breakpoints
with ε = 10−5 it outputs a solution of (0.19972, 0.80028) in
0.242 seconds, which is extremely close to the optimal solu-
tion and produces an approximation error of 1.4× 10−4.

5 Experiments
Given the results of the preceding section we decided to use
Gurobi’s solver for the remainder of our experiments. First,
in Section 5.1 we further explore the effect of varying the
choices of parameters k and ε on the runtime and perfor-
mance. In Section 5.2 we look at performance on uniform-
random symmetric 2x2 games. In addition to runtime and
performance we also explore the false negative rate of our
algorithm. It is known that all 2x2 games that satisfy a cer-
tain condition contain an ESS (and therefore ESSPM). The



condition is that a11 6= a21 and a12 6= a22, where A is
the payoff matrix (van Damme 1987). This implies that an
ESSPM will exist with probability 1 in uniformly-generated
2x2 games, since there is probability zero on the exact payoff
values needed being equal. Therefore, any infeasibility out-
put of our algorithm will be a false negative. This does not
hold for games with more than two strategies, as the rock-
paper-scissors example in the introduction demonstrates. At
the other extreme, it has been shown that as the number of
pure strategies approaches infinity the probability of exis-
tence of an ESS with support of size two converges to 1 for
games with payoffs chosen according to a distribution with
“exponential and faster decreasing tails” which includes uni-
form (the support of a randomized strategy is the set of pure
strategies that are played with nonzero probability) (Hart,
Rinott, and Weiss 2008). In Section 5.2 we also explore 3x3
games and discuss further scalability, and in Section 5.3 we
explore a generalized game class generated by the GAMUT
repository (Nudelman et al. 2004).

5.1 Mutation-Population Game
In the Mutation-Population Game we consider the effect of
selection of parameters k (number of breakpoints) and ε
on the runtime and error (computed by Algorithm 2). Ta-
ble 1 shows the effect of varying k keeping ε = 10−5 fixed.
For the values of k up to 30 the runtime is under one sec-
ond, before increasing to 1.7 seconds for k = 50 and 6.6
seconds for k = 100. Interestingly for k = 5 our algo-
rithm outputs infeasibility, while it produces low errors for
larger k which decrease monotonically. This demonstrates
that choosing too few breakpoints can be problematic and
lead to a false negative. Using 10–30 breakpoints leads to
low runtimes and relatively small errors. These experiments
were using up to 64 cores (threads) for the algorithm.

We next explored the effect of varying ε while keeping
k = 20 fixed (Table 2). Changing ε seems to have mini-
mal effect on the runtime for this game. For the three largest
ε values our algorithm outputs that the model is infeasible.
This demonstrates that careful selection of ε in addition to k
is needed to prevent a false negative. The results also show
that the error does not necessarily decrease monotonically
with smaller ε (though this conclusion is drawn from a small
sample size).

5.2 Uniform random games
We next considered 2x2 symmetric games with all payoffs
generated uniformly at random (we generated 4 payoffs for
the matrix A for player 1, and then assume that the payoff
matrix for player 2 is AT ). We generated and solved 10,000
games, using 20 breakpoints with ε = 10−5. Of these, the
pre-processing step confirmed that 7506 had a pure-strategy
ESSPM. Of the remaining games, our algorithm computed
an optimal solution for 2454, and output that 40 were infea-
sible. The average running time for the games with an opti-
mal (non-pure) solution was 0.18s, and the average running
times for the infeasible cases was 0.26s. The average ap-
proximation error for the optimal solutions was 1.4× 10−4.

These results lead to several immediate observations.
First, a very large percentage games contain a pure-strategy

ESSPM (close to 75% in our sample). Note that this is not
surprising, since we are considering symmetric games. If
the payoff matrix is A, then the game has a pure-strategy
ESSPM whenever a11 > a21 or a22 > a12, which is ex-
actly 75%. Note that for randomly-generated games the pos-
sibility of identical payoffs for different strategy profiles has
probability zero. This may make it difficult for the second
condition of Theorem 2 to hold (the probability of it holding
when x∗ is a pure strategy is 0, though it could be possible
for mixed strategies). However, rather than trying to opti-
mize our algorithm just for random games we elect to keep
our general-purpose framework as the second condition can
be important for many games we are interested in.

