BOUNDS FOR SYSTEMS OF LINES

Ebrahim Ghaderpour

University of Lethbridge

March 2012

Ebrahim Ghaderpour BOUNDS FOR SYSTEMS OF LINES

(4回) (4回) (日)

-2

Outline

1 Jacobi polynomials

2 Special bounds for A-set (Delsarte, Goethals and Seidel)

3 Absolute bounds for A-set (Delsarte, Goethals and Seidel)

4 Recent results

Question

How many equiangular unit vectors are there in \mathbb{R}^2 and \mathbb{R}^3 ?

Ebrahim Ghaderpour BOUNDS FOR SYSTEMS OF LINES

▲圖> ▲屋> ▲屋>

E 990

Definition

Let V be the space of all polynomials and let $f, g \in V$. We define the inner product between f, g as

$$\langle f,g\rangle = \int_a^b w(x)f(x)g(x)dx,$$

where w(x) is a weight function.

- ∢ ≣ ▶

• In
$$\mathbb{R}^n$$
, there are some special type of polynomials called
Jacobi polynomial which are given by
 $P_0(x) = 1$,
 $P_1(x) = \frac{(n+2)(nx-1)}{2}$,
 $P_2(x) = \frac{n(n+6)((n+2)(n+4)x^2 - 6(n+2)x + 3)}{24}$,
 \vdots
 $P_k(x) = \cdots$
 \vdots

■ These polynomials form a basis for the linear space of all polynomials of degree ≤ k.

(本語) (本語) (本語) (語)

- In \mathbb{R}^n , there are some special type of polynomials called Jacobi polynomial which are given by $P_0(x) = 1$, $P_1(x) = \frac{(n+2)(nx-1)}{2},$ $P_2(x) = \frac{n(n+6)((n+2)(n+4)x^2 - 6(n+2)x + 3)}{24},$ $P_{\iota}(x) = \cdots$
- These polynomials form a basis for the linear space of all polynomials of degree $\leq k$.
- This basis is orthogonal on [0, 1] under a suitable weight function.

回 と く ヨ と く ヨ と

example

In
$$\mathbb{R}^2$$
, we have $P_0(x) = 1, P_1(x) = 2(2x - 1)$. So

$$\langle P_0(x), P_1(x) \rangle = \langle 1, 2(2x-1) \rangle$$

= $\int_0^1 2(2x-1)(1-x)^{-\frac{1}{2}x^{-\frac{1}{2}}} dx$
= $-4\sqrt{x-x^2}]_0^1$
= 0

example

In
$$\mathbb{R}^2$$
, we have $P_0(x) = 1, P_1(x) = 2(2x - 1)$. So

$$\langle P_0(x), P_1(x) \rangle = \langle 1, 2(2x-1) \rangle$$

= $\int_0^1 2(2x-1)(1-x)^{-\frac{1}{2}}x^{-\frac{1}{2}}dx$
= $-4\sqrt{x-x^2}]_0^1$
= 0

In this example the suitable weight is (1 − x)^{-1/2}x^{-1/2}, and P₀(x), P₁(x) make a basis for the space of polynomials of degree ≤ 1.

回 と く ヨ と く ヨ と

Outline

Jacobi polynomials

2 Special bounds for A-set (Delsarte, Goethals and Seidel)

3 Absolute bounds for A-set (Delsarte, Goethals and Seidel)

4 Recent results

Definition

Let X be a set of unit vectors in \mathbb{R}^n and

$$A = \{\alpha_1, \ldots, \alpha_s\}$$

a set of all non-negative numbers all less than 1.

