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On the Falling of Objects in Non-Newtonian Fluids. 

R. BANDELLI(*)  - K. R. RAJAGOPAL(*) 

1.  - I n t r o d u c t i o n .  

The study of objects falling under the influence of gravity in a fluid occu- 
pies a central place in fluid dynamics. The seminal work of Stokes [1] on the 
falling of a sphere in a Navier-Stokes fluid has been followed by a plethora of 
extensions that include objects of various shapes as well as assemblages of 
bodies (cf. Happel & Brenner [2]). While the problem for a body of general 
shape is quite daunting, it becomes tractable if it is assumed to be falling 
slowly, i.e., the flow being non-inertial, and furthermore if the body is a body 
of revolution or ,,slender body,, (cf. Basset [3]). Also of considerable interest 
is the translation of a liquid sphere inside a liquid (cf. Hadamard [4]). 

While the Navier-Stokes model explains the behavior of water and other 
such fluids exceptionally well, at least in the laminar regime, it fails to cap- 
ture even the essential features of many polymeric and biological fluids. 
There are many fluids that exhibit normal stress differences in simple shear 
flow (cf. Truesdell and Noll [5]) and the Navier-Stokes model cannot describe 
this phenomenon. Amongst the numerous models that have been proposed to 
describe the non-Newtonian behaviour of these fluids, a class that has at- 
tracted significant attention is that of the fluids of the differential type. In 
these fluids, the stress is determined by knowledge of very little of the defor- 
mation history of the fluid; the current value of the Rivlin-Ericksen tensors 
A.  being sufficient. Fluid models of the differential type have been found to 
be useful in describing the behavior of dilute polymeric liquids and biological 
fluids. Of course, the classical Navier- Stokes model is also a fluid of the dif- 
ferential type as are the popular power-law models or the generalized New- 
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tonian model. A simple fluid of the differential type that is capable of exhibit- 
ing both the normal stress differences is the fluid of second grade, and thus 
this model has been studied in great detail during the past two 
decades. 

The Cauchy stress T in an incompressible fluid of second grade is related 
to the fluid motion in the following manner: 

(1.1) 

where 

(1.2) 

and 

(1.3) 

T = - p I  +/~41 + alA2 + a2A~, 

A1 = (gradv) + (gradv) r , 

d 
A2 = -77. A1 + A1 (grad v) + (grad v)rA1. 

a t  

In the above equations, v denotes the velocity field, d/dt the usual ma- 
terial time derivative, - p I  is the spherical part of the stress due to the con- 
straint of incompressibility,/~ is the viscosity and a i and a2 the normal stress 
moduli. 

Dunn and Fosdick [6] studied in detail the dynamic and thermodynamic 
response of fluids modeled by (1.1)-(1.3) and found that if the fluids are to be 
compatible with thermodynamics in the sense that all motions meet the 
Clausius-Duhem inequality and the assumption that the specific Helmholtz 
free energy is a minimum in equilibrium, then 

(1.4) /~I>0, a l~>0 and a l + a 2 = 0 .  

They showed that if/~ > 0, a l  < 0, and a l  + a2 = 0, then the rest state of 
the fluid is unstable. Later, Fosdick and Rajagopal [7] proved that if/~ > 0, 
and a l  < 0, then the fluid exhibits anomalous stability behaviour that is un- 
acceptable in any reasonable fluid, without the restriction that a l  + a2 = 0. 
More recently, Galdi, Padula, and Rajagopal[8] showed that if/~ > 0 and 
a l  > 0, the rest state of a second grade fluid in an unbounded domain is con- 
ditionally stable, while it is unstable if/~ > 0, and a~ < 0, irrespective of the 
sign of az. 

The result that a 1 I> 0 was in keeping with the indication of earlier work 
by Ting [9] on the existence of solutions for the flows of such fluids. The val- 
idity of the restrictions (1.4) have unfortunately been the object of much de- 
bate and we shall not get into a discussion of the same here. We refer the 
reader to an exhaustive article by Dunn and Rajagopal [10] where all the rel- 
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evant issues are discussed at length. Recently, there has been a great deal of 
interest in studying issues related to existence and uniqueness to the equa- 
tions of motion for a fluid of second grade. Galdi and Sequiera[ll]  and Galdi 
et al. [12] have proved existence and uniqueness for small data for the homo- 
geneous boundary condition v = 0. 

In this paper, we shall consider the falling of objects in an incompressible 
fluid of second grade. It might be appropriate to mention that it has been 
found that the addition of parts per million of a polymer to water causes a 
significant reduction in the drag of objects moving in the fluid. However, as 
these results pertain to turbulent flow, the study of an object moving slowly 
in a fluid of second grade cannot shed much light on the problem. On the 
other hand, such a study might be the first logical step in efforts to fully un- 
derstanding the problem of drag reduction due to the addition of polymers to 
water. 

