BOUNDS FOR SYSTEMS OF LINES

Ebrahim Ghaderpour

University of Lethbridge

March 2012

Outline

1 Jacobi polynomials

2 Special bounds for A-set (Delsarte, Goethals and Seidel)

3 Absolute bounds for A-set (Delsarte, Goethals and Seidel)

4 Recent results

Question

How many equiangular unit vectors are there in \mathbb{R}^{2} and \mathbb{R}^{3} ?

Definition

Let V be the space of all polynomials and let $f, g \in V$. We define the inner product between f, g as

$$
\langle f, g\rangle=\int_{a}^{b} w(x) f(x) g(x) d x
$$

where $w(x)$ is a weight function.

■ In \mathbb{R}^{n}, there are some special type of polynomials called Jacobi polynomial which are given by

$$
P_{0}(x)=1,
$$

$$
P_{1}(x)=\frac{(n+2)(n x-1)}{2}
$$

$$
P_{2}(x)=\frac{n(n+6)\left((n+2)(n+4) x^{2}-6(n+2) x+3\right)}{24}
$$

$$
\vdots
$$

$P_{k}(x)=\cdots$

- These polynomials form a basis for the linear space of all polynomials of degree $\leqslant k$.

■ In \mathbb{R}^{n}, there are some special type of polynomials called Jacobi polynomial which are given by

$$
P_{0}(x)=1,
$$

$$
P_{1}(x)=\frac{(n+2)(n x-1)}{2}
$$

$$
P_{2}(x)=\frac{n(n+6)\left((n+2)(n+4) x^{2}-6(n+2) x+3\right)}{24}
$$

$$
\vdots
$$

$P_{k}(x)=\cdots$

- These polynomials form a basis for the linear space of all polynomials of degree $\leqslant k$.
- This basis is orthogonal on $[0,1]$ under a suitable weight function.

example

In \mathbb{R}^{2}, we have $P_{0}(x)=1, P_{1}(x)=2(2 x-1)$. So

$$
\begin{aligned}
\left\langle P_{0}(x), P_{1}(x)\right\rangle & =\langle 1,2(2 x-1)\rangle \\
& =\int_{0}^{1} 2(2 x-1)(1-x)^{-\frac{1}{2}} x^{-\frac{1}{2}} d x \\
& \left.=-4 \sqrt{x-x^{2}}\right]_{0}^{1} \\
& =0
\end{aligned}
$$

example

In \mathbb{R}^{2}, we have $P_{0}(x)=1, P_{1}(x)=2(2 x-1)$. So

$$
\begin{aligned}
\left\langle P_{0}(x), P_{1}(x)\right\rangle & =\langle 1,2(2 x-1)\rangle \\
& =\int_{0}^{1} 2(2 x-1)(1-x)^{-\frac{1}{2}} x^{-\frac{1}{2}} d x \\
& \left.=-4 \sqrt{x-x^{2}}\right]_{0}^{1} \\
& =0
\end{aligned}
$$

- In this example the suitable weight is $(1-x)^{-\frac{1}{2}} x^{-\frac{1}{2}}$, and $P_{0}(x), P_{1}(x)$ make a basis for the space of polynomials of degree $\leqslant 1$.

Outline

1 Jacobi polynomials

2 Special bounds for A-set (Delsarte, Goethals and Seidel)

3 Absolute bounds for A-set (Delsarte, Goethals and Seidel)

4 Recent results

Special bounds for A-set (Delsarte, Goethals and Seidel)

Definition

Let X be a set of unit vectors in \mathbb{R}^{n} and

$$
A=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}
$$

a set of all non-negative numbers all less than 1 .

