Math 6345 - Advanced ODEs

Elementary ODE Review

1 Linear Systems

1.1 Homogeneous equations

A linear system of equations

$$
\begin{equation*}
\frac{d x}{d t}=a x+b y, \quad \frac{d y}{d t}=c x+d y \tag{1}
\end{equation*}
$$

can be can be written as a matrix ODE

$$
\begin{equation*}
\frac{d \bar{x}}{d t}=A \bar{x} \tag{2}
\end{equation*}
$$

where $\bar{x}=\binom{x}{y}$ and $\bar{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. If we consider solutions of the form

$$
\bar{x}=\bar{c} \mathrm{e}^{\lambda t},
$$

then after substitution into (2) we obtain

$$
\lambda \bar{c} \mathrm{e}^{\lambda t}=A \bar{c} \mathrm{e}^{\lambda t}
$$

from which we deduce

$$
\begin{equation*}
(\lambda I-A) \bar{c}=0 \tag{3}
\end{equation*}
$$

In order to have nontrivial solutions \bar{c}, we require that

$$
\begin{equation*}
|\lambda I-A|=0 \tag{4}
\end{equation*}
$$

This is the eigenvalue-eigenvector problem. If

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then (4) becomes

$$
\lambda^{2}-(a+d) \lambda+a d-b c=0
$$

from which we have three cases:
(i) two distinct eigenvalues
(ii) two repeated eigenvalues,
(iii) two complex eigenvalues

We consider examples of each.

Example 1 - two distinct eigenvalues.
If

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{ll}
1 & 1 \tag{5}\\
2 & 0
\end{array}\right) \bar{x}
$$

then the characteristic equation is

$$
\left|\begin{array}{rr}
\lambda-1 & -1 \\
-2 & \lambda
\end{array}\right|=\lambda^{2}-\lambda-2=(\lambda+1)(\lambda-2)=0
$$

from which we obtain the eigenvalues $\lambda=-1$ and $\lambda=2$.

Case 1: $\lambda=-1$
From (3) we have

$$
\left(\begin{array}{ll}
-2 & -1 \\
-2 & -1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain after expanding $2 c_{1}+c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{1}{-2} .
$$

Case 2: $\lambda=2$
From (3) we have

$$
\left(\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain after expanding $c_{1}-c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{1}{1} .
$$

The general solution to (5) is then given by

$$
\begin{equation*}
\bar{x}=c_{1}\binom{1}{-2} \mathrm{e}^{-\mathrm{t}}+\mathrm{c}_{2}\binom{1}{1} \mathrm{e}^{2 \mathrm{t}} . \tag{6}
\end{equation*}
$$

Example 2 - Two repeated eigenvalues.
If

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{rr}
1 & -1 \tag{7}\\
1 & 3
\end{array}\right) \bar{x}
$$

then the characteristic equation is

$$
\left|\begin{array}{cc}
\lambda-1 & 1 \\
-1 & \lambda-3
\end{array}\right|=\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}=0
$$

from which we obtain the eigenvalues $\lambda=2$ and $\lambda=2$.
Case 1: $\lambda=2$
From (3) we have

$$
\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain after expanding $c_{1}+c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{1}{-1} .
$$

so, we have one solution

$$
\bar{x}_{1}(t)=\binom{1}{-1} e^{2 t}
$$

For the second solution we might try

$$
\bar{x}_{2}(t)=\bar{u} t e^{2 t}
$$

but substitution into (7) shows that \bar{u} is identically zero! For the second solution, we look for solutions of the form

$$
\bar{x}_{2}(t)=\bar{u} t e^{2 t}+\bar{v} e^{2 t} .
$$

Substitution into (7) gives

$$
\begin{aligned}
(2 I-A) \bar{u} & =0 \\
(2 I-A) \bar{v} & =-\bar{v} .
\end{aligned}
$$

The first of (8) is just the eigenvalue-vector problem we already solved, so

$$
\bar{u}=\binom{1}{-1}
$$

From the second of (8) we have

$$
\left(\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{-1}{1}
$$

or

$$
v_{1}+v_{2}=-1,
$$

and so any solution of this will work. Here, we choose

$$
\bar{v}=\binom{0}{-1}
$$

and so the second independent solution is

$$
\bar{x}_{2}(t)=\binom{1}{-1} t e^{2 t}+\binom{0}{-1} e^{2 t}
$$

and the general solution is

$$
\begin{equation*}
\bar{x}(t)=c_{1}\binom{1}{-1} t e^{2 t}+c_{2}\left[\binom{1}{-1} t e^{2 t}+\binom{0}{-1} e^{2 t}\right] \tag{8}
\end{equation*}
$$

