
Appendix
We present various additional results and extensions in the appendix. In Appendix A.1, we

fully characterize the equilibrium, including a proof for Proposition 1 and a formal description

of the strategies when conflict occurs along the equilibrium path. In Appendix A.2, we impose

a lower bound on the per-period offer. In Appendix A.3, we model path-dependent shocks. In

Appendix A.4, we model shocks in the cost of fighting (rather than the probability of winning). In

Appendix A.5, we model endogenous institutional reform.

A.1 Full Equilibrium and Conflictual Paths of Play

We first prove Proposition 1. We then finish the equilibrium characterization of the baseline

model by analyzing the parameters in which conflict occurs along the path of play, and discuss the

per-period probability of conflict along conflictual paths of play. Note that a Markovian strategy

for the ruler specifies a bargaining offer x(pt) as a function of the current-period threat pt, and a

Markovian strategy for the challenger specifies a response function as a function of pt and xt.

Proof of Proposition 1. The proof of existence and uniqueness proceeds in six steps. We first

provide some properties of any Markovian equilibrium while treating the continuation value for

the challenger as fixed (Steps 1–3), and then show that these properties uniquely pin down that the

continuation value must be the expected value of fighting in the next period (Step 4). This enables

us to establish the optimal per-period offer in a peaceful MPE (Step 5) and that the MPE is peaceful

if and only if these offers are feasible for all draws of pt (Step 6).

Step 1. In any MPE, the challenger accepts with probability 1 any offer that satisfies xt ≥ pt(1−µ)
1−δ

−

δV C (see Equation 1) and accepts with probability 0 otherwise. For this and the next two steps, we

denote as V C the challenger’s continuation value given the strategy profile (which is not a function

of past play, given the Markovian restriction).
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Proof : By construction, the challenger is strictly better off accepting if xt >
pt(1−µ)
1−δ

− δV C and

rejecting if xt < pt(1−µ)
1−δ

− δV C . If the challenger were to not accept with probability 1 when

the equality is met, then the ruler could profitably deviate to an infinitesimally larger offer, and

therefore lacks a best response. So in any MPE the challenger must always accept xt =
pt(1−µ)
1−δ

−

δV C .

Step 2. Suppose 1 + δV C ≥ pt(1−µ)
1−δ

. Then in any MPE, the ruler never offers an amount xt >

pt(1−µ)
1−δ

− δV C .

Proof: The ruler’s future continuation value is identical for any offer such that xt ≥ pt(1−µ)
1−δ

− δV C

because, as the previous step established, the challenger will accept any such offer with probability

1. Consequently, any offer satisfying this inequality affects only the ruler’s current-period payoff.

The ruler can profitably deviate from any strategy in which the offer strictly satisfies the inequality

because an infinitesimally smaller offer would increase the ruler’s contemporaneous consumption

without triggering the challenger to fight. Finally, the present assumption that 1 + δV C ≥ pt(1−µ)
1−δ

implies xt =
pt(1−µ)
1−δ

− δV C is a feasible offer.

Step 3. Suppose 1 + δV C < pt(1−µ)
1−δ

. Then in any MPE, the challenger rejects any feasible offer.

Proof : Follows directly from Step 1 and the assumed upper bound xt ≤ 1.

Step 4. In any MPE, V C = p̄(1−µ)
1−δ

.

Proof : We demonstrate that p̄(1−µ)
1−δ

comprises both a lower and upper bound for V C , hence yielding

the desired equality.

For the lower bound, it must be the case that V C ≥ p̄(1−µ)
1−δ

because the challenger can always

choose to fight in the next period. This yields in expectation the amount on the right-hand side of

this inequality.

For the upper bound, along an arbitrary equilibrium path, we can assign a mixed probability with

which the challenger accepts, α(pt), for each state of the world (which also takes into account the

ruler’s optimal offer for that state). Any rejected offer yields pt(1−µ)
1−δ

. From Steps 2 and 3, we know
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that any offer that is accepted is bounded from above such that xt ≤ pt(1−µ)
1−δ

− δV C . Thus, if we

set accepted offers to this upper bound, we have an upper bound for the continuation value:

V C ≤
∫ pmax

pmin

[ Accept︷ ︸︸ ︷
α(pt)

( pt(1− µ)

1− δ
− δV C︸ ︷︷ ︸

Current period

+ δV C︸︷︷︸
Future periods

)
+

Reject︷ ︸︸ ︷(
1− α(pt)

) pt(1− µ)

1− δ

]
dF (p)

=
p̄(1− µ)

1− δ
.