The composition of the paper is as follows. First, we study the problem of 
a thin, but heavy, lamina falling under the influence of gravity between two 
vertical plates, the space being occupied by a fluid of second grade. This is 
followed by the study of a heavy cylinder falling under the influence of gravi- 
ty inside a vertical tube filled with a fluid of second grade. 

2. - G o v e r n i n g  e q u a t i o n s .  

If we substitute the stress T into the balance of linear momentum 

dv 
(2.1) div T + ~)b --- ¢) ~ - ,  

we obtain, in the case of a conservative body force field b = - g r a d e ,  (cf. 
Rajagopal [13]) 

(2.2) t t A v +  alZlVt + al(zJw × v) + 

+(a 1 + a2){AI Av  + +2 div[(gradv)(grad v)T]} - Q(w × v) - Qvt = g radP ,  

where 

(2.3)  P = p - a l ( V ' A v )  (2al  + a 2 ) 4  IA112+ 1~)1Vl2 + Q~b' 

and A is the Laplacian, the subscript t indicates partial differentiation with 
respect to time, IAll the trace norm of A1 and 

(2.4) w = curl v. 
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As the fluid is incompressible, it can undergo only 
therefore 

(2.5) div v = 0. 

isochoric motions, 

3. - Heavy thin lamina falling under gravity between parallel vertical 
plates. 

Consider a heavy thin lamina falling from rest under the action of gravi- 
ty at time t = 0 between two parallel vertical walls filled with a fluid of  sec- 
and grade, in such a manner that the plane of the lamina is parallel to the 
walls. 

Let o be the mass per unit area of the plate, 2d its thickness, Q the density 
of the liquid, v the kinematic viscosity, v and V respectively the velocity of 
the liquid and the plate; let the plate be positioned halfway between the 
walls which are at a distance 2s apart. We assume that the velocity field for 
the liquid is of the kind 

v = (0, O, v(x,  t ) ) ,  

and that the pressure gradient is the same as in the static case. It is in fact 
customary to make the more stringent assumption that body forces can be ig- 
nored as far as the fluid is concerned and that the pressure gradient is zero 
(cf. Carslaw and Jaeger [17]). Our assumption includes the usual hypothesis 
as a special case, for if body forces are ignored, the pressure field would be a 
constant in the static problem. The governing momentum equation be- 

comes 

3v ~v o~v 
(3.1) 0 - ~  ----~ aX 2 Tax ~ 2 '  --S<gg<-d, d<x<s, t>O, 

with boundary conditions 

(3.2) v = 0, 

(3.3) v = V, 

and initial condition 

(3.4) v = 0, 

where 

x = --+s, t > O ,  

x =  -+d, t > 0 ,  

- s < x < - d ,  d ~ x < s ,  t = O ,  

v = (o, o, v ( t ) ) ,  
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is the velocity of the lamina. From (3.1) we obtain, after applying the Laplace 
transform 

L { f ( ~ ,  v)}:= f e -P* f (~ ,  v)dv, 
o 

the subsidiary equation: 

d2~ 
(3 .5 )  Qpv=( /~+a lp )  dx 2 , s < x <  +-d, d < x < s ,  

under the boundary conditions 

(3.6) ~ = 0 ,  x =  +_s ,  t > 0 ,  

(3.7) ~ = V, x = _ d ,  t > 0. 

The solution to the two-point boundary value problem (3.5)-(3.7) is: 

sinh (s - x) J qP 

(3.8) V ---- V" ~ /A "{- {21P 
! 

QP sinh (s - d) a] 
V /~ + a~p 

Now let us set s -  d = h. 

, d < x < s ,  - s < x < d .  

Motion of the lamina. 

The equation of motion for the lamina is 

(3.9) 
a dt  a g + 2  ~l ~X -~al---~-~X x=d 

with initial condition 

V =  0, when t = 0, 

leading to the subsidiary equation: 

(3.10) apV= ag + 2(/~ + alp)  - ~  x=d" 
P 

Using (3.8) into (3.10) and solving for V, we obtain [ ]1 
(3.11) ~d= ag ap + 2~V/(/~ + a ,p )opco thh  OP . 

p + a lp  
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The bar indicates the Laplace transform of V. The inverse transform of (3.11) 
will be computed with the complex inversion formula 

(3.12) V(t) = 1 i ~ e P t d p ,  
2~i 

L 

where L is a path defined by Re p = const. > 0 leaving all the singularities of 
to the left (cf. Churcill [14]). 
At this juncture, let us summarize some remarks made by Ting [11] which 

are relevant to the problem on hand and those that follow. The complex in- 
version integral (3.12) can be evaluated, in general, by applying the Cauchy 
residue theorem. However, an extension of this theorem is necessary because 
the integrand in (3.12) possesses infinitely many singularities concentrated 
in the interval [ - t r i a l ,  0] and p = - t r i a l  is an essential singularity. To- 
wards this purpose, we consider the integr~ 

(3.13) V* = 1 2z--7 ~ Ve' t  dP " 
L+C+CN 

The integration contour is reported in fig. 1. C is a half circle of radius R to 
the left of the path L and CN a curve enclosing all the singularities p~ for 
n > N; C and CN are connected by two portions of straight lines parallel to 
the real axis where Re p < - t t / a  x. The curves CN are constructed such that 
they do not cut any singularity. 