Example 3 - Two complex eigenvalues.
If

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{cc}
6 & -1 \tag{9}\\
5 & 4
\end{array}\right) \bar{x}
$$

then the characteristic equation is

$$
\left|\begin{array}{cc}
\lambda-6 & 1 \\
-5 & \lambda-4
\end{array}\right|=\lambda^{2}-10 \lambda+29=0
$$

from which we obtain the eigenvalues $\lambda=5 \pm 2 i$.
Case 1: $\lambda=5+2 i$
From (3) we have

$$
\left(\begin{array}{cc}
-1+2 i & 1 \\
-5 & 1+2 i
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain after expanding $-(1-2 i) c_{1}+c_{2}=0$, the eigenvector

$$
\bar{c}=\binom{1}{1-2 i} .
$$

Case 2: $\lambda=5-2 i$
From (3) we have

$$
\left(\begin{array}{cc}
-1-2 i & 1 \\
-5 & 1-2 i
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain after expanding $-(1+2 i) c_{1}+c_{2}=0$, the eigenvector

$$
\bar{c}=\binom{1}{1+2 i} .
$$

Thus, the two solutions are

$$
\bar{x}_{1}(t)=\binom{1}{1-2 i} e^{(5+2 i) t}, \quad \bar{x}_{2}(t)=\binom{1}{1+2 i} e^{(5-2 i) t}
$$

The general solution is therefore

$$
\bar{x}(t)=k_{1}\binom{1}{1-2 i} e^{(5+2 i) t}+k_{2}\binom{1}{1+2 i} e^{(5-2 i) t}
$$

As this is still complex, it is necessary to do some more work. We re-write this as

$$
\begin{aligned}
\bar{x}(t) & =k_{1}\left[\binom{1}{1}-\binom{0}{2} i\right] e^{5 t}(\cos 2 t+i \sin 2 t) \\
& +k_{2}\left[\binom{1}{1}+\binom{0}{2} i\right] e^{5 t}(\cos 2 t-i \sin 2 t)
\end{aligned}
$$

Expanding and letting

$$
k_{1}+k_{2}+c_{1}, \quad\left(k_{1}-k_{2}\right) i=c_{2}
$$

gives

$$
\begin{align*}
\bar{x}(t) & =c_{1} e^{5 t}\left[\binom{1}{1} \cos 2 t+\binom{0}{2} \sin 2 t\right] \\
& +c_{2} e^{5 t}\left[\binom{1}{1} \sin 2 t-\binom{0}{2} \cos 2 t .\right] \tag{10}
\end{align*}
$$

1.2 The Fundamental Matrix

The solutions given in (6), (8) and (10) can all be written as

$$
\begin{equation*}
\bar{x}=\Phi \bar{c} . \tag{11}
\end{equation*}
$$

In the first solution (6)

$$
\Phi=\left(\begin{array}{cc}
e^{-t} & e^{2 t} \tag{12}\\
-2 e^{-t} & e^{2 t}
\end{array}\right)
$$

in the second solution (8)

$$
\Phi=\left(\begin{array}{cc}
t e^{2 t} & t e^{2 t} \tag{13}\\
-t e^{2 t} & -(t+1) e^{2 t}
\end{array}\right),
$$

and, in the third solution (10)

$$
\Phi=\left(\begin{array}{cc}
e^{5 t} \cos 2 t & e^{5 t} \sin 2 t \tag{14}\\
e^{5 t}(\cos 2 t+\sin 2 t) & e^{5 t}(\cos 2 t-\sin 2 t)
\end{array}\right)
$$

noting that the fundamental matrix satisfies the matrix ODE

$$
\begin{equation*}
\frac{d \Phi}{d t}=A \Phi \tag{15}
\end{equation*}
$$

1.3 Variation of parameters for systems

We now wish to solve the nonhomogeneous system,

$$
\begin{equation*}
\frac{d \bar{x}}{d t}=A \bar{x}+\bar{f}(t) . \tag{16}
\end{equation*}
$$