The observation that our algorithm outputs infeasibility
for 40 games (which constitutes 1.6% of the games in our
sample that did not contain a pure-strategy ESSPM) shows
that false negatives can occur even for reasonably chosen
values of the parameters k = 20 and ε = 10−5. On the posi-
tive side, the runtimes and average approximation errors are
quite low. So for the games that our algorithm does output
a valid solution, the solution is obtained quickly with low
error. And furthermore a valid solution is found for a very
large percentage of the game instances (98.4% of the games
that do not contain a pure-strategy ESSPM). If our algorithm
outputs infeasibility for a specific game we are interested in,
we can always solve it again with larger values of k and/or
smaller values of ε until a solution is found (note that this
would only work for 2x2 games, and for larger games we
could not be sure whether a solution exists and may have to
give up eventually).

We also experimented on 3x3 uniform-random symmetric
games using the same parameter values k = 20, ε = 10−5.
Of the 1000 games in our sample, our algorithm output that
709 had a pure-strategy ESSPM, it found an optimal solution
for 39, and output that 252 were infeasible. The average run-
ning time for the games with an optimal (non-pure) solution
was 12.7s, and the average running times for the infeasible
cases was 14.7s. The average approximation error for the
optimal solutions was 3.3× 10−4.

These results indicate as before that a large fraction of
random 3x3 games have a pure-strategy ESSPM (the theo-
retical value should be 19

27 ≡ 0.704, and in general for m
pure strategies should be 1 −

(
m−1
m

)m
). In contrast to the

m = 2 results, for m = 3 we observe that our algorithm
outputs infeasibility for a very large fraction of the games
with no pure-strategy ESSPM (86.7% in contrast to 1.6%
for m = 2 using the same parameter values). Unlike the
m = 2 case we can not be sure for a given game whether
our algorithm has produced a false negative or whether no
ESSPM exists, so we cannot conclude whether this dispar-
ity is due to an increased false negative rate or nonexistence
of ESSPM. For the games that our algorithm did solve opti-
mally the running time was only 12.7s on average (and the
running time to determine infeasibility was only 14.7s on
average), and the approximation error was quite low for the
games which our algorithm output an optimal solution.

We also performed experiments for 3x3 games using k =
10, with ε = 10−5 as before. Over 1000 games our algo-



# Breakpoints 5 10 20 30 50 100
Time(s) 0.04 0.08 0.13 0.54 1.69 6.6

Error INFEASIBLE 0.001 1.4× 10−4 5.5× 10−5 1.3× 10−5 5.9× 10−6

Table 1: Running time and approximation error for Mutation-Population Game for different breakpoints with ε = 10−5.

ε 1× 10−1 1× 10−2 1× 10−3 1× 10−4 1× 10−5 1× 10−6

Time(s) 0.13 0.31 0.28 0.35 0.13 0.25
Error INFEASIBLE INFEASIBLE INFEASIBLE 6.6× 10−5 1.4× 10−4 1.9× 10−4

Table 2: Running time and approximation error for Mutation-Population Game for different values of ε using 20 breakpoints.

#Strategies #Games k ε #Pure #Optimal #Infeasible Optimal avg. runtime Infeasible avg. runtime Avg. error
2 10,000 20 10−5 7506 2454 40 0.18s 0.26s 1.4× 10−4

3 1000 20 10−5 709 39 252 12.7s 14.7s 3.3× 10−4

3 1000 10 10−5 712 68 220 1.2s 1.7s 0.002
4 1000 10 10−5 671 48 281 6.3s 9.0s 0.004
5 1000 10 10−5 656 50 293 29.7s 70.2s 0.005

Table 3: Results for uniform random games.

rithm output that 712 had a pure-strategy ESSPM, found an
optimal solution for 68, and output that 220 were infeasi-
ble. The average running time for the games with an optimal
(non-pure) solution was 1.2s, and the average running times
for the infeasible cases was 1.7s. The average approxima-
tion error for the optimal solutions was 0.002. Using fewer
breakpoints decreased the infeasibility rate over this sample
from 86.7% to 76.4%, while leading to a significant reduc-
tion in running time, but an order of magnitude increase in
approximation error.

We also experimented on 4x4 games using k = 10,
ε = 10−5. Over 1000 games the algorithm output that 671
had a pure-strategy ESSPM, found an optimal solution for
48, and output that 281 were infeasible. The average run-
ning time for the games with an optimal (non-pure) solution
was 6.3s, and the average running times for the infeasible
cases was 9.0s. The average approximation error for the op-
timal solutions was 0.004. For 5x5 games with the same pa-
rameters we found 656 pure-strategy ESSPM, 50 optimal
solutions, and 293 infeasible. The average runtime for the
optimal cases was 29.7s, and 70.2s for the infeasible cases.
The average error for the optimal solutions was 0.005.