By the residue theorem, for all finite N 

N 

1 I VePtdP = ~ R~ (3.14) 2zi  n = 0 ' 
L+C+CN 

where R~ is the residue of V(p, t) at the pole p~. We will show that the line 
integrals over r and CN vanish respectively as R and N tend to infinity, 
whereas those on the horizontal straight lines cancel each other, for the inte- 
grand is continuous there. 

By taking the limit of (3.14) as N and R go to infinity, we will formally 
have 

(3.15) V(t) - 2z i  ~ = o 
L 

The formal solution obtained in (3.15) is to be checked a posteriori that it ac- 
tually satisfies the given initial-boundary value problem. By the Inversion 
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Figure 1. 

Theorem, we fred 

(3.16) V ( t ) -  ag I 1 
- 2z---iz L p 

where 

ept dp 

op + 2 ~/(tt + alp)Qpcothh ~ QP 
tt + a lp  

2zi ap 2 

ept dp 

2Qh 
1 +  

o" 

! QP = h~] 
tt + a lp  

coth~ 
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We shah always choose the branch of ~ such that  

(3.17) ~ = ~ + i v  - - -  < a r g O < - - .  
2 2 

The singularities of the integrand (3.16) are given by the zeros of the de- 
nominator, namely 

2Qh coth 
(3.18) p = 0,  1 + - -  - 0 .  

a 

I t  is easy to show that  p = 0 is a simple pole; to find the other  poles, we set 
= / 2  in (3.18) and find 

2¢)h cotil 
(3.19) 1 - -  - 0 ,  

a )l 

or  ~ tan )~ = k, where k = 2Qh/a. The zeros of (3.19) are all simple, real, and in- 
finitely many(i )  and can be ordered in an increasing sequence {2~}; 
also 

Thus the poles of the integrand in (3.16) (other than p = 0) are given by 

(3.19) Pn = n = 1, 2, ... 
eh 2 + a~2~' 

where ~n are the real positive roots of (3.19). 
We will show that  the integral (3.16) converges: to this end, we need an 

estimate for IV(p)l .  All the singularities are concentrated in the finite inter- 
val - t t / a ~  <~ p <~ 0 with p = - t t / a l  as the point of accumulation. By our 
choice, ~ 1> 0 and ~ = 0 if and only if 

( 3 . 2 0 )  p - @h ~ + al~P 2 . 

Consequently, if Re p < 0, then 

coth 
¢ > 0 ,  t t + a l p ~ O ,  l + k ~  s 0 .  

(1) Op. cit., Carslaw and Jaeger, p. 171. 
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so that the function V(p) is guaranteed to be analytic in the right-hand side 
of the complex plane. Hence for Re p > 0, after setting 

f ( p )  = 
p2(1 + k  coth ~ ) 

we have 

(3.21) ] f ( P ) l  = 

Now, 

1 1 1 

I~(l+~C°~)J ,~,~ jl+~C°t~ I 

~22~ Ii+k coth~[ ~ i1 rk coth~ [I 
and 

(3.23) [ cosh 

Notice that 

= [exp [(q~ + i~p)] + exp[-((p + i~f)][ = 

l exp [(q~ + i~p)] - exp [ - ((p + i~P)] I 

I1 + e x p [ - 2 ( ¢  + i~P)]I 

[1 - exp [ - 2 ( ~  + iv)][ 
1 + exp (-2(p) ~< 
1 - exp(-2(p) 

= const.. 

re°thai I coth~ I (3.24) k - - ~  = k ]OP[ [Op(kt + alp)]lpZ , 

which, in combination with (3.23), implies that 

(3.25) Ik c°th~ I ~< const. 

and, by virtue of (3.22), that 

~0~ i1 i~cot~ji ~co~t 
We conclude that 

const. 
(3.27) IV I ~< [pl 2 
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We now need to prove that 

(3.28) lira 1 [ ~z ept dp = O . 
R---~ ¢¢ 2zi J c 

To do so, we show that in the left-hand plane V(p) tends to zero uniformly. 
Now 

k coth ~] (3.29) ] 

Ting [9] has shown that 

coth ~ ] ~< 
(3.30) p[~p(tt + alp)]  1/2 

] cot.  ] 
P [~)P(tt + a i p ) ]  1/2 • 

coth( Q / lfz h 
const ,  a l l  = 0 ( _ ~ [ 2  ) 

/ 0 \it2 P[~)P(// + a lp) ] l /2  s i n h ( ~ )  h 

Hence for a large enough radius, in virtue of (3.29) and (3.30), it follows 
that 

coth I 
(3.31) k [ ~< const.,  ] 

and, as a consequence of (3.22), 

(3.32) I1 + k c°th~ I ~> const.. 