通 と く ヨ と く ヨ と

Definition

Let X be a set of unit vectors in \mathbb{R}^n and

$$A = \{\alpha_1, \ldots, \alpha_s\}$$

a set of all non-negative numbers all less than 1. X is called an A-set if for any $u, v \in X$,

$$|\langle u,v\rangle|^2 \in A.$$

白マ くほど くほど

Theorem

Let F(x) be a polynomial of degree k such that

$$\forall \alpha \in A \; ; \; F(\alpha) \leq 0.$$

Write $F(x) = a_0 P_0(x) + a_1 P_1(x) + \cdots + a_k P_k(x)$, and assume that $a_0 > 0$ and $a_i \ge 0$ for $1 \le i \le k$. Then

$$|X|\leqslant \frac{F(1)}{a_0}.$$

同 ト く ヨ ト く ヨ ト

Theorem

Let F(x) be a polynomial of degree k such that

$$\forall \alpha \in A \; ; \; F(\alpha) \leq 0.$$

Write $F(x) = a_0 P_0(x) + a_1 P_1(x) + \cdots + a_k P_k(x)$, and assume that $a_0 > 0$ and $a_i \ge 0$ for $1 \le i \le k$. Then

$$|X|\leqslant \frac{F(1)}{a_0}.$$

One of the best polynomials that satisfies all conditions in the previous theorem is the annihilator of A which is defined by

$$\left(\frac{x-\alpha_1}{1-\alpha_1}\right)\cdot\left(\frac{x-\alpha_2}{1-\alpha_2}\right)\cdot\cdots\cdot\left(\frac{x-\alpha_s}{1-\alpha_s}\right)$$

example

In \mathbb{R}^n , if $A = \{\alpha\}, 0 \leq \alpha < \frac{1}{n}$, we take

$$F(x) = \frac{x - \alpha}{1 - \alpha} = a_0 P_0(x) + a_1 P_1(x)$$

= $a_0 + a_1 \frac{(n+2)(nx-1)}{2}$,

白 マイ キャン・ イ ヨ マー

In
$$\mathbb{R}^n$$
, if $A = \{\alpha\}, 0 \leq \alpha < \frac{1}{n}$, we take

$$F(x) = \frac{x - \alpha}{1 - \alpha} = a_0 P_0(x) + a_1 P_1(x)$$
$$= a_0 + a_1 \frac{(n+2)(nx-1)}{2},$$

then

$$a_1 = \frac{2}{(1-\alpha)n(n+2)}, \quad a_0 = \frac{1-n\alpha}{n-n\alpha}.$$

Ebrahim Ghaderpour BOUNDS FOR SYSTEMS OF LINES

回 と く ヨ と く ヨ と

In
$$\mathbb{R}^n$$
, if $A = \{\alpha\}, 0 \leq \alpha < \frac{1}{n}$, we take

$$F(x) = \frac{x - \alpha}{1 - \alpha} = a_0 P_0(x) + a_1 P_1(x)$$

= $a_0 + a_1 \frac{(n+2)(nx-1)}{2}$,

then

$$a_1 = \frac{2}{(1-\alpha)n(n+2)}, \quad a_0 = \frac{1-n\alpha}{n-n\alpha}$$

Thus

$$|X| \leqslant \frac{n(1-\alpha)}{1-n\alpha}.$$

Ebrahim Ghaderpour BOUNDS FOR SYSTEMS OF LINES

-2

example

In \mathbb{R}^2 , let $A = \left\{\frac{1}{4}\right\}$, so $|X| \leq 3$ and this bound is achieved!

$$X = \left\{ (1,0), \left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right), \left(\frac{-1}{2}, \frac{-\sqrt{3}}{2}\right) \right\}$$

回 と くほ と くほ とう

In \mathbb{R}^2 , let $A = \left\{\frac{1}{4}\right\}$, so $|X| \leq 3$ and this bound is achieved!

$$X = \left\{ (1,0), \left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right), \left(\frac{-1}{2}, \frac{-\sqrt{3}}{2}\right) \right\}$$

example

In \mathbb{R}^3 , let $A = \left\{\frac{1}{9}\right\}$, so $|X| \leq 4$ and this bound is achieved!

