フランジ継手の漏えいに関する研究・第1報

フランジ継手構造系の解析手法 〔1〕

日立造船株式會社 装置配管計画部主任部員 大窪厚男 Atsue Okubo

フランジ継手はパイプ間あるいはパイプと機器 とを接続する構造系として広く使用されており, その強度解析手法および設計手法についても古く から研究されている.しかし,フランジ継手はフ ランジ本体,ガスケットおよびボルトが組み合さ れた複雑な構造系であり,種々の荷重状態におけ る挙動は今日でも厳密に解明されているとはいえ ない.特に,フランジ継手からの漏えいは,フラ ンジ面とガスケットとの接触問題,ガスケット材 料の非線形性,フランジ面の粗さなどの他に,さ らに多くの要因を含む非常に複雑な現象である.

本研究は、フランジ継手の漏えい特性を解析と 実験によって定量的に把握することを目的として 行われたものである。フランジ継手の漏えいに関 係する種々の要因の内で、ガスケット接触面圧の 分布状態を本研究では特に重要視することにした。 これは、漏えいの前段階としての内部流体のガス ケット接触面への浸透が、接触面圧分布に大きく 影響すると考えられるからである。

第一報においては、本研究のために特に準備さ れた解析手法とプログラムについて述べる。本研 究では、継手の漏えい問題について、より一般的

1

日立造船株式會社 装置配管計画部 (現CRC 株式会出動務) 有本享三 Kyozo Arimoto

な解決を狙って、種々の形状寸法及び荷重条件の もとでパラメトリックなスタディを予定している。 そこで入力データの作成が容易で計算時間の少な いプログラムの開発が望ましい。解析手法はこの ニーズを前提として準備した。そしてこの解析手 法は、この分野で絶えず主導的な位置を占める ASMEコードに親密な形とし実用性を持たせた。

なお次報以下においては、フランジ漏えい実験 の方法とその結果、さらに解析との比較について 述べる予定である.

2. <u>解析手法の歴史的経緯</u> History of Analysis

本研究において確立したフランジ構造系の解析 手法の立場を明確にするため、以下に過去の研究 成果に関して概観する.

フランジ継手の構造解析手法として最も古い時 代に確立されたのは、1937年のE.O.Watersら¹¹ によって発表されたものである。これは、その後、 ASME Boiler and Pressure Vessel コード²¹ に おけるフランジ設計規則のベースとなっている。 本手法は図1に示すようにハブ付き一体形フラン ジをパイプ、ハブおよびリングの各部分に分割し板 およびシェルの理論³¹ によって解析するものであ る。ただし、パイプおよびリングについては厳密

バルカーレビュー

な解析解を用いるが、ハブについてはひずみエネ ルギー法による近似解で取り扱っている。また、 この手法ではガスケットおよびボルトは解析モデ ルに含まれておらず、これらの部品に発生する内 力の推定値がフランジ本体に荷重(偶力)として加 わるとされている。

ASMEコードでは、フランジ継手の初期締付け 状態と使用状態において発生するガスケット内力 を推定するために、ガスケット係数(b, y)が 規定されている。ガスケット係数が決められた経 緯は1943年にD.B.Rossheimら⁴⁾によって報告さ れている。しかし、これらの値は実験あるいは実 装置におけるデータによって決められたものであ り、すでにこの報告のDiscussionから明らかなよ うに当時からその値について疑問が投げ掛けられ ていたことに注意しておく必要がある。

フランジ継手に対してガスケットとボルトの効 果を含めた解析手法が、1951年にD.B.Wesstrom⁵⁾ らによって発表されている。ただし、フランジ本 体の変形は、E.O.Water らが定式化したモデル より簡単な取り扱いとなっている。また、ガスケ ットとボルトは、それぞれ一つのバネとしてモデ ル化されている。この手法によって、初期締め付 け状態と使用状態におけるフランジ継手の挙動が 関係付けられた。すなわち、ガスケットやボルト に発生する内力が内圧の負荷によってどの程度変 化するかが明らかとなった。 E.C.Rodabaugh ら⁶⁰はD.B.Wesstrom らの手法 においてフランジ本体の取り扱いをE.O.Waterら が行ったものに変更し, 1976年に発表している. ただし,E.O.Waterらがハブ部をひずみエネルギー 法で解析していたのを,より厳密な修正ペッセル 関数を用いる方法に改良している.また,使用状 態における荷重としてフランジ継手各部の温度分 布によるものが取り扱えるようにしている. E.C. Rodabaughらはこの手法に基づくプログラムを開 発し,種々のクラスのANSI B 16.5フランジを 多様な荷重条件に対して解析することによって, フランジ継手に加わる曲げモーメントの許容値を 求める簡易式を提案している⁷⁰.この簡易式は,現 在,ASME Section IIIに採用されている.