The last inequality and (3.31) yield 

const. 
I Y l  -< - -  

As this restriction is valid throughout the whole complex plane, it also guar- 
antees that the initial condition is satisfied. Hence, for large R 

1 f~(p)eptdp - 1 f N (3.33) V ( t ) -  2~i 2~i V(p)eptdp + ~ Rn" 
n=0 L C~ 

Let us compute the residues R~ : for any finite n, p~ is a simple pole, there- 
fore, at P0 = 0 

agh 
R o -  

2•v 
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and 

4gQh 3 exp (p~ t) 
R ~ -  , (n- -  1, 2, ...). 

2 2 k 2 ~,a ;t,~(~.,~ + + k) 

Thus 

1 1 
(3.34) V - | Ve pt dp 2zi  f ~ ( p ) e p t d p -  2~i J + 

L CN 

N exp (p~ t ) + og__hh 4gQh 3 

2Qv va n=l ;t~(;t~2 + k 2 + k) 

As N---) ~ ,  equation (3.34) formally yields 

1 f ~ (  (3.35) V =  - - -  lim p)eptdp + R,~. 
2zi N-*® ,=o 

CN 

The existence of V(t) in combination with the absolute and uniform conver- 
gence of the infinite series ensures the existence of the limit on the right- 
hand side of (3.35). We will show that 

(3.36) N--)®lim f V(p)ept dp - O . 
CN 

(3.38) 

If we eliminate cot y from the above equations, we obtain 

a l  a 2 a21 

Following Ting[11] we set 

( QP ) 1/2h = vexp(i~])' p + ~-- = + alp)  al 

vsin~] = 2NZ, (N = 1, 2, 3, ...). 

Squaring both sides of the first equation, equating the corresponding real 
and imaginary parts, and using the last relationship, we have 

(3.37) h2t ) ( i  1 /~ C0S0)__~2Z2(c0t2r]_ 1), 
(21 E C~ 1 

2 /~h2Q sin0 = 2~2NZ 2 c0t~]. 
( a l )  2 

0 = 0 .  
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Solving for e, we find that 

/~h e ~ cos 0 
(3.40) eN = + 

2a1(a1,~2 z2 /2  + h 2 ¢ ) )  

~h20 cos 0 + = 
+ 2a1(a~t~z2/2 + h20) 2aSl(a~;~z2/2 + h2e) ~ ' 

which, for any given N, is the representation in polar coordinates of a closed 
curve around the accumulation point. Thus eN ~ 0 as N --, ~ ; if 0 = 0, 

/~h2~ ~ /~,~2 z2 
(3.41) e N = al(al~2N3V2/2 + h2~) ) , E N . . . .  , a l  2(a1912z2/2 + h2Q) 

which implies that, for all integers N, the curves CN do not cut any 
pole. 

Let us evaluate the following quantities over the curves CN 

P[OP(/~ +alp)] lpa IplS~e~v ~ 

I 1 + sinh2 (2Nz c°t r/) 1 l~a = const. (~e-~) 1 ~ -  = 0 '  1 '-'Pz / } 
o 

Hence, 

(3.43) I i + k C ° t h ~ l  ~>0( 1 )-ira 

Now 

(3.44) L! Y e lPtt 0(  1 1 I/z 
f(P)ePtdPl <~c! lf(P)[e'P'tdP<~ ! - ~ -ff~N] e~ dO= 

7 61Pit 1 
= j 0 dO " 

Hence, relationship (3.36) is proved. The solution to the mixed initial-bound- 
ary value problem (3.1)-(3.4) is 

agh 4gQh s ~ exp(pnt) 
(3.45) V(t) = 

2 2 k 2 2Qv va ~=1 ;%(;% + + k) 

If we set a 1 = 0 in the above expression, we recover the classical result 
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for the Naiver-Stokes fluid (cf. Carslaw and Jaeger [17]). It  is worthwhile to 
observe that when a l  = 0, the accumulation point for the singularities is at 
infinity. Thus, we would have to use a different contour from that employed 
here. However, it is interesting that  we can recover the result form (3.45) by 
setting a l  = 0. 

Notice that the solution for large times, i.e. t--* ~ is 

agh 
V ( ~ )  - 

2it 

which is exactly the same as that for a lamina falling in a Navier-Stokes fluid. 
However, the pressure field in the fluid and the shear stress on the lamina 
would be different. In all the problems considered in this paper we find that 
the large time behavior for the velocity is identical for both the fluid of sec- 
ond grade and the Navier-Stokes fluid. 

Motion of  the liquid. 