$$X = \left\{ (0,0,1), \left(\frac{-\sqrt{6}}{3}, \frac{-\sqrt{2}}{3}, \frac{-1}{3}\right), \left(\frac{\sqrt{6}}{3}, \frac{-\sqrt{2}}{3}, \frac{-1}{3}\right), \left(0, \frac{2\sqrt{2}}{3}, \frac{-1}{3}\right) \right\}$$

▲圖▶ ★ 国▶ ★ 国▶

In \mathbb{R}^n , $A = \{\alpha\}$, the following bounds are achieved!

n	2	3	4	5	6	7	15	19	20	21	22
α	$\frac{1}{4}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{25}$
X	3	4	6	10	16	28	36	76	96	126	176

(本部) (注) (注) (注)

example

In \mathbb{R}^n , let $A = \{\alpha_1, \alpha_2\}, 0 \leq \alpha_1 \neq \alpha_2 < 1$.

- < ≣ >

3 ×

In \mathbb{R}^n , let $A = \{\alpha_1, \alpha_2\}, 0 \leqslant \alpha_1 \neq \alpha_2 < 1$. Thus we take

$$F(x) = \left(\frac{x - \alpha_1}{1 - \alpha_1}\right) \cdot \left(\frac{x - \alpha_2}{1 - \alpha_2}\right) \\ = a_0 P_0(x) + a_1 P_1(x) + a_2 P_2(x) \\ = a_0 + a_1 \frac{(n+2)(nx-1)}{2} \\ + a_2 \frac{n(n+6)((n+2)(n+4)x^2 - 6(n+2)x + 3)}{24}$$

In \mathbb{R}^n , let $A = \{\alpha_1, \alpha_2\}, 0 \leqslant \alpha_1 \neq \alpha_2 < 1$. Thus we take

$$F(x) = \left(\frac{x - \alpha_1}{1 - \alpha_1}\right) \cdot \left(\frac{x - \alpha_2}{1 - \alpha_2}\right) \\ = a_0 P_0(x) + a_1 P_1(x) + a_2 P_2(x) \\ = a_0 + a_1 \frac{(n+2)(nx-1)}{2} \\ + a_2 \frac{n(n+6)((n+2)(n+4)x^2 - 6(n+2)x + 3)}{24}$$

By equating the coefficients on both sides we get

$$a_2 = rac{24}{(1-\alpha_1)(1-\alpha_2)n(n+2)(n+4)(n+6)}$$
,

example

$$a_1 = \frac{12 - 2(\alpha_1 + \alpha_2)(n+4)}{n(n+2)(n+4)(1-\alpha_1)(1-\alpha_2)},$$

Ebrahim Ghaderpour BOUNDS FOR SYSTEMS OF LINES

□ ▶ 《 臣 ▶ 《 臣 ▶ ...

example

$$a_{1} = \frac{12 - 2(\alpha_{1} + \alpha_{2})(n+4)}{n(n+2)(n+4)(1-\alpha_{1})(1-\alpha_{2})},$$
$$a_{0} = \frac{3 - (n+2)(\alpha_{1} + \alpha_{2}) + n(n+2)\alpha_{1}\alpha_{2}}{n(n+2)(1-\alpha_{1})(1-\alpha_{2})}$$

回 と く ヨ と く ヨ と

example

$$a_{1} = \frac{12 - 2(\alpha_{1} + \alpha_{2})(n+4)}{n(n+2)(n+4)(1-\alpha_{1})(1-\alpha_{2})},$$

$$a_{0} = \frac{3 - (n+2)(\alpha_{1} + \alpha_{2}) + n(n+2)\alpha_{1}\alpha_{2}}{n(n+2)(1-\alpha_{1})(1-\alpha_{2})}.$$

Thus

$$|X| \leq \frac{F(1)}{a_0} = \frac{n(n+2)(1-\alpha_1)(1-\alpha_2)}{3-(n+2)(\alpha_1+\alpha_2)+n(n+2)\alpha_1\alpha_2}$$