The solution comprises of two parts: the complementary solution and the particular solution. The complementary solution is found by solving

$$
\frac{d \bar{x}}{d t}=A \bar{x},
$$

and the particular, by any method. For single equations, we introduced the variation of parameters. In this technique, we replaced the constants c_{1} and c_{2} in the complementary solutions with functions u and v and then create two equations for these unknowns. For systems, we do the same. The complementary solution is

$$
\bar{x}=\Phi \bar{c}
$$

and for the particular solution, we seek a solution of the form

$$
\begin{equation*}
\bar{x}=\Phi \bar{u} . \tag{17}
\end{equation*}
$$

where \bar{u} is a vector function to be determined. Substitution of (17) into (16) and solving for $\dot{\bar{u}}$ gives

$$
\bar{u}=\int \Phi^{-1} \bar{f} d t
$$

thus giving the particular solution as

$$
\bar{x}_{p}(t)=\Phi \int \Phi^{-1} \bar{f} d t
$$

and the general solution as

$$
\bar{x}(t)=\Phi \bar{c}+\Phi \int \Phi^{-1} \bar{f} d t
$$

Example 4

Consider

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{ll}
3 & -2 \tag{18}\\
2 & -2
\end{array}\right) \bar{x}+\binom{6 e^{2 t}}{0} .
$$

The characteristic equation is

$$
\left|\begin{array}{cc}
\lambda-3 & -2 \\
-2 & \lambda+2
\end{array}\right|=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)=0
$$

from which we obtain the eigenvalues $\lambda=2$ and $\lambda=-1$.

Case 1: $\lambda=2$
From (3) we have

$$
\left(\begin{array}{ll}
-1 & 2 \\
-2 & 4
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain after expanding $c_{1}-2 c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{2}{1} .
$$

Case 2: $\lambda=-1$
From (3) we have

$$
\left(\begin{array}{ll}
-4 & 1 \\
-2 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain after expanding $2 c_{1}-c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{1}{2} .
$$

The complementary solution to (18) is then given by

$$
\bar{x}=c_{1}\binom{2}{1} \mathrm{e}^{2 \mathrm{t}}+\mathrm{c}_{2}\binom{1}{2} \mathrm{e}^{-\mathrm{t}} .
$$

The associated fundamental matrix is then

$$
\Phi=\left(\begin{array}{cc}
2 e^{2 t} & e^{-t} \\
e^{2 t} & 2 e^{-t}
\end{array}\right)
$$

The determinant of Φ is $\operatorname{det} \Phi=3 e^{t}$, and the inverse is given by

$$
\Phi^{-1}=\frac{1}{3 e^{t}}\left(\begin{array}{cc}
2 e^{-t} & -e^{-t} \\
-e^{2 t} & 2 e^{2 t}
\end{array}\right) .
$$

This then gives

$$
\begin{aligned}
\Phi^{-1} \bar{f} & =\frac{1}{3 e^{t}}\left(\begin{array}{cc}
2 e^{-t} & -e^{-t} \\
-e^{2 t} & 2 e^{2 t}
\end{array}\right)\binom{6 e^{t}}{0} \\
& =\binom{4 e^{-t}}{-2 e^{2 t}} .
\end{aligned}
$$

Integrating gives

$$
\int \Phi^{-1} \bar{f} d t=\binom{-4 e^{-t}}{-e^{2 t}}
$$

and multiplying by Φ gives the particular solution

$$
\begin{aligned}
\bar{x}_{p}(t) & =\Phi \int \Phi^{-1} \bar{f} d t \\
& =\left(\begin{array}{cc}
2 e^{2 t} & e^{-t} \\
e^{2 t} & 2 e^{-t}
\end{array}\right)\binom{-4 e^{-t}}{-e^{2 t}} \\
& =-\binom{9 e^{t}}{6 e^{t}}
\end{aligned}
$$

Therefore, the general solution is

$$
\bar{x}=\left(\begin{array}{cc}
2 e^{2 t} & e^{-t} \\
e^{2 t} & 2 e^{-t}
\end{array}\right)\binom{c_{1}}{c_{2}}-\binom{9}{6} e^{t},
$$