Special bounds for A-set (Delsarte, Goethals and Seidel)

Definition

Let X be a set of unit vectors in \mathbb{R}^{n} and

$$
A=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}
$$

a set of all non-negative numbers all less than 1 . X is called an A-set if for any $u, v \in X$,

$$
|\langle u, v\rangle|^{2} \in A .
$$

Special bounds for A-set (Delsarte, Goethals and Seidel)

Theorem

Let $F(x)$ be a polynomial of degree k such that

$$
\forall \alpha \in A ; \quad F(\alpha) \leqslant 0
$$

Write $F(x)=a_{0} P_{0}(x)+a_{1} P_{1}(x)+\cdots+a_{k} P_{k}(x)$, and assume that $a_{0}>0$ and $a_{i} \geqslant 0$ for $1 \leqslant i \leqslant k$. Then

$$
|X| \leqslant \frac{F(1)}{a_{0}}
$$

Special bounds for A-set (Delsarte, Goethals and Seidel)

Theorem

Let $F(x)$ be a polynomial of degree k such that

$$
\forall \alpha \in A ; \quad F(\alpha) \leqslant 0
$$

Write $F(x)=a_{0} P_{0}(x)+a_{1} P_{1}(x)+\cdots+a_{k} P_{k}(x)$, and assume that $a_{0}>0$ and $a_{i} \geqslant 0$ for $1 \leqslant i \leqslant k$. Then

$$
|X| \leqslant \frac{F(1)}{a_{0}}
$$

- One of the best polynomials that satisfies all conditions in the previous theorem is the annihilator of A which is defined by

$$
\left(\frac{x-\alpha_{1}}{1-\alpha_{1}}\right) \cdot\left(\frac{x-\alpha_{2}}{1-\alpha_{2}}\right) \cdot \cdots \cdot\left(\frac{x-\alpha_{s}}{1-\alpha_{s}}\right) .
$$

example

In \mathbb{R}^{n}, if $A=\{\alpha\}, 0 \leqslant \alpha<\frac{1}{n}$, we take

$$
\begin{aligned}
F(x)=\frac{x-\alpha}{1-\alpha} & =a_{0} P_{0}(x)+a_{1} P_{1}(x) \\
& =a_{0}+a_{1} \frac{(n+2)(n x-1)}{2}
\end{aligned}
$$

Special bounds for A-set (Delsarte, Goethals and Seidel)

example

In \mathbb{R}^{n}, if $A=\{\alpha\}, 0 \leqslant \alpha<\frac{1}{n}$, we take

$$
\begin{aligned}
F(x)=\frac{x-\alpha}{1-\alpha} & =a_{0} P_{0}(x)+a_{1} P_{1}(x) \\
& =a_{0}+a_{1} \frac{(n+2)(n x-1)}{2}
\end{aligned}
$$

then

$$
a_{1}=\frac{2}{(1-\alpha) n(n+2)}, \quad a_{0}=\frac{1-n \alpha}{n-n \alpha} .
$$

Special bounds for A-set (Delsarte, Goethals and Seidel)

example

In \mathbb{R}^{n}, if $A=\{\alpha\}, 0 \leqslant \alpha<\frac{1}{n}$, we take

$$
\begin{aligned}
F(x)=\frac{x-\alpha}{1-\alpha} & =a_{0} P_{0}(x)+a_{1} P_{1}(x) \\
& =a_{0}+a_{1} \frac{(n+2)(n x-1)}{2}
\end{aligned}
$$

then

$$
a_{1}=\frac{2}{(1-\alpha) n(n+2)}, \quad a_{0}=\frac{1-n \alpha}{n-n \alpha} .
$$

Thus

$$
|X| \leqslant \frac{n(1-\alpha)}{1-n \alpha}
$$

example

In \mathbb{R}^{2}, let $A=\left\{\frac{1}{4}\right\}$, so $|X| \leqslant 3$ and this bound is achieved!

$$
X=\left\{(1,0),\left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right),\left(\frac{-1}{2}, \frac{-\sqrt{3}}{2}\right)\right\}
$$

Special bounds for A-set (Delsarte, Goethals and Seidel)

example

In \mathbb{R}^{2}, let $A=\left\{\frac{1}{4}\right\}$, so $|X| \leqslant 3$ and this bound is achieved!