回 と く ヨ と く ヨ と

example

$$a_1 = \frac{12 - 2(\alpha_1 + \alpha_2)(n+4)}{n(n+2)(n+4)(1-\alpha_1)(1-\alpha_2)},$$

$$a_0 = \frac{3 - (n+2)(\alpha_1 + \alpha_2) + n(n+2)\alpha_1\alpha_2}{n(n+2)(1-\alpha_1)(1-\alpha_2)}$$

Thus

$$|X| \leq \frac{F(1)}{a_0} = \frac{n(n+2)(1-\alpha_1)(1-\alpha_2)}{3-(n+2)(\alpha_1+\alpha_2)+n(n+2)\alpha_1\alpha_2}$$

Moreover, we must have $a_i \ge 0$ for i = 1, 2. Thus

$$\alpha_1 + \alpha_2 \leqslant \frac{6}{n+4} = K.$$

▶ < 문 ▶ < 문 ▶</p>

Outline

Jacobi polynomials

2 Special bounds for A-set (Delsarte, Goethals and Seidel)

3 Absolute bounds for A-set (Delsarte, Goethals and Seidel)

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

4 Recent results

Absolute bounds for A-set (Delsarte, Goethals and Seidel)

In the following theorem, a different bound is obtained for an A-set which depends only on the dimension of vector space and the number of elements in the set A.

∃ ► < ∃ ►</p>

Absolute bounds for A-set (Delsarte, Goethals and Seidel)

- In the following theorem, a different bound is obtained for an A-set which depends only on the dimension of vector space and the number of elements in the set A.
- Note that this bound is independent of the nature of elements in the set *A*.

Theorem

In \mathbb{R}^n , for any A-set with |A| = s, we have

 $|X| \leqslant M_s,$

where

$$M_{s} := P_{0}(1) + P_{1}(1) + \cdots + P_{s}(1) = \binom{n+2s-1}{n-1}.$$

Outline

Jacobi polynomials

2 Special bounds for A-set (Delsarte, Goethals and Seidel)

3 Absolute bounds for A-set (Delsarte, Goethals and Seidel)

《曰》 《聞》 《臣》 《臣》 三臣

4 Recent results

■ In the case $A = \{0, \alpha\}$, where $0 < \alpha < 1$, by completely different methods, Calderbank, Cameron, Kantor and Seidel in 1996 proved that $|X| \leq \binom{n+2}{3}$, and

$$|X| \leq \frac{n(n+2)(1-\alpha)}{3-(n+2)\alpha}$$

which are the absolute bound and the special bound, respectively, obtained by Delsarte, Goethals and Seidel in 1974.

伺 ト イヨト イヨト

 In the case A = {0, α}, Best, Kharaghani and Ramp revisited the inequality

$$|X| \leq \frac{n(n+2)(1-\alpha)}{3-(n+2)\alpha}$$

and they introduced a class of weighing matrices that they named mutually unbiased weighing matrices.

▶ ★ 国 ▶ ★ 国 ▶ ...

Definition

A matrix $W = [w_{ij}]_{n \times n}$ such that $w_{ij} \in \{0, -1, 1\}$ and $WW^t = pI_{n \times n}$ is called a weighing matrix of order *n* and weight *p*. It is denoted by W(n, p).

通 と く ヨ と く ヨ と

Definition

A matrix $W = [w_{ij}]_{n \times n}$ such that $w_{ij} \in \{0, -1, 1\}$ and $WW^t = pI_{n \times n}$ is called a weighing matrix of order *n* and weight *p*. It is denoted by W(n, p).

Definition

Let p be a perfect square. $W_1(n, p), W_2(n, p)$ are called unbiased if $W_1W_2^t = \sqrt{p}W$, where W is a W(n, p).