On substituting (3.11) into (3.8), the Laplace transform of the velocity of 
the liquid is 

(3.46) ~(p, ~) = g 
sinh (s - x) ~/h 

p 2 ( 1 +  k c°th ~ ) sinh ~ 

Again, by the Inversion Theorem, following the line of reasoning in the pre- 
vious section, we find that 

1 f ~ e p t d p _  1 lim f ~ ( p ) e P t d p +  (3.47) v(x, t ) -  2~i 2 z i  N-~® 
L CN 

_ 1_~ limI ~( p)eptdp+ ~ R n .  
2~i n = o 

C 

To verify the convergence of the integral (3.47) in x and t for Re p > 0, we 
need an estimate for [vl given by 

(3.48) I~1 = g 

I sinh (s - x) ~/h I 
Ip2 (1 + k coth 



8 4  R. B A N D E L L I  - K. R. RAJAGOPAL 

We have already established in (3.25)-(3.29) that 

P2(1 + k c° th~)]  

r 

const. 
Ip 2 ] 

Now observe that 

[ sinh (s - x) ~/h 
(3.49) I 

]exp(- x--~h )(l +- exp[-2~(s-x)/h]) ] 
= <~ 

I1 - e x p ( - 2 ~ ) l  

exp ( - ~ - ~ ) ( 1  +exp(-2qg(s-x)/h)) 
~< = const..  

1 --- e x p ( - 2 ~ )  

Hence 

const. 
(3.5o) I~l -< - - ,  

Ipl 2 

which is sufficient to guarantee the convergence of the integral (3.47). 
Since 

' 0 Xl,,Z 1~ ~_-(~)h, 
Ipl--- '  ~ 

for sufficiently large I Pl it follows that 

sinh (s - x) ~/h 
(3.51) lim 

Lpl -~ = sinh 

smh[ s ] 
1 h]ol 

and, therefore, by virtue also of (3.32), 

0 1 
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This means that the integral (3.47) vanishes on the semi-circle in the left 
hand plane and that the initial and boundary conditions are met. 

Let us estimate the value of the integral along the curves CN 
where (2) 

sinh(s - x)~/h [ 
(3.52) ~ ~< 1, 

Inequalities (3.44) and (3.52) lead to 

(3.53) I 1----~- ~eptdpl ~<0( 1 I 
CN 

which means that, as N goes to infinity, the integral (3.53) vanishes. The 
poles of the integrand in (3.47) are the same as those of (3.12), therefore, after 
straightforward calculations, the velocity is computed as 

ag (s - x) 4Qgh 3 ~ exp(p,~t) s i n ~ ( s - x ) / h  
(3.54) v(x, t)= ~ va ~=1 ~.~(2~+k2+k) sin~ n 

The shear stress is given by 

ag 4Qgh 2 ~ (it + a l Pn) cos,~n (S - x)/h 
(3.55) v ~ =  - -  + - -  2-, exp(pnt).  

2 2 k 2 2 va n=l ~n(~n-}- +k) sin2, 

4. - Heavy cyl inder fa l l ing  under gravity inside a tube.  

At time t = 0 an infinitely long circular cylinder of radius Ro is released 
from rest and falls vertically under gravity along its axis in a coaxial tube 
of radius RI filled with a second grade fluid. 

Let ~ be the weight per unit length of the inner cylinder, Q the density of 
the liquid, v the kinematic viscosity, v and w respectively the velocity of the 
inner cylinder and the liquid. We shall assume the velocity field 

w = (0, o, w(r ,  t ) ) ,  

(e) Op. cit., Ting, p. 18. 
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For  the motion of the liquid the governing equations is (cf. [15]): 

( 4 . 1 )  i t /  + - + a l  + - - = O 
r a--r -~  - ~  r ~ O ~ ' 

with 

(4.2) w = 0,  r = R 1 , t > O, 

(4.3) w = V, r = Ro,  t > 0,  

(4.4) w = O, Ro ~< r ~< R1,  t = O, 

while for the motion of the cylinder, 

( 4 . 5 )  [ dv ~w + a l • 
o - -  = ag + 2~Ro it 3r 

dt r ~ 

R o < r < R 1 ,  t > O ,  

Once again we have assumed that  the pressure gradient is approximated by 
the static solution. 

The subsidiary equation derived from (4.1) after applying the Laplace 
t ransform is 

dew 1 d~  Qp 
( 4 . 6 )  - -  + - -  ~ = 0 ,  R o  < r < R 1 , 

dr 2 r dr it + a l p  

with 

(4.6a) ~ = O, r = R1, t > 0,  

(4.6b) w = v ,  r = Ro.  t > O, 

The bar indicates the Laplace transform of w. The solution of the two-point 
boundary value problem (4.6)-(4.6b) is 

Io (zr) Ko (zR1) - I0 (zR1) Ko (zr) 
(4.7) w = v 

Io (zRo) Ko (ZR1) - Io (zR1) Ko (zRo) 

w h e r e z = ( ~ p  )1~. 
i t + a l p  

Motion of  the cylinder. 