さて、国内におけるフランジ解析手法として最 も古くに確立されたのは、1943年の三菱重工業長 崎造船所におけるものである⁸⁾. この手法はJIS 管フランジの基本寸法を決定する際に使用されて いる。E.O.Waterらの手法と同じく単にフランジ 本体の強度に関するものであるが、図2に示すよ うにハブを平均肉厚を持つパイプでモデル化した、 より簡易的なものとなっている. なお、JIS には もう一つのフランジ設計規則を含むJIS B 8243 「圧力容器の構造」⁹があるが、これはほぼASME コードに従ったものとなっている.

国内での解析手法としては、かなりの空白期間の後に西岡ら¹⁰⁾が非弾性の有限要素法を用いて行

Fig.1 Tapered-hub flange analytical model assumed in ASME code

ったものが1979年に発表されている. これはフラ ンジ本体とガスケットを二次元軸対称要素でモデ ル化することにより詳細に解析したものであり, ガスケット接触面圧の分布状態が初めて明確に求 められた. また,内圧の負荷時においてガスケッ ト面圧が内部流体圧より小さくなる領域に流体が 浸透する現象についても解明された. しかし,こ の解析モデルにはボルトの効果が含まれておらず, D.B.Wesstrom らが明らかにした初期締め付け状 態と使用状態との関連付けが行われていない.

その後, D.B.Wesstrom らの簡易モデルに近い 手法が, 1985年に河村¹¹⁾によって報告されている. ただし, これはフランジリングを剛体, ハブを平 均肉厚を持つパイプとした簡略的なモデルとなっ ている.

なお、近年、米国においてはASMEによってガ スケット係数の再評価を行うための研究が開始さ れており、現在までにかなりの漏えい実験が行わ れ、報告されている¹²⁾.また、1982年にはこれら の研究の一環としてB.S.Nauら¹³⁾によって有限要 素法を用いた解析プログラムが開発されている. このプログラムでは、フランジ本体を板・シェル 要素、ガスケットとボルトをそれぞれ一つのバネ としてモデル化している.さらに、ガスケットに ついてはその非線形な材料特性を考慮することが できる、しかしガスケットが1バネモデルとして 取り扱われているため、接触面圧の分布状態およ び流体の浸透現象については詳細に解析できない ものと考えられる. 3.1 基本方針 Basic Approach

フランジ継手の漏えい特性を定量的に把握する ためには、ガスケット接触面圧の分布状態を求め る必要がある.この目的のため、本研究では以下 に示すような基本方針に基づき、解析手法の確立 とそのプログラム化を行った.

3.継手構造系の解析手法 Analysis Method of Flanged Joints

- (1) フランジ本体, ガスケットおよびボルトのす べてを含む構造系を取り扱う.
- (2) ガスケットとフランジ面との接触問題を考慮 する。
- (3) ガスケット材料の非線形性を取り扱う.
- (4) ボルトの初期締め付け、内圧および温度分布 による荷重が取り扱える。
- (5) 入力データの作成が簡単で計算時間が少ない プログラム化が行える.

上記の方針を満足させるものとして、今回はE. C.Rodabaugh らの手法とプログラムをさらに大幅 に拡張したものを開発することにした。したがっ て、前章に述べた歴史的経緯より、ここで確立す る手法はすでに膨大な実証経験を重ねているASME コードとの親密性を保つことになる。西岡らの行 った有限要素法による解析モデルにボルトの数学 モデルを追加したものが現時点では最も厳密な手 法となるが、多数のパラメトリックな解析を行う ためには、入力データの作成と計算時間に問題が あると考える.

今回の解析手法ではフランジ継手を図3に示す ようにフランジ本体,ガスケットおよびボルトに 大きく分割し,それぞれに対して数学モデルを作 成する.フランジ本体はさらにパイプ,ハブおよ びリングの各部に分けられる.また,ガスケット は複数個のバネとして取り扱われる(図3は3個 のバネとした場合であるが,これを任意の個数に 拡張することができる).ガスケットをモデル化し たバネでは材料の非線形特性を取り扱う.また, 流体が浸透する領域にあるバネについては,その 剛性を無視することによりガスケットとフランジ 面との接触問題を簡易的に考慮する.なお,ボル トについては一本のバネとしてモデル化する.

同形状のフランジが組み合された継手を取り扱 う場合には、対称軸で分割された一方に対しての み数学モデルを作成すればよい. この場合、ボル トおよびガスケットは対称軸の位置で拘束される ことになる. また、パイプは無限遠方で閉鎖され ているとする.