$$
x=\left\{(1,0),\left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right),\left(\frac{-1}{2}, \frac{-\sqrt{3}}{2}\right)\right\}
$$

example

In \mathbb{R}^{3}, let $A=\left\{\frac{1}{9}\right\}$, so $|X| \leqslant 4$ and this bound is achieved!

$$
X=\left\{(0,0,1),\left(\frac{-\sqrt{6}}{3}, \frac{-\sqrt{2}}{3}, \frac{-1}{3}\right),\left(\frac{\sqrt{6}}{3}, \frac{-\sqrt{2}}{3}, \frac{-1}{3}\right),\left(0, \frac{2 \sqrt{2}}{3}, \frac{-1}{3}\right)\right\}
$$

Special bounds for A-set (Delsarte, Goethals and Seidel)

Ebrahim Ghaderpour

Special bounds for A-set (Delsarte, Goethals and Seidel)

example

In $\mathbb{R}^{n}, A=\{\alpha\}$, the following bounds are achieved!

n	2	3	4	5	6	7	15	19	20	21	22
α	$\frac{1}{4}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{25}$
$\|X\|$	3	4	6	10	16	28	36	76	96	126	176

Special bounds for A-set (Delsarte, Goethals and Seidel)

> example
> In \mathbb{R}^{n}, let $A=\left\{\alpha_{1}, \alpha_{2}\right\}, 0 \leqslant \alpha_{1} \neq \alpha_{2}<1$.

Special bounds for A-set (Delsarte, Goethals and Seidel)

example

In \mathbb{R}^{n}, let $A=\left\{\alpha_{1}, \alpha_{2}\right\}, 0 \leqslant \alpha_{1} \neq \alpha_{2}<1$. Thus we take

$$
\begin{aligned}
F(x) & =\left(\frac{x-\alpha_{1}}{1-\alpha_{1}}\right) \cdot\left(\frac{x-\alpha_{2}}{1-\alpha_{2}}\right) \\
& =a_{0} P_{0}(x)+a_{1} P_{1}(x)+a_{2} P_{2}(x) \\
& =a_{0}+a_{1} \frac{(n+2)(n x-1)}{2} \\
& +a_{2} \frac{n(n+6)\left((n+2)(n+4) x^{2}-6(n+2) x+3\right)}{24}
\end{aligned}
$$

Special bounds for A-set (Delsarte, Goethals and Seidel)

example

In \mathbb{R}^{n}, let $A=\left\{\alpha_{1}, \alpha_{2}\right\}, 0 \leqslant \alpha_{1} \neq \alpha_{2}<1$. Thus we take

$$
\begin{aligned}
F(x) & =\left(\frac{x-\alpha_{1}}{1-\alpha_{1}}\right) \cdot\left(\frac{x-\alpha_{2}}{1-\alpha_{2}}\right) \\
& =a_{0} P_{0}(x)+a_{1} P_{1}(x)+a_{2} P_{2}(x) \\
& =a_{0}+a_{1} \frac{(n+2)(n x-1)}{2} \\
& +a_{2} \frac{n(n+6)\left((n+2)(n+4) x^{2}-6(n+2) x+3\right)}{24} .
\end{aligned}
$$

By equating the coefficients on both sides we get

$$
a_{2}=\frac{24}{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) n(n+2)(n+4)(n+6)},
$$

Special bounds for A-set (Delsarte, Goethals and Seidel)

example

$$
a_{1}=\frac{12-2\left(\alpha_{1}+\alpha_{2}\right)(n+4)}{n(n+2)(n+4)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}
$$

Special bounds for A-set (Delsarte, Goethals and Seidel)

example

$$
\begin{gathered}
a_{1}=\frac{12-2\left(\alpha_{1}+\alpha_{2}\right)(n+4)}{n(n+2)(n+4)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}, \\
a_{0}=\frac{3-(n+2)\left(\alpha_{1}+\alpha_{2}\right)+n(n+2) \alpha_{1} \alpha_{2}}{n(n+2)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)} .
\end{gathered}
$$

