
Math 6345 - Advanced ODEs

Elementary ODE Review

1 Linear Systems

1.1 Homogeneous equations

A linear system of equations

dx
dt

= ax + by,
dy
dt

= cx + dy, (1)

can be can be written as a matrix ODE

dx̄
dt

= Ax̄ (2)

where x̄ =

(
x
y

)
and Ā =

(
a b
c d

)
. If we consider solutions of the form

x̄ = c̄eλt,

then after substitution into (2) we obtain

λc̄ eλt = A c̄ eλt

from which we deduce

(λI − A) c̄ = 0. (3)

In order to have nontrivial solutions c̄, we require that

|λI − A| = 0. (4)

This is the eigenvalue-eigenvector problem. If

A =

(
a b
c d

)
then (4) becomes

λ2 − (a + d)λ + a d− b c = 0,

1



from which we have three cases:

(i) two distinct eigenvalues
(ii) two repeated eigenvalues,
(iii) two complex eigenvalues

We consider examples of each.

Example 1 − two distinct eigenvalues.

If
dx̄
dt

=

(
1 1
2 0

)
x̄ (5)

then the characteristic equation is∣∣∣∣ λ− 1 −1
−2 λ

∣∣∣∣ = λ2 − λ− 2 = (λ + 1)(λ− 2) = 0,

from which we obtain the eigenvalues λ = −1 and λ = 2.

Case 1: λ = −1

From (3) we have (
−2 −1
−2 −1

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain after expanding 2c1 + c2 = 0 and we deduce the eigenvector

c̄ =
(

1
−2

)
.

Case 2: λ = 2

From (3) we have (
1 −1
−2 2

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain after expanding c1 − c2 = 0 and we deduce the eigenvector

c̄ =
(

1
1

)
.

The general solution to (5) is then given by

x̄ = c1

(
1
−2

)
e−t + c2

(
1
1

)
e2t. (6)
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Example 2 − Two repeated eigenvalues.

If
dx̄
dt

=

(
1 −1
1 3

)
x̄ (7)

then the characteristic equation is∣∣∣∣ λ− 1 1
−1 λ− 3

∣∣∣∣ = λ2 − 4λ + 4 = (λ− 2)2 = 0,

from which we obtain the eigenvalues λ = 2 and λ = 2.

Case 1: λ = 2

From (3) we have (
1 1
−1 −1

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain after expanding c1 + c2 = 0 and we deduce the eigenvector

c̄ =
(

1
−1

)
.

so, we have one solution

x̄1(t) =
(

1
−1

)
e2t.

For the second solution we might try

x̄2(t) = ū t e2t,

but substitution into (7) shows that ū is identically zero! For the second solution, we look

for solutions of the form

x̄2(t) = ū t e2t + v̄ e2t.

Substitution into (7) gives

(2I − A) ū = 0,

(2I − A) v̄ = −v̄.

The first of (8) is just the eigenvalue-vector problem we already solved, so

ū =

(
1
−1

)
From the second of (8) we have(

1 1
−1 −1

)(
v1
v2

)
=

(
−1

1

)
,
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or

v1 + v2 = −1,

and so any solution of this will work. Here, we choose

v̄ =

(
0
−1

)
and so the second independent solution is

x̄2(t) =
(

1
−1

)
t e2t +

(
0
−1

)
e2t

and the general solution is

x̄(t) = c1

(
1
−1

)
t e2t + c2

[(
1
−1

)
t e2t +

(
0
−1

)
e2t
]

(8)

Example 3 − Two complex eigenvalues.

If
dx̄
dt

=

(
6 −1
5 4

)
x̄ (9)

then the characteristic equation is∣∣∣∣ λ− 6 1
−5 λ− 4

∣∣∣∣ = λ2 − 10λ + 29 = 0,

from which we obtain the eigenvalues λ = 5± 2i.

Case 1: λ = 5 + 2i

From (3) we have (
−1 + 2i 1
−5 1 + 2i

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain after expanding −(1− 2i)c1 + c2 = 0, the eigenvector

c̄ =
(

1
1− 2i

)
.

Case 2: λ = 5− 2i

From (3) we have (
−1− 2i 1
−5 1− 2i

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain after expanding −(1 + 2i)c1 + c2 = 0, the eigenvector

c̄ =
(

1
1 + 2i

)
.
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Thus, the two solutions are

x̄1(t) =
(

1
1− 2i

)
e(5+2i)t, x̄2(t) =

(
1

1 + 2i

)
e(5−2i)t.