Thus, the upper and lower bounds for V C are equal, which completes the proof.

Step 5. Suppose (pt−δp̄)(1−µ)
1−δ

≤ 1. Then in any MPE, the ruler proposes xt = x∗(pt) ≡ (pt−δp̄)(1−µ)
1−δ

.

Proof : Substituting V C from Step 4 into the inequality from Step 1 demonstrates that the chal-

lenger will accept xt =
(pt−δp̄)(1−µ)

1−δ
, which is the term from Equation (4). Furthermore, because

of the present assumption (pt−δp̄)(1−µ)
1−δ

≤ 1, this offer is feasible. To show this is the unique offer

in any MPE when (pt−δp̄)(1−µ)
1−δ

≤ 1 is satisfied, we show that offering any other amount makes the

ruler strictly worse off.

To see that a higher offer makes the ruler strictly worse off, in Step 2 we established that the ruler

never benefits from offering an amount xt >
pt(1−µ)
1−δ

−δV C . Substituting in the value of V C solved

for in Step 4 yields the desired inequality.

To see that a lower offer makes the ruler strictly worse off, we begin by observing that the chal-

lenger will reject any lower offer (see Step 1 while substituting in V C from Step 4). Therefore,

a deviation by the ruler will yield a lifetime expected utility for herself of (1−pt)(1−µ)
1−δ

. To demon-

strate that this deviation is strictly unprofitable, we need to demonstrate that the ruler can ensure

herself a higher payoff from offering xt = (pt−δp̄)(1−µ)
1−δ

and thereby securing acceptance in the

present period. Following a period of acceptance, we can bound the ruler’s future continuation

value from below at (1−p̄)(1−µ)
1−δ

because the ruler can always trigger the challenger to fight in the

next period. Thus the claim requires showing that the ruler’s lower-bound lifetime expected utility

27



from securing agreement in the current period strictly exceeds her utility to fighting now:

1− (pt − δp̄)(1− µ)

1− δ︸ ︷︷ ︸
Peace now

+ δ
(1− p̄)(1− µ)

1− δ︸ ︷︷ ︸
Conflict in next period

>
(1− pt)(1− µ)

1− δ︸ ︷︷ ︸
Conflict now

.

This reduces to δ(1− µ) > 0, which always holds.

Step 6. There is a unique peaceful MPE if and only if (pmax−δp̄)(1−µ)
1−δ

≤ 1.

Proof : To prove “if,” note that x∗(pt) strictly increases in pt. Therefore, if x∗(pmax) ≤ 1, then this

inequality holds for all pt. Per the proceeding steps, the optimal-offer function for the ruler and the

optimal-response function for the challenger are each unique, and the challenger accepts in every

period.

To prove “only if,” if the inequality is violated, then the challenger rejects any feasible offer when

pt = pmax. This follows from Step 3 after substituting in the term for V C established in Step 4.

Consequently, conflict occurs along the equilibrium path.

We now provide a full characterization of equilibrium strategies when the condition in Propo-

sition 1 is violated.

Proposition A.1 (Conflictual equilibrium). If (pmax−δp̄)(1−µ)
1−δ

> 1, then there is a unique class of

payoff-equivalent MPE in which conflict occurs along the path of play. In these MPE, there is a

unique p∗ ∈ (pmin, pmax) such that (i) when pt ≤ p∗, the strategies are the same as in Proposition

1, and (ii) when pt > p∗, then the challenger rejects all offers and the ruler’s strategy can involve

making any offer.