Fig.3 Analytical model of tapered-hub flange

The mathematical model of each

part of flanged joints

3.2 継手各部の数学モデル

3.2.1 フランジ本体 Flange

フランジ本体を図3に示したようにパイプ,ハ ブおよびリングに分割すると、各部には古典的な 板・シェルの理論³⁾ が適用できる。すなわち、各 部の中立軸に直角方向の変位に関する偏微分方程 式が導かれ、これを解くことによって中立軸方向 の座標に基づく変位、回転、モーメントおよびせ ん断力を求める式が得られる。ただし、これらの 式には未知の積分定数が含まれる。以下では具体 的に各部分に対する式を導びく。

(1) パイプ Pipe

パイプは肉厚 g_0 , 平均半径 d の薄肉円筒シェル として取り扱われる。半径方向の変位 w_p に関す る微分方程式は、内圧pが加わった際には次のよ うに導かれる^{3),6}.

$$\frac{d^2}{dx^2} \left(D_p \frac{d^2 w_p}{dx^2} \right) + \frac{E_{fg0}}{d^2} w_p = -\left(1 - \frac{\nu}{2} \right) p \qquad (1)$$

ここで、

Ef:フランジ本体のヤング率

ν:フランジ本体のポアソン比

D_p:=E g ⅔/12(1 − ν²),板の曲げ剛性 式(1)をさらに整理すると次式が得られる.

$$\frac{d^* w_{\rm p}}{dx^4} + 4 \,\beta^4 \,w_{\rm p} = - 4 \,d\beta^4 \,p^* \tag{2}$$

ここで, β⁴とp^{*}は次のように定義される量である.

$$\beta^4 = \frac{3 (1 - \nu^2)}{d^2 g_0^2}$$
(3)

$$\mathbf{p}^* = (1 - \frac{\nu}{2}) \frac{\mathrm{d}\mathbf{p}}{\mathrm{go} \mathbf{E}_f} \tag{4}$$

式(2)の微分方程式の解は次のように求まる.

 $w_p = e^{\beta x} (C_1 \sin \beta x + C_2 \cos \beta x)$

+ e^{-βx} (D₁ sin βx) + (D₂ cos βx) - dp^{*} (5) ここで, C₁, C₂, D₁, D₂は未知の積分定数である が, xが負の大きな値となる位置で w_p = - dp^{*}と なることが明らかなので(パイプは無限遠方で閉 鎖されている), D₁, D₂をゼロとする. したがっ て変位 w_pに関する式(5)は,以下のようになる.

 $m = e^{\beta x}$ (C₁sin $\beta x + C_2 \cos \beta x$) - dp* (6) 次に,回転 mに対する式は式(6)を x に関して微分

$$w_{p}^{\prime} = \beta e^{\beta x} \left| C_{1} \left(\sin \beta x + \cos \beta x \right) \right|$$

+ C₂(cos βx-sin βx)) (7) さらに、モーメント M_pとせん断力Q_pはそれぞれ 変位wpの2次および3次の微分量と次のような関 係にある。

$$M_{p} = -D_{p} w_{p}^{*} \tag{8}$$

$$Q_{p} = -D_{p} w_{p}^{"'} \tag{9}$$

したがって、式(6)を上式に代入することによりモ ーメントM_pとせん断力Q_pが次のように得られる. M_p=-2 β^2 D_pe^{βx} (C₁cos βx -C₂sin βx) (10) Q_p=2 β^3 D_pe^{βx} {C₁(sin βx -cos βx)

 $+ C_2 (\sin \beta x + \cos \beta x) \}$ (11)

(2) ハブ Hub

ハブは図3に示したように肉厚 t_x がxに関して 線形に変化する薄肉円筒シェルとして取り扱われ る.半径方向の変位whに関する微分方程式は,肉 厚 t_x がxの関数であることを考慮して式(1)より次 のように求められる^{3),6)}

$$\frac{d^{2}}{dx^{2}}\left(t_{x}^{3}\frac{d^{2}w_{h}}{dx^{2}}\right) + \frac{12(1-\nu^{2})t_{x}}{d^{2}}w_{h}$$
$$= -\frac{12(1-\nu^{2})\left(1-\frac{\nu}{2}\right)}{E_{\ell}}p$$
(12)

ここで、肉厚 t_x はパイプ側の厚さ g_0 とリング側の 厚さ g_1 の間で線形に変化し、次式で求められる。

$$\mathbf{t}_{x} = \mathbf{g}_{0} \left(1 + \frac{\mathbf{g}_{1} - \mathbf{g}_{0}}{\mathbf{g}_{0}} \frac{x}{\mathbf{h}_{b}} \right) = \mathbf{g}_{0} \left(1 + \alpha \zeta \right)$$
 (13)

上式において h_bはハブの長さであり, α, ζは次 の置き換えによって得られた無次元量である.

$$\alpha = \frac{\mathbf{g}_1 - \mathbf{g}_0}{\mathbf{g}_0} \tag{14}$$

$$\zeta = \frac{x}{h_b} \tag{15}$$

さらに次のような無次元量Ψ, γを定義するこ とによって微分方程式をさらに整理することが可 能となる.