The general solution is therefore

x̄(t) = k1

(
1

1− 2i

)
e(5+2i)t + k2

(
1

1 + 2i

)
e(5−2i)t.

As this is still complex, it is necessary to do some more work. We re-write this as

x̄(t) = k1

[(
1
1

)
−
(

0
2

)
i
]

e5t (cos 2t + i sin 2t)

+ k2

[(
1
1

)
+

(
0
2

)
i
]

e5t (cos 2t− i sin 2t) .

Expanding and letting

k1 + k2 + c1, (k1 − k2) i = c2,

gives

x̄(t) = c1e5t
[(

1
1

)
cos 2t +

(
0
2

)
sin 2t

]
+ c2e5t

[(
1
1

)
sin 2t−

(
0
2

)
cos 2t.

]
(10)

1.2 The Fundamental Matrix

The solutions given in (6), (8) and (10) can all be written as

x̄ = Φc̄. (11)

In the first solution (6)

Φ =

(
e−t e2t

−2e−t e2t

)
, (12)

in the second solution (8)

Φ =

(
t e2t t e2t

−t e2t −(t + 1) e2t

)
, (13)

and, in the third solution (10)

Φ =

(
e5t cos 2t e5t sin 2t

e5t (cos 2t + sin 2t) e5t (cos 2t− sin 2t)

)
, (14)

noting that the fundamental matrix satisfies the matrix ODE

dΦ
dt

= AΦ (15)
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1.3 Variation of parameters for systems

We now wish to solve the nonhomogeneous system,

dx̄
dt

= Ax̄ + f̄ (t). (16)

The solution comprises of two parts: the complementary solution and the particular so-

lution. The complementary solution is found by solving

dx̄
dt

= Ax̄,

and the particular, by any method. For single equations, we introduced the variation of

parameters. In this technique, we replaced the constants c1 and c2 in the complementary

solutions with functions u and v and then create two equations for these unknowns. For

systems, we do the same. The complementary solution is

x̄ = Φc̄.

and for the particular solution, we seek a solution of the form

x̄ = Φū. (17)

where ū is a vector function to be determined. Substitution of (17) into (16) and solving

for ˙̄u gives

ū =
∫

Φ−1 f̄ dt,

thus giving the particular solution as

x̄p(t) = Φ
∫

Φ−1 f̄ dt,

and the general solution as

x̄(t) = Φc̄ + Φ
∫

Φ−1 f̄ dt.

Example 4

Consider
dx̄
dt

=

(
3 −2
2 −2

)
x̄ +

(
6e2t

0

)
. (18)

The characteristic equation is∣∣∣∣ λ− 3 −2
−2 λ + 2

∣∣∣∣ = λ2 − λ− 2 = (λ− 2)(λ + 1) = 0,
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from which we obtain the eigenvalues λ = 2 and λ = −1.

Case 1: λ = 2

From (3) we have (
−1 2
−2 4

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain after expanding c1 − 2c2 = 0 and we deduce the eigenvector

c̄ =
(

2
1

)
.

Case 2: λ = −1

From (3) we have (
−4 1
−2 1

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain after expanding 2c1 − c2 = 0 and we deduce the eigenvector

c̄ =
(

1
2

)
.

The complementary solution to (18) is then given by

x̄ = c1

(
2
1

)
e2t + c2

(
1
2

)
e−t.

The associated fundamental matrix is then

Φ =

(
2 e2t e−t

e2t 2 e−t

)
.

The determinant of Φ is det Φ = 3et, and the inverse is given by

Φ−1 =
1

3et

(
2 e−t −e−t

−e2t 2 e2t

)
.

This then gives

Φ−1 f̄ =
1

3et

(
2 e−t −e−t

−e2t 2 e2t

)(
6et

0

)
,

=

(
4 e−t

−2 e2t

)
.

Integrating gives ∫
Φ−1 f̄ dt =

(
−4 e−t

−e2t

)
,
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and multiplying by Φ gives the particular solution

x̄p(t) = Φ
∫

Φ−1 f̄ dt

=

(
2 e2t e−t

e2t 2 e−t

)(
−4 e−t

−e2t

)
= −

(
9 et

6et

)
,

Therefore, the general solution is

x̄ =

(
2 e2t e−t

e2t 2 e−t

)(
c1
c2

)
−
(

9
6

)
et,

8