Proof The proof of Proposition 1 provides most of the elements needed to establish existence and

uniqueness. For the present proof, we formally define p∗ as:

(
p∗ − δp̄

)
(1− µ)

1− δ
= 1 =⇒ p∗ =

1− δ

1− µ
+ δp̄.
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For the bounds, the upper bound p∗ < pmax follows from the present assumption that (pmax−δp̄)(1−µ)
1−δ

>

1. The lower bound p∗ > pmin requires (pmin−δp̄)(1−µ)
1−δ

< 1. Algebraic rearrangement yields

pmin(1− µ) < p̄(1− µ) + (1− δ)(1− p̄(1− µ)), which is true because pmin < p̄.

The unique optimality of the challenger’s accept/fight decisions follows immediately from the

construction of p∗ and from the steps in the proof of Proposition 1; as do the offers from the ruler

when p ≤ p∗. When p > p∗, all offers are rejected, and therefore the ruler is indifferent among all

offers.

How challenger strength affects the per-period probability of conflict Throughout the anal-

ysis in the article, when we assess prospects for conflict, we mean prospects for an equilibrium

in which conflict occurs along the path of play. Here we extend the analysis by considering how

challenger strength affects outcomes within the set of parameter values in which conflict occurs

along the equilibrium path. Along a conflictual equilibrium path, the per-period probability of

conflict (assuming none has occurred previously) is the probability of drawing pt > p∗. Since the

cumulative distribution function of pt is F , we can write this 1− F
(

1−δ
1−µ

+ δp̄
)

.

Increasing challenger strength changes two terms in this expression: p̄ and the F function.

Suppose we define an increase in challenger strength as a uniform upward shift in the probability of

winning a conflict, such that this probability is pt+ d for some constant d > 0. In this formulation,

pt is the “baseline” probability of winning, which still follows distribution F , and d is the increase

in this baseline threat. Thus, we can use the expressions from above while replacing pt with

pt + d, and p̄ with p̄ + d. Consequently, the per-period probability of conflict is Pr
(
pt + d >

1−δ
1−µ

+ δ(p̄ + d)
)
= 1 − F

(
1−δ
1−µ

+ δp̄− (1− δ)d
)

. This term strictly increases in d. Therefore,

conditional on conflict occurring along the equilibrium path, a stronger challenger (defined by a

uniform shift) decreases the expected number of periods until conflict occurs. A uniform upward

shift in threats improves the challenger’s continuation value from accepting (because it gains higher

average offers in the future) and from fighting (because it wins with higher probability). The latter
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term dominates the former term because it is not discounted by a period, as discussed following

the statement of Proposition 6.

The binary-threat case permits us to explore the effects of a shift in the distribution function

itself. One notion of a stronger challenger is a higher frequency of maximum-threat periods, ex-

pressed by q. In the text, we demonstrated that higher q increases the range of parameter values in

which the equilibrium is peaceful. However, conditional on the equilibrium path featuring conflict,

higher q in fact raises the per-period probability of conflict. A high value of q guarantees peace;

it is straightforward to verify that the condition in Proposition 1 always holds in the binary case

if q = 1. However, the cause of the higher average threat is that maximum-threat periods arise

more frequently—which means that conflict is expected to occur sooner if that event ever occurs

along the equilibrium path. Overall, the effect of q on the per-period probability of conflict is

non-monotonic: positive and strictly increasing until it drops to 0.

Figure A.1: Expected Time Until Conflict in Binary Threats Model
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Parameter values: δ = 0.9, µ = 0.5, pmin = 0.

We can see this visually in Figure A.1. It has the same parameter values and general setup as
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in Figure 1 except now we provide information on what happens in a conflictual path of play. The

per-period probability of conflict is 0 in the white area (i.e., a peaceful path of play), and is positive

in the gray areas (i.e., a conflictual path of play); and darker colors indicate a higher per-period

probability of conflict. The non-monotonic effect of q is readily apparent: the total size of the

conflict region is smaller for higher values of q, but conditional on conflict occurring along the

equilibrium path, it is expected to occur sooner.

This finding highlights another twist in understanding the overall relationship between chal-

lenger strength and conflict. Depending on parameter values, a medium-sized increase in q can in

fact make conflict more imminent, whereas a large increase in q eliminates conflict entirely.