$$\Psi = \frac{\mathbf{t}_x}{\mathbf{g}_1 - \mathbf{g}_0} = \zeta + \frac{1}{\alpha} \tag{16}$$

$$\gamma = \left\{ \frac{12(1 - \nu^2)}{d^2 g_0^2} \right\}^{1/4} h_b \tag{17}$$

これらの無次元量の他にすでに式(4)で定義したp*

を用いると,式(12)は次のようになる.

$$\frac{1}{\Psi} \frac{d^2}{d\Psi^2} \left(\Psi^3 \frac{d^2 w_h}{d\Psi^2} \right) + \frac{\gamma^4}{\alpha^2} w_h$$
$$= -\frac{d\alpha^2}{\left(1 + \alpha\zeta\right)\gamma^4} \mathbf{p}^*$$
(18)

式(18)を変位whについて解くと次式が得られる. wh = $\frac{d}{\Psi^{1/2}}$ (C3b1+C4b2+C5b3+C6b4) $-\frac{dp^*}{1+\alpha\zeta}$ (19)

ここで、 $C_3 \sim C_6 (t \neq x) の 積分定数である。また、$ b1~b4 (t修正ベッセル関数であり、以下で現れるb5~b20 とともに**付録1**において説明される。回転whに対する式は式(19)を x で微分することによって以下のように求められる。

$$w_{\rm h}^{i} = \frac{d}{2\Psi^{3/2} h_{\rm b}} (C_{3}b_{5} + C_{4}b_{6} + C_{5}b_{7} + C_{6}b_{8}) + \frac{d\alpha p^{*}}{h_{\rm b} (1 + \alpha \zeta)^{2}}$$
(20)

ハブに生じるモーメントMhとせん断力Qhは、変 位whの微分量とそれぞれ次のような関係にある。

$$M_{\rm h} = -D_{\rm h} \quad w_{\rm h}^{*} \tag{21}$$

$$Q_h = -D_h \quad w_h^{\mu} \tag{22}$$

ここで、Dhは次式で定義される曲げ剛性である。

$$D_{h} = \frac{E_{f} t_{s}^{2}}{12 (1 - \nu^{2})}$$
(23)

式(19)を式(21), (22)に代入することにより, モーメン トMhとせん断力Qhが次式のように求まる。

$$M_{h} = -\frac{dD_{h}}{4 \Psi^{5/2} h_{b}^{2}} (C_{3}b_{9} + C_{4}b_{10} + C_{5}b_{11} + C_{6}b_{12}) + \frac{2 d\alpha^{2} D_{h}p^{*}}{h_{b}^{2} (1 + \alpha \zeta)^{3}}$$
(24)

$$Q_{h} = -\frac{dD_{h}}{8 \Psi^{7/2} h_{b}^{3}} (C_{3}b_{13} + C_{4}b_{14} + C_{5}b_{15} + C_{6}b_{16}) -\frac{6 d\alpha^{3} D_{h} p^{\bullet}}{h^{3} (1 + \alpha^{5})^{4}}$$
(25)

(3) リング Ring

リングは図3に示したように円板として取り扱われる.板厚はレイズドフェイスのある範囲がt, ない範囲がt²である.円板の中立軸と直角な方向の変位wrに関する微分方程式は,内圧pが加わった際には次のように導かれる^{3),6)}.

$$\frac{1}{r} \frac{d}{dr} \left\{ r \frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dw_r}{dr} \right) \right] \right\} = -\frac{p}{D_r}$$
(26)
こで、D_rは次式で定義される板の曲げ剛性であ

バルカーレビュー

り、この場合板の厚さをtとしている。

$$D_r = \frac{E_f t^3}{12(1-\nu)}$$
(27)

変位w.は式20を解くことによって次のように得られる.

$$w_r = C_7 r^2 \ell n r + C_8 r^2 + C_9 \ell n r + C_{10} - \frac{r^4 p}{64 D_r}$$
 (28)

ここで, C7~C10は未知の積分定数である. 回転w? は式28)をrに関して微分することによって以下の ように求められる.

$$w'_{r} = C_{7} (2 r \ell_{n} r + r) + C_{8} (2 r) + C_{9} \frac{1}{r} - \frac{r^{3} p}{16 D_{r}}$$
 (29)

リングには半径方向のモーメントM:と円周方向 のモーメントM:が発生するが、これらは変位wrの 微分量とそれぞれ以下の式によって関係付けられ る、

$$\mathbf{M}_{\mathbf{r}}^{\mathbf{r}} = -\mathbf{D}_{\mathbf{r}} \left(\mathbf{w}_{\mathbf{r}}^{\mathbf{r}} + \frac{\nu}{\mathbf{r}} \mathbf{w}_{\mathbf{r}}^{\mathbf{r}} \right)$$
(30)

$$\mathbf{M}_{\mathbf{r}}^{\mathbf{t}} = -\mathbf{D}_{\mathbf{r}} \left(\frac{1}{\mathbf{r}} \mathbf{w}_{\mathbf{r}}^{\mathbf{t}} + \mathbf{v} \mathbf{w}_{\mathbf{r}}^{\mathbf{t}} \right)$$
(31)