The subsidiary equation corresponding to (4.5) is 

(4.8) ap~ = ag + 2zRo(i t  + alp)  -~r =Ro' p r 
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and, after introducing the value of ~ into (4.8) from (4.7) and solving 
for 

(4.9) ~ = ~-~g [1 2~ql l i ( zR°)K°(zRi )+l° ( zRi )Ki ( zR°)]  - l a  z Io(zRo)Ko(zRi)Z-~o(Z~)~(-Z~o) 

Thus, by the Inversion Theorem, 

(4"10) v ( t ) -  g j e p t [ 2 z i  p'Z--- 1 2z~ 111(zR°)K°(zRi)+I°(zR1)Ki(zR°)] 
a z Io(zRo)Ko(zR1) Io(zRi)Ko(zRo) 

and, in compact form, 

g 
(4.11) v( t ) -  

2zi  

where 

(4.12) 

_ _ _  e pt N(z) dp 
£I p2 D(z---~ " 

D(z) = Z[Io(zRo) Ko(zR1) - Io(zR1) Ko(zRo)] + 

- k [ I 1  (zRo) Ko (zR1) + Io (zR1) K1 (zRo)], 

and 

(4.13) N(z) = Z[Io (zRo) Ko (zR1) - Io (zR1) Ko (zRo)], 

Here k = 2zQ/a. Let us estimate I~1: 

(4.14) Ig[y 1 2zQ lll(zRo)Ko(zR1)+Io(zR1)Kl(zRo)]-l[_ <<. 
a z Io(zRo)Ko(zR1) Io(zR1)Ko(zRo) 

<<. - ~  1 a [z[ Io(zRo)Ko(zR1) - ~(zR1)Ko(zRo) 

The inequality I a - b[ >i [ l al - [ b I [ has been employed in deriving (4.14). 
It can be shown (cf. Bandelli and Rajagopal [16]) that 

Io (zRo) Ko (zR1) - Io (zR1) Ko (zRo) 
Z 

I1 (zRo) Ko (zR1) + Io (zR1) K1 (zRo) 

is bounded and, therefore, 

eonst. 
I l-< ipl2 , 

which also ensures that the initial condition is met. Thus, the uniform con- 
vergence of the complex integral is assured. As in the previous section we 

- 1  

dp, 
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will evaluate the integral 

v * =  - - 1  I N 
2 z i  v ( p ,  t )ePt  d p  = n=o ~ R,~ . 

L+C+CN 

The singularities of the integrand in (4.11) are given by p = 0 (single pole) 
and by the zeros of the transcendental  equation 

(4.15) D ( z )  = O. 

In (4.15) set z = i2 and use the identities 

(4.15a) Io ( i x )  = Jo ( x ) ,  

(4.15b) 11 ( i x )  = / J 1  ( x ) ,  

1 
(4.15c) Ko ( i x )  = - - 

2 
zi  [Jo (x) - i Yo (x)], 

1 
(4.15d) K 1 ( i x )  = - - ~ [ J 1  ( x )  - i Y1 (x)]. 

2 

to find 

1 
D ( i2Ro)  = - - 

2 
z i  {)t [Jo (2Ro) Yo ()~R1) - Jo (XR1) Yo ()]a~o)] - 

- k  [J1 ()~Ro) Yo (~.R1) - Jo ( ~ 1 )  Y1 (~.Ro)]} • 

The transcendental equation leading to the roots of (4.15) is: 

(4.16) )l [Jo (2Ro) Yo (2R1) - Jo (~R1) Yo (2Ro)] - 

-- k [J1 ($Ro) Yo ( ~ 1 )  -- Jo ()~R1) Yl (XRo)] = 0 ,  

o r  

(4.17) 
Yo (,~R1) 2Yo (,~Ro) - kY~ (~Ro)  

Jo (~R1) XJo ()fRo) - k J  1 ()fRo) 

I t  can be shown that  the roots of this equation are all single, real, and in- 
finitely many(a) (cf. [17]) and can be ordered in an increasing sequence {)~n }. 

(a) Op. cir., Carslaw and Jaeger, p. 217. 



ON THE FALLING OF OBJECTS IN NON-NEWTONIAN FLUIDS 89 

Hence the poles of the integrand of (4.10) or (4.11) are 

Po = 0, P n -  , (n = 1, 2, ...) 
QTal~2n 

where )~n is the n-th positive root of (4.16). Clearly, they are concentrated in 
the interval - /~/al  <<- p <<- 0 with p = - t r ia l  as the accumulation point. 

Straightforward computation leads to the residues Rn at p~ as fol- 
lows 

(4.18) 

~Ro- ag log R1 
2~/~ r 

2g 1 
R n - 

exp (pn t) 

V 

2g 1 

"~2n Jo(;~,~Ro)- k 
).~Ro 2 -~, J1 (2nRo) 

- 2  + kRo + - -  
k ~ Jo(]~nRI)Vo(~,nR O) 

exp (p,  t) Vo (2~Ro) 

( )t~Ro 2) 2 Jo( ; tnRo) - -~  Jl(2nRo) 

Vo(2nRo) kRo + ~ - - ~ Jo(2nR~) 

where 

Vo(~.nRo) = Jo(]tnRo) Yo(]tnR1) - Jo(]tnR1) Yo(~.nRo) (n = 1, 2, ...). 