A.2 Lower Bound on Offers

Here we extend the model to assume that the per-period offer must satisfy xt ∈ [x, 1], for an

exogenously specified x < 1. A natural value to consider is x = 0, that is, the ruler cannot demand

net transfers away from the challenger, although the following results hold for more general values

of x. We derive these results under the specific case of binary challenger strength, while allowing

strength to affect the minimum and maximum threats in addition to the probability of a maximum-

threat period. Specifically, pt ∈ {pmin, pmax}, with q = Pr(pt = pmax). Let x(pt, x) be the offer

made when the current-period threat is pt and the lower bound on offers is x. For the unbounded

case we analyze in the text, we write x(pt,−∞). At the end of this section, we comment on

modeling a lower bound for the more general distribution of threats.

By Proposition 1, in any peaceful MPE, the offers in each period satisfy:

x∗(pmin,−∞) =
1

1− δ

(
(1− δ(1− q))pmin − δqpmax

)
(1− µ)

x∗(pmax,−∞) =
1

1− δ

(
pmax(1− δq)− δ(1− q)pmin

)
(1− µ).

If x ≤ x∗(pmin,−∞), then the lower bound never binds and the analysis is equivalent to the
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unbounded case. At the other extreme, if x > pmax(1−µ), then the challenger accepts the basement

offer even in a maximum-threat period.

If x is in-between these extremes, then along a peaceful equilibrium path, the ruler will offer

x in a minimum-threat period and make a higher offer in a maximum-threat period. In such an

equilibrium, the offer made in a maximum-threat period must make the challenger indifferent

between accepting and not:

x∗(pmax, x) +
δ

1− δ

(
qx∗(pmax, x) + (1− q)x

)
=

pmax(1− µ)

1− δ

=⇒ x∗(pmax, x) =
pmax(1− µ)− δx(1− q)

1− δ(1− q)
.

Given the upper bound of 1 for an offer, a peaceful MPE requires x∗(pmax, x) ≤ 1. The offer in

a maximum-threat period decreases in x because higher basement spoils increase the challenger’s

average consumption in future periods. We can rearrange to show that x∗(pmax, x) ≤ 1 if and only

if:

x ≥ 1− 1− pmax(1− µ)

δ(1− q)
≡ xpeace. (A.1)

This threshold is strictly less than 1, which means it is always possible to set x high enough to

induce a peaceful equilibrium path of play.

Finally, we point out that there is no reason to believe that the core insights would not extend

for the more general distribution of threats in our baseline model. However, the general case is

difficult to characterize analytically. Intuitively, whenever pt is lower than some bound p, the ruler

will offer exactly xt = x, and for all other periods the ruler will offer a higher value of xt that

makes the challenger indifferent between accepting and fighting. This breaks the linear structure

of the offers in the baseline case. The specific complication is that the threshold p is endogenous

to anticipated outcomes along the future path of play. This makes it difficult to characterize clean
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comparative statics on key parameters such as challenger strength.

A.3 Path-Dependent States

Despite the generality of our baseline model, one stark assumption is that Nature draws threat

levels independently across periods. A simple way to introduce path-dependent states is to assume

in each period that the challenger’s threat level is either identical to the level from the previous

period or a new draw occurs from the main distribution F (p; s). The probability that the threat

level persists from the previous period is r ∈ (0, 1). The main findings here are (1) more per-

sistent threats make conflict less likely; and (2) if threats are sufficiently persistent, then stronger

challengers are unambiguously harder to buy off.

In this extension, the continuation value depends on the current value of pt. Let V C(pt) be

the continuation value for entering the next period when the current threat is pt. We can write the

indifference condition as:

xt(pt) =
pt(1− µ)

1− δ
− δ

(
rV C(pt) + (1− r)V C

n

)
, (A.2)

where V C
n = E[V C(pt)] is the continuation value if the threat is “new.” We can write the continu-

ation value with threat pt as:

V C(pt) = xt(pt) + δ
(
rV C(pt) + (1− r)V C

n

)

=⇒ V C(pt) =
xt(pt) + δ(1− r)V C

n

1− δr
.