上式に式200を代入することによって、モーメント Mf, Mfは次のように得られる.

$$M_{r}^{r} = -D_{r} \left\{ C_{7} \left[2(1+\nu) \ln r + (3+\nu) \right] \right. \\ \left. + C_{8} \left[2(1+\nu) \right] - C_{9} \frac{(1-\nu)}{r^{2}} \right\} + \frac{r^{2}p}{16} (3+\nu) \quad (32)$$
$$M_{r}^{t} = -D_{r} \left\{ C_{7} \left[2(1+\nu) \ln r + (1+3\nu) \right] \right. \\ \left. + C_{8} \left[2(1+\nu) \right] + C_{9} \frac{(1-\nu)}{r^{2}} \right\} + \frac{r^{2}p}{16} (1+3\nu) \quad (33)$$

せん断力Q,はモーメントMf, Mf と次式によって 関係付けられる.

$$Q_r = M_r^{r'} + \frac{M_r^r - M_r^t}{r}$$
(34)

上式に式(32), (33)を代入することによって、せん断 力Qrを求める式は次のように得られる。

$$Q_r = -C_7 \frac{4 D_r}{r} + \frac{rp}{2}$$
(35)

さて、リングに関しては半径方向の変位Urも考 慮する必要がある。この変位はリングの内面に加 わる内圧 p およびハブ側からのせん断力 (x=hb におけるQb)によって生じる。せん断力は板厚 t で平均化することによって、等価な内圧として取

第30巻第6号

り扱うことにする。したがって、内半径 b、外半 径 a の円板に生じる変位U_rは次式によって求める ことができる¹⁴!

$$U_{r} = \frac{b^{2}}{E_{f}(a^{2}-b^{2})} \left\{ (1-\nu) r + \frac{(1+\nu)a^{2}}{r} \right\}$$

* $\left\{ p + \frac{(Q_{h})_{x} = h_{b}}{t} \right\}$ (36)
3.2.2 ガスケット Gasket

ガスケットには平形,うず巻き形など種々の形 状のものがあり、またその材料も金属、アスベス ト、テフロンなどと多様である。金属以外の材料 のガスケットの変形特性は特に複雑であり、これ を数学的に取り扱うには事前に多数の試験が必要 となる。図4にはアスベストあるいはテフロン材 料の応力・ひずみ特性を定性的に示す。応力σと ひずみεとの関係は非線形で複雑なものとなるが、 これらの曲線を次のような一般式で表わすことは 可能である。

$$\sigma = f(\varepsilon, \sigma', \mathbf{k}) \tag{37}$$

ここで、 σ' は変形が始まる直前の応力、 k は変形 が負荷あるいは除荷のどちらで行われるかを指定 する選択記号である。

ガスケットの非線形性には以上のような材料の 特性に基づくものの他に、ガスケットとフランジ 面との接触状態によるものがある。すなわち、継 手に荷重が加わった状態において、接触面の一部 の領域が分離することがある。内圧が加わってい る場合いは流体が確実にこの領域まで浸透する。

このようなガスケットの二種類の非線形性を取

Fig.4 Nonlinear stress-strain curve of gasket material

り扱うため、本解析手法ではすでに図3に示した ようにガスケットに対して複数のバネモデルを用 いることにした、さらに、同図中に示したように フランジリングにおける接触面から中立面までの 変形についても、ガスケットバネと同数のバネで モデル化する、以下では任意の位置でのバネ(内 側から i 番目)に対する数学的取り扱いを示す。

ガスケットバネの変位をUgi, リングバネの変位 をUgiとする。これらのバネは直列に結合している のでそれぞれに内力Fgが発生している状態では合 計の変位Ugiが次のように求まる。

$$U_{gi} = U_{gi}^{g} + U_{gi}^{r} = -F_{gi} \left(\frac{1}{k_{gi}} + \frac{1}{k_{ri}}\right)$$
(38)

ここに、kgi, kriはそれぞれガスケットおよびリン グに関するバネ定数であり、次式で求められる。

$$\mathbf{k}_{gi} = \frac{2 \mathbf{E}_{gi} \mathbf{A}_{gi}}{v} \tag{39}$$

$$\mathbf{k}_{ri} = \zeta_i \frac{2 \mathbf{E}_f \mathbf{A}_{ri}}{\mathbf{t}}$$
(40)

ここで、E_{gi} は図4に示した応力・ひずみ曲線の 接線勾配に相当するもので、式切をひずみ ε で微 分することによって求められる. vおよびt はそ れぞれガスケットとリングの厚さである. ここで は同形状のフランジの組み合せを考えているので、 式(39)において半分のガスケット厚さが用いられる ことになる. A_{gi}, Ari はそれぞれガスケットとフ ランジの分割された部分の断面積である. 最後に、 *5*iはフランジリングの変形を補正する係数であり、 実験あるいは詳細な解析によって決められるもの である.