It easy to show that 

( (4.19) V o ( ~ R o )  kR. + ~ - - -~ 
Jo (,~nRo) - (k/,~,~) J1 (~,~ Ro) 

Jo(~nR1) 

- 2 { ( k  2 + ) ~  - 2 ( k / R o ) ) J ~  (~nR1)  - [k J1 (2~Ro)  - ;t~Jo (~nRo)]  2 } 

zion Jo (~nR1)[kJ1 ()~.Ro) - 2~Jo (2"Ro)] 

By virtue of the last equality, R~ can also be expressed as 

(4.20) Rn = 

zg Vo(~nRo)Jo(;~,R1)[kJl(;%Ro) - )~Jo ()lnRo)] 
exp (p~t). ( 2k) r]tn k 2 + ' ~ -  Ro J~(~'~R1)-[kJl(~'nR°)-~"J°(~"R°)]2 
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Finally, 

(4.21) v( t )=  ag log R1 
N 2og 

+ E  
n = l  ~ / ~  

exp (pn t) 

kRo + 2~Ro 2) 2 
k z 

Jo ().nRo) - (k/2n)J1 (2"Ro) 

Jo (2 n Ra) Vo (2. Ro) 

By letting N - ,  ~ ,  we have formally 

- ~ ~e~dp • 

(4.22) v(t) = ag log __+R1 ~ ____.2g 1 
2ztt Ro 

e x p ( p , t )  
- lira [~ePtdp .  

(kRo + 22R° 2) 2 Jo(2nRo)-(k / ; t ,OJ~(~tnRo)  N-~® 
_ _  - -  C N 

k xc Jo(2 ,R1)Vo(2nRo)  

Arguments similar to those used in the previous section lead to 

lira ~ ~ePt dp = O . 
N . . - ~  oo J 

CN 

We now prove that the series in (4.22) converges absolutely and uniformly in 
r and t and is a valid expression for v(t). 

Since J1 ()A~o) Yo ()~R1) - Jo ()~Ri) Y1 ( ~ o )  is bounded, as 2 --) ~ the tran- 
scendental equation (4.16) reduces to 

(4.23) Jo (~Ro) Yo (~RI) - Jo ()~R1) Yo(2Ro) = O. 

Therefore, if {a~} (n = 1, 2, ...) denotes the increasing sequence of roots of 
the trascendental equation (4.23), it is 

lira 12n - an ] = 0  ---) O(2n) = O(an).  
n - . . ~  oo 

i.e., the roots of the transcendental equation (4.16) are the same order as 
those of the equation 

(4.24) Jo ()~Ro) Yo (~.R1) - Jo (~RI) Yo ()~Ro) = 0. 

As n - ~  ~ (a) (cf.[18]), a n / n  = 0(1) and 2 n / n  = 0(1). Now, with the aid of 

(a) Op. cit., Gray and Mathews, p. 261. 
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the asymptotic expansions (cf. Hildebrand [19]) 

(4.24a) = cos x 4 2 ' 

(4.24b) ( Yp(x)= 2 sin x -  ~ - - ~ -  , 

we find that 

(4.25) Vo (2,~Ro) 

and 

(4.26) 
Jo (2"Ro) 

Jo( lnRO 

RRf-~, cos (2nR o - (~/4)) 

COS (2nU 1 (z/4)) 
= o ( 1 ) .  

Thus, as ~--* oo 

(4.27) 
Jo (2nRo) - (k/2,~) J1 (2,~ Ro) 

JO(2nR1) Vo(2nRO) 

2nJ  0 (2~Ro) - k J1 (2~Ro) 

2.Jo (2~R1) Vo (2~Ro) 

const.2 n cos (2~ - z/4) 

COS (2nR 1 - z/4) sin [2n (Ro - R1)] 
- 0 ( 2 0 ,  

because 

kJ l (2~Ro)  

2.Jo(2~R~) Vo(2nRo) 
= 0(1). 

Therefore 

(4.28) kRo + 2Z'R° 2) 2 
k er 

Jo (2nRo) - (k/2.)J1 (2.Ro) 

Jo(2~R1) Vo(2.Ro) 
= O(2~n) ,  

and 

2g 1 exp(p . t )  Vo(2.Ro) 

22 ( 2Z.Ro ) 2 
Vo(2~Ro) kRo + 2 

k 

Jo (2Ro) - (k /2 . )  J1 (2 n Ro) 

Jo(~nR1) 
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Hence, the series (4.22) converges in t. Observe that cos(4nR1-  z /4)  and 
sin [4n (Ro - R1)] are 0(1) and do not vanish because they respectively repre- 
sent the asymptotic expansions of Jo(4nR1) and Vo(4nRo)which themselves 
do not vanish. In fact, suppose that J0(4R1) would vanish for some 4n, then 
the transcendental equation (4.17) would imply that 

(4.29) [4nJo(4nRo) - k J1 (4nRo)] Y O ( 4 n R 1 )  =- O. 