Substituting this term back into Equation (A.2) yields:

xt(pt) =
1

1− δ
pt(1− µ)− δ

(
r
xt(pt) + δ(1− r)V C

n

1− δr
+ (1− r)V C

n

)
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=⇒ xt(pt) =
1− δr

1− δ
pt(1− µ)− δ(1− r)V C

n . (A.3)

Importantly, and as in our baseline analysis, this expression is linear in pt. As a result, we can

solve for V C
n as follows:

V C
n = E[xt(pt)] + δV C

n

=
1− δr

1− δ
p̄(1− µ)− δ(1− r)V C

n + δV C
n .

Solving for V C
n gives:

V C
n =

p̄(1− µ)

1− δ
. (A.4)

Note that this expression is the same as in the baseline case without path dependence, r = 0.

Substituting Equation (A.4) back into Equation (A.3) provides an explicit characterization of the

offer in each period:

xt(pt) =
1− δr

1− δ
pt(1− µ)− δ(1− r)

1

1− δ
p̄(1− µ)

=⇒ xt(pt) =
1

1− δ

(
(1− δr)pt − δ(1− r)p̄

)
(1− µ).

As r → 0, we recover our baseline setup without path dependence. As r → 1, threats do

not change over time, and hence the optimal offer converges to the offer from a static version of

the model, (1 − µ)pt. This term is strictly less than 1, which means that any equilibrium path of

play is peaceful. This is expected; the reason that fighting can occur along the equilibrium path in

bargaining models with limited commitment is that threat levels fluctuate over time.
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In general, peace is possible when:

1− δ

1− µ
≥ pmax − δp̄︸ ︷︷ ︸

τ(s)

−δr(pmax − p̄) ≡ τ(s, r). (A.5)

The first result is that more persistent threats make conflict less likely. As we can see in Equa-

tion (A.5), higher r makes the inequality true for a wider range of parameter values; and at r = 0

it collapses to Equation (5).

The second result is that if threats are sufficiently persistent, then stronger challengers are

unambiguously harder to buy off. The inequality in Equation (A.5) is harder to sustain for a

stronger challenger if τ(s, r) increases in s:

(1− δr)
∂pmax

∂s
− δ(1− r)

∂p̄

∂s
> 0.

To yield the result, as r → 1, the second term in the preceding expression approaches zero,

whereas the first term approaches (1− δ)∂p
max

∂s
. Consequently, ∂pmax

∂s
> 0 implies that the preceding

inequality must hold.

A.4 Fluctuating Costs of Conflict

In this section, we analyze a variant of the model in which the probability of winning is fixed but

the cost of fighting fluctuates across periods. This more closely resembles the setup in Acemoglu

and Robinson (2006), and the insights are qualitatively identical to our baseline model.

Suppose the probability of challenger victory is fixed at p ∈ (0, 1] and the fraction of spoils

that would permanently be destroyed by conflict is given by µt. We rule out the trivial case p = 0,

in which it is immediately apparent that the ruler survives while offering nothing in each period. In

each period, µt is drawn iid from a distribution G(µ) with minimum value µmin, maximum value

µmax, and average value µ̄.
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By an identical logic as in our baseline model, the optimal transfer in every period must satisfy:

x∗(µt) =
p(1− µt)

1− δ
− δV C .

In a peaceful MPE, the continuation value is written as follows. The first line is identical to the

baseline setup except the integrand differs, and the final expression for V C is identical except the

average is taken over µ rather than p.

V C =
1

1− δ

∫ µmax

µmin

(
p(1− µ)

1− δ
− δV C

)
dG(µ)

=⇒ V C =
p(1− µ̄)

1− δ
.

Consequently, the optimal offer is:

x∗(µt) =
p

1− δ

(
1− δ − (µt − δµ̄)

)
.

The condition for a peaceful MPE is that it is possible to buy off the challenger when conflict

destroys the smallest share of the pie, or:

p

1− δ

(
1− δ − (µmin − δµ̄)

)
≤ 1.