▲圖▶ ★ 国▶ ★ 国▶

$$W_1(4,4) = \left(egin{array}{ccccc} 1 & 1 & 1 & - \ 1 & 1 & - & 1 \ - & 1 & 1 & 1 \ 1 & - & 1 & 1 \ \end{array}
ight), \ W_2(4,4) = \left(egin{array}{cccccc} 1 & 1 & 1 & 1 \ 1 & 1 & - & - \ 1 & - & 1 & - \ 1 & - & 1 & - \ 1 & - & - & 1 \end{array}
ight);$$

Ebrahim Ghaderpour BOUNDS FOR SYSTEMS OF LINES

白 と く ヨ と く ヨ と

-2

$$W_{1}(4,4) = \begin{pmatrix} 1 & 1 & 1 & - \\ 1 & 1 & - & 1 \\ - & 1 & 1 & 1 \\ 1 & - & 1 & 1 \end{pmatrix}, W_{2}(4,4) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ 1 & - & - & 1 \end{pmatrix};$$
Thus
$$W_{1}(4,4)W_{2}^{t}(4,4) = 2\begin{pmatrix} 1 & 1 & 1 & - \\ 1 & 1 & - & 1 \\ 1 & - & - & - \\ 1 & - & 1 & 1 \end{pmatrix}.$$

白 と く ヨ と く ヨ と

-2

• Think of each row of W as an *n*-dimensional vector.

Unbiased weighing matrices (Best, Kharaghani, Ramp)

Think of each row of W as an *n*-dimensional vector.

同 ト く ヨ ト く ヨ ト

• Think of each row of W as an *n*-dimensional vector.

example

In
$$\mathbb{R}^4$$
, with $A = \left\{0, \frac{1}{4}\right\}$, we know that $|X| \leq 12$.
By normalizing each row of the unbiased weighing matrices in the previous example and adding the standard basis in \mathbb{R}^4 , we find 12 vectors such that the inner product of each pair is either $\pm \frac{1}{2}$ or 0.

回 と く ヨ と く ヨ と …

• Think of each row of W as an *n*-dimensional vector.

example

In
$$\mathbb{R}^4$$
, with $A = \left\{0, \frac{1}{4}\right\}$, we know that $|X| \leq 12$.
By normalizing each row of the unbiased weighing matrices in the previous example and adding the standard basis in \mathbb{R}^4 , we find 12 vectors such that the inner product of each pair is either $\pm \frac{1}{2}$ or 0.
Thus the square of these inner products belong to the set A.
Therefore this upper bound is achieved!

▶ < 문 > < E > ...

Unbiased weighing matrices (Best, Kharaghani, Ramp)

example

In
$$\mathbb{R}^7$$
, with $A = \left\{0, \frac{1}{4}\right\}$, we know that $|X| \leq 63$.

白 と く ヨ と く ヨ と

-2

In
$$\mathbb{R}^7$$
, with $A = \left\{0, \frac{1}{4}\right\}$, we know that $|X| \leq 63$.
Best, Kharaghani and Ramp could find 8 unbiased weighing
matrices $W(7, 4)$ that by adding standard basis in \mathbb{R}^7 give us 63
vectors in such a way that the square of inner product of each pair
belongs to the set A.

example

In
$$\mathbb{R}^{8}$$
, with $A = \left\{0, \frac{1}{4}\right\}$, we know that $|X| \leqslant 120$.

● ▶ < ミ ▶

<2 € > 2 €

In
$$\mathbb{R}^7$$
, with $A = \left\{0, \frac{1}{4}\right\}$, we know that $|X| \leq 63$.
Best, Kharaghani and Ramp could find 8 unbiased weighing
matrices $W(7, 4)$ that by adding standard basis in \mathbb{R}^7 give us 63
vectors in such a way that the square of inner product of each pair
belongs to the set A.

example

In
$$\mathbb{R}^8$$
, with $A = \left\{0, \frac{1}{4}\right\}$, we know that $|X| \leq 120$.

They could also find 14 unbiased weighing matrices W(8,4) that by adding standard basis in \mathbb{R}^8 give us 120 vectors in such a way that the square of inner product of each pair belongs to the set A.