Now, Yo(4nR1) cannot vanish because Yo and Jo do not have common zeros, 
hence 

(4.30) 4nJo(4nRo) - kJl(4nRo) = 0 ,  

which is not possible, for all the zeros of (4.30) are, in general, different from 
those of Jo(2nR1). 

Now suppose that Vo(4Ro) vanishes for some 4n, which, therefore, satis- 
fies equation (4.24): equation (4.16) would imply that 

(4.31) J1 (4nRo) Yo (4 nR1) - Jo (4nR1) Y1 (4nRo) =- O. 

Yet, equations (4.24) and (4.31) do not have any common roots; in fact, if they 
did, then by (4.24) 

Jo (4Ro) Jo (4R1) 
(4.32) = 

Yo ( ~ o )  Yo (4R1) ' 

and by (4.31) 

J1 (4Ro) Jo (4R1) 
(4.33) 

Y1 (4Ro) Yo (4R1) ' 

which combined would yield 

(4.34) 
Jo (4Ro) J1 (4Ro) 

Yo (4Ro) Y1 (4Ro) 
- -  : Jo (2Ro) Y1 (4Ro) - J1 (2Ro) Yo (4Ro) = 0. 

However, 

2 
(4.35) Jn (4Ro) Yn + 10.Ro) - J n  + 1 (4Ro) Yn (4Ro) - - -  , 

zARo 

and thus V o ( 4 R o )  does not vanish for any 4n. 
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The final expression of the velocity of the cylinder is 

(4.36) v(t) = ag log R--L + 
2ztz Ro 

+ ~ 2¢)g 

n=l tt~'~ (kR° + ~2nR----~° - 2) - 

exp ( p~ t ) 

2 Jo(~,~Ro) - ( k / ~ ) J l ( 2 ~ R o )  

Jr Jo(~,nR1) Vo(~,nRo) 

Notice that the terminal velocity of the cylinder is 

v('t) = ag log R--L. 
2ztt Ro 

Motion of  the liquid. 

The velocity of the liquid is given by the Inversion Theorem as 

g 1 
(4.37) w(r, t) = [ 

2~i £ p--~" 

I o (zr) K o (zR1) - Io (zR1) Ko (zr) 

Z(Io (zRo) Ko (zR1) - Io (ZUl) Ko ( zRo) )  - k(I1 (zRo) Ko (zR1) + I0 (zRI) Ko (zRo)) 

e pt Up, 

The integrand in (4.37) is formally identical to that of (4.20), with the dif- 
ference that r replaces Ro in the numerator. Therefore, following the same 
line of reasoning that led to (4.36), the integral (4.37) can be computed as 

w(r, t )=  ag log R-L - ~  2g 
2ztt r n =  l F~,2n 

2 - kRo 

exp (pn t ) 

)~Ro 
k 

2 Jo(;~nRo) - (k/2,~)J1 (]~,~Ro) + - -  
xc Jo(,~nR1) Vo(,~nr) 

_ ag log R--L - ~  zg 
2ztt r ~=1 v)~ 

Vo ()~ r) Jo (2n R0[kJ1 (2~Ro) - 2n Jo ()~Ro)] 
exp (Pn t), 

(k 2 + ;L~ - 2 (k/Ro)) J~ ()~nR1) - [k J1 (2nRo) - ;~Jo ()~.Ro)] 2 
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where  

(4.38) 

R. BANDELLI - K. R. RAJAGOPAL 

Vo(~nr) = Jo(~nr) Yo(2nR1) - Jo(XnR1) Yo(X.Ro).  

SUNTO 

Si studia la caduta di una lamina fra due piastre parallele contenenti un fluido di sec- 
ondo grado. La velocit~ delia lamina e del fluido sono determinate risolvendo un proble- 
ma misto al contorno - -  a valori iniziali per mezzo della trasformata di Laplace - - .  Si 
studia poi la caduta di un cilindro in un tubo contenente un fluido di secondo grado uti- 
lizzando ancora la trasformata di Laplace e anche in questo caso si determina la 
soluzione esatta. 

ABSTRACT 

The falling of a lamina in between two parallel plates containing a fluid of second 
grade is studied. The velocity of the lamina and the fluid are determined by solving the 
mixed initial--boundary value problem using Laplace transform. Explicit exact sol- 
utions are obtained for the velocity of the lamina and the fluid. Next, the falling of a 
cylinder in a tube containing a fluid of second grade is analyzed using Laplace trans- 
form, and once again exact solutions are found. 
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