解析の途中で i 番目のガスケットバネの面圧が 内圧よりも小さくなる場合には, Egiを非常に小さ な値とすることによってバネの効果を無視する. このようにしてガスケットとフランジ面との接触 状態を取り扱う.

3.2.3 ボルト Bolt

フランジ継手では数本のボルトを締め付けるこ とによって流体のシール性が保持される.フラン ジ本体およびガスケットについてはどちらも軸対 称な構造物であったが,ボルトはそれぞれ独立し たものである.しかし,従来より全ボルトの効果 はボルト円周上に分布する軸対称なバネとして簡 易的に取り扱われている⁰. 今回も図3に示したよ うにボルトをバネとしてモデル化する.

ボルトパネの変位Ubはそこに発生している内力 Fbと次式で関係付けられる。

$$U_{b} = -\frac{F_{b}}{k_{b}} \tag{41}$$

ここで、kbはボルトのバネ定数であり次式で定義 される。

$$\mathbf{k}_{\mathbf{b}} = \frac{\mathbf{E}_{\mathbf{b}} \cdot \mathbf{A}_{\mathbf{b}}}{\rho} \tag{42}$$

ここで、Eb、Abはそれぞれボルトのヤング率と総断面積である。また、ℓはボルトの有効長さであるが、これを決定する際にはナット部およびフランジリング部の厚さ方向の変形を考慮する必要がある。ここで、式(41)から求まるUbはあくまでフランジリングの中立面の変位と平衡する量であることに注意すべきである。

3.3 境界条件式 Boundary condition

前節では、フランジ継手の分割された各部にお ける変位、回転、モーメントおよびせん断力を求 める式がすべて導かれた。ただし、これらの式に は未知の積分定数が多数含まれており、これらの 値を決定しなければ解が求ったことにならない。 未知の積分定数を求めるにはその個数に見合う条 件式が必要となるが、これらはパイプとハブ、ハ ブとリングなどの接続点および境界点において成 立する。たとえば、パイプとハブとの接続点にお いて両側の変位、回転、モーメントおよびせん断 力が連続であるという条件から求まる式がこれら に相当する。

図3に示したガスケット3バネモデルのフラン ジ継手は、パイプ、ハブ、8つのリング分割部、 3つのガスケットバネおよびボルトから構成され ている。未知の積分定数はパイプが2個、ハブが 4個、リングが4×8個で合計38個となる。さら にガスケットバネとボルトバネの内力が未知量と なるので、未知量の合計は42個となる。したがっ て、42個の境界条件式が必要となる。表1にはこ れらを各接続点と境界点に対してすべて示した。