5.3 Experiments on games from GAMUT
repository

In addition to uniform randomly-generated games we also
experimented on the class of Chicken games created using
the GAMUT generator (Nudelman et al. 2004). These games
generalize the Mutation-Population game that was previ-
ously considered. For a payoff matrix A, Chicken games
satisfy a21 > a11 > a12 > a22. We generated 1,000 games
from this class where, as before, we normalize payoffs to be
between 0 and 1 before applying our algorithm. We only
consider Chicken games with m = 2 pure strategies per
player, as GAMUT does not support a generalized version.
Results using k = 20, ε = 10−5 are given in Table 4. Note
that none of the games have a pure-strategy ESSPM, while

our algorithm incorrectly outputs infeasibility for 1.8% of
the games (we know that an ESSPM exists in nondegenerate
2x2 games). The average runtimes and errors of our algo-
rithm are low for this class.

Several popular games such as Prisoner’s Dilemma and
Battle of the Sexes contain a pure-strategy ESS (and there-
fore ESSPM), so experimenting on them is not useful.
GAMUT also supports a class called “Hawk and Dove,”
however the way this is generated produces only games that
have a pure-strategy ESS. (Note that several different defini-
tions of “Hawk and Dove games” have been proposed in the
literature. For example, while the Population-Mutation game
we considered does not fall into GAMUT’s class, it is con-
sidered a Hawk-Dove game by Maschler et al. (Maschler,
Solan, and Zamir 2013).)

6 Conclusion
We have presented an optimization formulation and algo-
rithm that constitutes the first positive result for computation
of Evolutionarily Stable Strategies (ESS) (previously the
known computational results were all negative hardness re-
sults). ESS is a well-studied refinement of Nash equilibrium
that is biologically-motivated and has been applied to can-
cer. We consider a restriction where robustness is guaranteed
only against pure-strategy mutations and not necessarily
against all mixed-strategy mutations, which we call Evolu-
tionarily Stable Strategies against Pure Mutations (ESSPM).
The algorithm is based on a new quadratically-constrained
mixed integer feasibility program formulation.

We experimented with different parameter settings for the
Population-Mutation Game, which were then used for ex-
periments in uniform-random games and in a generalized
class of Chicken games created by the GAMUT genera-
tor. We observe that for certain classes a large fraction of
games has a pure-strategy ESSPM, and that our algorithm
can sometimes output a false negative infeasibility for 2x2



#Pure #Optimal #Infeasible Optimal avg. runtime Infeasible avg. runtime Avg. error
0 982 18 0.13s 0.19s 1.3× 10−4

Table 4: Results for 1,000 games of Chicken generated by GAMUT, using parameter values k = 20, ε = 10−5.

games where an ESS is known to exist. However, in sev-
eral experiments the false negative rate is small, and the run-
ning times and errors produced by our algorithm are gener-
ally quite low for the games that are solved. We considered
two commercial solvers CVXPY-QCQP and Gurobi, focus-
ing our experiments on Gurobi after preliminary analysis in-
dicated that it was better suited for our setting. The algo-
rithm takes two input parameters, the number k of break-
points for the piecewise-linear approximations of variable
products, and the degree ε of constraint approximation to
use. Our experiments investigated the effect of selection of
these parameters on performance.

We would like to further tune the parameters for epsilon
and the number of breakpoints and further explore the cases
of infeasibility that we encountered. It is not clear for the
games with more than 2 actions whether the infeasibility was
due to the approximation error of the algorithm or to the lack
of existence of an ESSPM. Eventually we would like to gen-
eralize our approach to compute an ESS that is robust to all
mutation strategies (as in the standard definition of ESS), not
just to pure strategy mutations as we have done. It is possi-
ble that this can be accomplished within the same mixed-
integer non-convex quadratically-constrained optimization
framework. Our approach could potentially apply to gener-
alizations to multiple players by approximating the products
of variables in a similar way, though the standard definition
of ESS is just for two-player symmetric games. We would
also like to see how our algorithm can perform on a problem
generated from real data, perhaps one that has application
to medicine such as the cancer eradication game described
in the introduction, and to experiment with our algorithm on
games with larger number of actions per player.
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