Special bounds for A-set (Delsarte, Goethals and Seidel)

example

$$
\begin{gathered}
a_{1}=\frac{12-2\left(\alpha_{1}+\alpha_{2}\right)(n+4)}{n(n+2)(n+4)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}, \\
a_{0}=\frac{3-(n+2)\left(\alpha_{1}+\alpha_{2}\right)+n(n+2) \alpha_{1} \alpha_{2}}{n(n+2)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)} .
\end{gathered}
$$

Thus

$$
|X| \leqslant \frac{F(1)}{a_{0}}=\frac{n(n+2)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{3-(n+2)\left(\alpha_{1}+\alpha_{2}\right)+n(n+2) \alpha_{1} \alpha_{2}}
$$

Special bounds for A-set (Delsarte, Goethals and Seidel)

example

$$
\begin{gathered}
a_{1}=\frac{12-2\left(\alpha_{1}+\alpha_{2}\right)(n+4)}{n(n+2)(n+4)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}, \\
a_{0}=\frac{3-(n+2)\left(\alpha_{1}+\alpha_{2}\right)+n(n+2) \alpha_{1} \alpha_{2}}{n(n+2)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)} .
\end{gathered}
$$

Thus

$$
|X| \leqslant \frac{F(1)}{a_{0}}=\frac{n(n+2)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{3-(n+2)\left(\alpha_{1}+\alpha_{2}\right)+n(n+2) \alpha_{1} \alpha_{2}}
$$

Moreover, we must have $a_{i} \geqslant 0$ for $i=1,2$. Thus

$$
\alpha_{1}+\alpha_{2} \leqslant \frac{6}{n+4}=K
$$

Outline

1 Jacobi polynomials

2 Special bounds for A-set (Delsarte, Goethals and Seidel)

3 Absolute bounds for A-set (Delsarte, Goethals and Seidel)

4 Recent results

Absolute bounds for A-set (Delsarte, Goethals and Seidel)

- In the following theorem, a different bound is obtained for an A-set which depends only on the dimension of vector space and the number of elements in the set A.

Absolute bounds for A-set (Delsarte, Goethals and Seidel)

- In the following theorem, a different bound is obtained for an A-set which depends only on the dimension of vector space and the number of elements in the set A.
- Note that this bound is independent of the nature of elements in the set A.

Theorem

In \mathbb{R}^{n}, for any A-set with $|A|=s$, we have

$$
|X| \leqslant M_{s}
$$

where

$$
M_{s}:=P_{0}(1)+P_{1}(1)+\cdots+P_{s}(1)=\binom{n+2 s-1}{n-1}
$$

Outline

1 Jacobi polynomials

2 Special bounds for A-set (Delsarte, Goethals and Seidel)

3 Absolute bounds for A-set (Delsarte, Goethals and Seidel)

4 Recent results

■ In the case $A=\{0, \alpha\}$, where $0<\alpha<1$, by completely different methods, Calderbank, Cameron, Kantor and Seidel in 1996 proved that $|X| \leqslant\binom{ n+2}{3}$, and

$$
|X| \leqslant \frac{n(n+2)(1-\alpha)}{3-(n+2) \alpha}
$$

which are the absolute bound and the special bound, respectively, obtained by Delsarte, Goethals and Seidel in 1974.

- In the case $A=\{0, \alpha\}$, Best, Kharaghani and Ramp revisited the inequality

$$
|X| \leqslant \frac{n(n+2)(1-\alpha)}{3-(n+2) \alpha}
$$

and they introduced a class of weighing matrices that they named mutually unbiased weighing matrices.

Definition

A matrix $W=\left[w_{i j}\right]_{n \times n}$ such that $w_{i j} \in\{0,-1,1\}$ and $W W^{t}=p l_{n \times n}$ is called a weighing matrix of order n and weight p. It is denoted by $W(n, p)$.

Definition

A matrix $W=\left[w_{i j}\right]_{n \times n}$ such that $w_{i j} \in\{0,-1,1\}$ and $W W^{t}=p I_{n \times n}$ is called a weighing matrix of order n and weight p. It is denoted by $W(n, p)$.