バルカーレビュー

Table 1 Boundary Condition

表1 境界条件式

~			_					
· 接	接続量 続点 界点	変 位		A	転	モーメント	せん断力	
a	パイプーハ ブ (x=o) (x=o)	$w_{p} = w_{h} - \varepsilon_{f} (T_{h} - T_{p}) d$	(1)	$w_{\rm p}^{\prime} = w_{\rm h}^{\prime}$	(2)	$M_{p} = M_{h} \tag{3}$	$Q_p = \frac{3\alpha}{h}M_h + Q_h$	(4)
b	$(\mathbf{x} = \mathbf{h}) (\mathbf{r} = \mathbf{e})$	$w_{h} = -U_{r} - \frac{t}{2}w'_{h}$ $-\varepsilon_{f}(T_{r} - T_{h})e$	(5)	$w'_{\rm h} = w'_{\rm r}$	(6)	$M_{h} = -M_{r}^{1} + M_{r}^{1} - \frac{t}{2}Q_{h}(7)$		
с	リング I (r = b)					$M_r^{I} = o \qquad (8)$	$Q_r^{I} = o$	(9)
d	$\frac{1}{1} \frac{1}{1} \frac{1}$	$w_r^{I} = w_r^{II}$	(10)	$w_r^{\mathbf{I}'} = w_r^{\mathbf{II'}}$	(11)		$Q_r^{I} = Q_r^{II} - \frac{b^2 p}{2e}$	(12)
e	$\frac{1}{r} > \mathcal{J} = \frac{1}{r} > \mathcal{J} = \frac{1}{r} > \mathcal{J} = \frac{1}{r}$	$w_r^{II} = w_r^{III}$	(13)	$w_r^{[1]} = w_r^{[1]}$	(14)	$\mathbf{M}_{r}^{\Pi} = \mathbf{M}_{r}^{\Pi_{1}} \tag{15}$	$Q_r^{II} = Q_r^{III}$	(16)
f	$\frac{1}{(r = g_1)} \sim \frac{1}{(r = g_1)} = \frac{1}{(r = g_1)}$	$w_{r}^{\text{JU}_{1}} = w_{r}^{\text{JU}_{2}}$	(17)	$w_r^{\coprod i} = w_r^{\coprod i}$	(18)	$M_r^{III_1} = M_r^{III_2}$ (19)	$Q_r^{III_1} = Q_r^{III_2} + \frac{Fg_1}{2\pi g_1}$	(20)
	$ \begin{array}{l} 1 > \mathcal{T} \\ 1 \\ (\mathbf{r} = \mathbf{g}_{2}) \end{array} $ $ \begin{array}{l} \mathbf{r} = \mathbf{g}_{2} \\ \mathbf{r} \end{array} $	$w_r^{\text{III}2} = w_r^{\text{III}3}$	(21)	$w_r^{III\dot{2}} = w_r^{III\dot{3}}$	(22)	$M_r^{III_2} = M_r^{III_3}$ (23)	$Q_r^{\text{III}_2} = Q_r^{\text{III}_3} + \frac{Fg_2}{2\pi g_2}$	(24)
	$(r = g_3)$ $(r = g_3)$	$w_{t}^{j]13} = w_{t}^{j]14}$	(25)	$w_r^{\text{III}\hat{\imath}} = w_r^{\text{III}\hat{\imath}}$	(26)	$M_r^{III_3} = M_r^{III_4}$ (27)	$\mathbf{Q}_{r}^{\text{III}_{3}} = \mathbf{Q}_{r}^{\text{III}_{4}} + \frac{\mathbf{F}\mathbf{g}_{3}}{2 \pi \mathbf{g}_{3}}$	(28)
g	リングIII 4 - リングIV (r=h) (r=h)	$w_r^{\text{ill}} = w_r^{\text{N}}$	(29)	$w_r^{\parallel i_1} = w_r^{N'}$	(30)	$M_r^{III} = M_r^{N} $ (31)	$Q_r^{\mu} = Q_r^{\nu}$	(32)
h	$\frac{1}{1} \sim \frac{1}{2} \sqrt{N} - \frac{1}{1} \sim \frac{1}{2} \sqrt{V}$ $(r = c) (r = c)$	$w_r^{N} = w_r^{V}$	(33)	$w_r^{[V]} = w_r^{V'}$	(34)	$M_r^N = M_r^V $ (35)	$\mathbf{Q}_{\mathbf{r}}^{\mathbf{N}} = \mathbf{Q}_{\mathbf{r}}^{\mathbf{V}} + \frac{\mathbf{F}_{\mathbf{b}}}{2 \pi \mathbf{c}}$	(36)
i	リングV (r = a)					$M_r^{V} = o \qquad (37)$	$Q_r^{\Psi} = o$	(38)
j	リングV - ボルトバネ (r = c)	$w_r^{\mathbf{V}} = \mathbf{U}_{\mathbf{b}} + \varepsilon_f (\mathbf{T}_r - \mathbf{T})$	$\frac{t}{2}$					
		$-\varepsilon_b(T_b-T)\frac{\ell}{2}$	(39)					
·.	リングШ1ーガスケットバネ1 (r=g1)	$w_r^{\text{III}_1} = U_{g1} - \varepsilon_f (T_r - T)$	<u>1</u> 2					
		$-\varepsilon_{g}(T_{g}-T)\frac{\nu}{2}$	(40)					
k	リングIII2ーガスケットバネ2 (r = g 2)	$w_{r}^{\text{fll}2} = U_{g2} - \varepsilon_{f} (T_{r} - T)$	<u>t</u> 2					
		$-\varepsilon_{g}(T_{g}-T)\frac{\nu}{2}$	(4 1)					
	<u></u>		t		. <u>.</u> .			
	リングIII3ーガスケットバネ3 (= = ~~)	₩1 ^{···} ≕ Ug3*ε/(1r-1) [·] 	2					
	(r - g 3)	$-\varepsilon_{g}(T_{g}-T)\frac{v}{2}$	(42)					

(記号)

ε/:フランジ本体の熱膨張率

εь:ボルトの熱膨張率

- εg:ガスケットの熱膨張率
- T :フランジ継手全体の初期締め付状態における温度

T_P:パイプの使用状態における温度

Th:ハブの使用状態における温度

Tr:リングの使用状態における温度

T_b:ボルトの使用状態における温度

T_a:ガスケットの使用状態における温度

フランジ継手が初期締め付け状態の一様温度分 布から使用状態の不均一な温度分布に変化するこ とによって生じる荷重についても、今回の解析手 法では取り扱う.ただし,パイプ,ハブ,リング, ガスケットおよびボルトの各部に対して,使用状 態での異なる温度を指定することができるだけで

8

ある. このような温度分布荷重は表1における式 (1), (5), (39)~(42)に示すように変位の連続条件の補 正によって取り扱われる.