Definition

Let p be a perfect square. $W_{1}(n, p), W_{2}(n, p)$ are called unbiased if $W_{1} W_{2}^{t}=\sqrt{p} W$, where W is a $W(n, p)$.

example

$$
W_{1}(4,4)=\left(\begin{array}{cccc}
1 & 1 & 1 & - \\
1 & 1 & - & 1 \\
- & 1 & 1 & 1 \\
1 & - & 1 & 1
\end{array}\right), W_{2}(4,4)=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & - & - \\
1 & - & 1 & - \\
1 & - & - & 1
\end{array}\right)
$$

example

$W_{1}(4,4)=\left(\begin{array}{cccc}1 & 1 & 1 & - \\ 1 & 1 & - & 1 \\ - & 1 & 1 & 1 \\ 1 & - & 1 & 1\end{array}\right), W_{2}(4,4)=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ 1 & - & - & 1\end{array}\right) ;$
Thus

$$
W_{1}(4,4) W_{2}^{t}(4,4)=2\left(\begin{array}{cccc}
1 & 1 & 1 & - \\
1 & 1 & - & 1 \\
1 & - & - & - \\
1 & - & 1 & 1
\end{array}\right)
$$

- Think of each row of W as an n-dimensional vector.

Unbiased weighing matrices
 (Best, Kharaghani, Ramp)

- Think of each row of W as an n-dimensional vector.

example

$\operatorname{In} \mathbb{R}^{4}$, with $A=\left\{0, \frac{1}{4}\right\}$, we know that $|X| \leqslant 12$.

- Think of each row of W as an n-dimensional vector.

example

In \mathbb{R}^{4}, with $A=\left\{0, \frac{1}{4}\right\}$, we know that $|X| \leqslant 12$.
By normalizing each row of the unbiased weighing matrices in the previous example and adding the standard basis in \mathbb{R}^{4}, we find 12 vectors such that the inner product of each pair is either $\pm \frac{1}{2}$ or 0 .

- Think of each row of W as an n-dimensional vector.

example

In \mathbb{R}^{4}, with $A=\left\{0, \frac{1}{4}\right\}$, we know that $|X| \leqslant 12$.
By normalizing each row of the unbiased weighing matrices in the previous example and adding the standard basis in \mathbb{R}^{4}, we find 12 vectors such that the inner product of each pair is either $\pm \frac{1}{2}$ or 0 . Thus the square of these inner products belong to the set A.
Therefore this upper bound is achieved!

example

In \mathbb{R}^{7}, with $A=\left\{0, \frac{1}{4}\right\}$, we know that $|X| \leqslant 63$.

Unbiased weighing matrices
 (Best, Kharaghani, Ramp)

example

In \mathbb{R}^{7}, with $A=\left\{0, \frac{1}{4}\right\}$, we know that $|X| \leqslant 63$.
Best, Kharaghani and Ramp could find 8 unbiased weighing matrices $W(7,4)$ that by adding standard basis in \mathbb{R}^{7} give us 63 vectors in such a way that the square of inner product of each pair belongs to the set A.

example

In \mathbb{R}^{8}, with $A=\left\{0, \frac{1}{4}\right\}$, we know that $|X| \leqslant 120$.

example

In \mathbb{R}^{7}, with $A=\left\{0, \frac{1}{4}\right\}$, we know that $|X| \leqslant 63$.
Best, Kharaghani and Ramp could find 8 unbiased weighing matrices $W(7,4)$ that by adding standard basis in \mathbb{R}^{7} give us 63 vectors in such a way that the square of inner product of each pair belongs to the set A.

example

In \mathbb{R}^{8}, with $A=\left\{0, \frac{1}{4}\right\}$, we know that $|X| \leqslant 120$.
They could also find 14 unbiased weighing matrices $W(8,4)$ that by adding standard basis in \mathbb{R}^{8} give us 120 vectors in such a way that the square of inner product of each pair belongs to the set A.

Ebrahim Ghaderpour