なお、表1の式(4)においてモーメントM_bの項が 含まれているのは、ハブが変形断面であるため発 生するせん断力を考慮したためである^{6),14)}表1の 式(5)、(7)におけるリング厚さtを含む項は、リン グに対して求まる変位、回転などの量がリングの 中立面上で得られており、この面とハブ接続点と がt/2だけ離れているために生じたものである。 また、表1におけるリングに関するモーメントM_r は式(32)で導いた半径方向のモーメントM^rであり、 ここではこの方向のモーメントの平衡のみが考慮 される。

References 参考文献

- 1) Waters, E.O., Wesstrom, D.B., Rossheim, D.B., and Williams, F.S.G., "Formulas for Stresses in Bolted Flanged Connections", Trans. ASME, vol. 59, 1937
- 2) ASME Boiler and Pressure Vessel Code, Section VIII, Division 1
- 3) S.P. チモシェンコ著、板とシェルの理論、プレイン図書
- Rossheim, D.B. and Markl, A.R.C., "Gasket-Loading Constant", Mechanical Engineering, 1943
- Wesstrom, D.B. and Bergh, S.E., "Effect of Internal Pressure on Stresses and Strains in Bolted Flanged Connections", Trans. ASME, vol. 73, 1951
- 6) Rodabaugh, E.C., O'Hara, F.M., and Moore, S.E., "FLANGE A Computer Program for the Analysis of Flanged Joints with Ring Type Gaskets", Oak Ridge National Laboratory Report ORNL-5035, 1976
- Rodabaugh, E.C. and Moore, S.E., "Evaluation of the Bolting and Flanges of ANSI B16.5 Flanged Joints-ASME Part A Design Rules", ORNL/Sub-2913-3,1976
- 8) 白倉, 管フランジ(一体形)の応力の計算式(案)について, 機誌, vol.67, No.548, 1964
- 9) JIS B 8243, 圧力容器の構造, 附属書 2
- 10) 西周,森田,河嶋,一体形フランジの強度,第1,2報, 楼論,vol.45, No.392, 1979
- 河村、アルミニウム製管フランジの設計に関する研究、機 論、vol.51, No.461, 1985
- 12) Bazergui, A., Leon, G.F., and Pavne, J.R., "Observation and Status of PVRC Gasket Test Program", 9th Int. Conf. Fluid Seal. 1981
- 13) Nau, B.S., and Smith, K.A., "The 'JOINT' Computer Program for Analysis of Gasket Sealing Stresses in Flanged Joints", BHRA Report RR 1845, 1982
- 14) S.P. チモシェンコ著, 材料力学(中), 東京図書

Modified Vessel function

付表1 修正ベッセル関数

 $b_1 = ber' \eta$ $b_2 = bei' \eta$ $b_3 = \ker' \eta$ $\mathbf{b}_4 = \mathbf{k}\mathbf{e}\mathbf{i}'$ η $b_5 = -\eta$ bei $\eta - 2$ ber' η $b_6 = \eta$ ber $\eta - 2$ bei' η b7 = $-\eta$ kei $\eta - 2$ ker' η bs = η ker $\eta - 2$ kei' η by = 4 η bei η + 8 ber' $\eta - \eta^2$ bei' η $b_{10} = -4 \eta$ ber $\eta + 8$ bei' $\eta + \eta^2$ ber' η $b_{11} = 4 \eta$ kei $\eta + 8$ ker' $\eta - \eta^2$ kei' η $b_{12} = -4 \eta \text{ ker } \eta + 8 \text{ kei}' \eta + \eta^2 \text{ ker}' \eta$ $b_{13} = -\eta^3$ ber $\eta = -24\eta$ bei $\eta = -48$ ber' η + 8 η^2 bei' η $b_{14} = -\eta^3$ bei $\eta + 24\eta$ ber $\eta - 48$ bei' η $-8 \eta^2$ ber' η $b_{15} = -\eta^3 \text{ ker } \eta - 24\eta \text{ kei } \eta - 48 \text{ ker' } \eta$ + $8 \eta^2$ kei' η $b_{16} = -\eta^3$ kei $\eta + 24\eta$ ker $\eta - 48$ kei' η $-8 \eta^2 \text{ ker}' \eta$ $b_{17} = -\eta$ ber $\eta + 2$ bei' η $b_{18} = -\eta bei \eta - 2 ber' \eta$ $b_{19} = -\eta \text{ ker } \eta + 2 \text{ kei}' \eta$ $b_{20} = -\eta$ kei $\eta - 2$ ker' η

(注) $\eta = 2 \gamma (\Psi \swarrow \alpha)^{-1/2}$

Appendix 1 Modified Vessel function

付録1 修正ベッセル関数

本文の項3.2.1 の(2)に述べたフランジ本体のハ プ部に関する式については、参考文献3)で詳しく 導びかれている。また、参考文献6)においては、 b1~b20 の修正ベッセル関数を用いた置き換えが 行われており、今回はこの記号によって解を表記 した、参考のために修正ベッセル関数に対する参 考文献6)のTable1を付表1として転載する。この 表においてber、bei、ker、kei はケルビン関数と 呼ばれるものである。

(つづく)