This yields qualitatively identical comparative statics as the main analysis. If increasing challenger

strength decreases the average amount destroyed by conflict but not the minimum amount, then

this inequality is easier to meet, and so stronger challengers are easier to buy off peacefully. By

contrast, if making the challenger stronger decreases µmin and µ̄ at an equal rate, then the opposite

holds.
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A.5 Endogenous Institutional Reform

In Appendix A.2, we extended the binary threat version of the model to incorporate an exoge-

nous lower bound x on the ruler’s per-period offer. Now we endogenize the choice of x, which

we interpret as strategic institutional reform. In each period, after Nature realizes the challenger’s

threat, the ruler chooses xt ∈ [xt−1, 1], with the initial level corresponding to that in the baseline

game, x0 = −∞. This means that the institutional choice in any period is a dynamic state variable

and creates a floor for the offer in all future periods; the ruler can subsequently choose to raise this

floor, but not lower it. This choice could capture a wide range of institutional reforms, such as a

power-sharing agreement, expanding the franchise, or civil rights protections.

We begin by presenting three preliminary results. First, if the inequality in Proposition 1 is

met, then the ruler will not set xt > −∞. A different choice would either have no impact on the

outcome the game or would redistribute more surplus than needed to buy off the challenger. As a

result, we focus on the case when the inequality in Proposition 1 is not met, and hence conflict will

occur along the equilibrium path absent reform.

Second, the ruler never has a strict preference to reform institutions in a minimum-threat period.

Doing so would deliver (weakly) more transfers to the challenger in a period in which it can already

be induced to accept (see the proof for Proposition A.1), but has no impact on the ruler’s ability to

buy off the challenger in a maximum-threat period. In such a period, the ruler can instantaneously

increase the basement level of transfers.

Third, if the ruler makes institutional reforms, they will be “large.” Recall from Equation (A.1)

that xpeace is the level of xt at which the challenger is indifferent between accepting an offer of 1

and fighting in a maximum-threat period. This is the lowest level of xt that induces a peaceful

path of play. It is straightforward to rule out any finite choice xt < xpeace as the optimal level

of institutional reform. Such a choice does not change the challenger’s preference to fight in

maximum-threat periods and simply delivers weakly more spoils to the challenger in minimum-

threat periods, when it would accept anyway.
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Given these preliminary results, we ask: in a maximum-threat period, if conflict would other-

wise occur, will the ruler make institutional reforms sufficiently large to buy off the challenger?

The following proves that the answer is always yes. We already know the ruler’s lifetime expected

utility if a conflict occurs in a maximum-threat period:

(1− pmax)(1− µ)

1− δ
. (A.6)

Alternatively, upon choosing xt ≥ xpeace but not subsequently choosing xz > xt in any period

z > t, the ruler’s lifetime expected utility is:

1− x∗(xt) +
δ

1− δ

(
q(1− x∗(xt)) + (1− q)(1− xt)

)
, (A.7)

where x∗(xt) is the offer that makes the challenger indifferent between accepting and fighting in a

maximum-threat period given institutions xt. This offer must satisfy:

x∗(xt) +
δ

1− δ

(
qx∗(xt) + (1− q)xt

)
=

pmax(1− µ)

1− δ
. (A.8)

Solving Equation (A.8) for x∗(xt) and substituting back into Equation (A.7) yields a lifetime ex-

pected utility for the ruler of:
1− pmax(1− µ)

1− δ
. (A.9)

Finally, we compare Equations (A.6) and (A.9):

1− pmax(1− µ)

1− δ
>

(1− pmax)(1− µ)

1− δ

which holds for any µ > 0.

One notable attribute about the preceding proof is that conditional on making a large-enough

institutional reform to induce peace, the ruler is in fact indifferent about the exact amount of insti-
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tutional reform. There are a continuum of equilibrium choices in which the ruler chooses between

a bit more institutional reform (yielding less consumption for herself in a minimum threat period)

and offering somewhat fewer temporary transfers in a maximum threat period, and vice versa.

We focus on the MPE with the minimum-necessary institutional reforms, which is consistent with

microfoundations for such a choice posited in Castañeda Dower et al. (2018) and Powell (2021).

Along the equilibrium path, the ruler does not choose institutional reform until the first maximum-

threat period, when she implements reform. Formally, the ruler optimally sets xt = max{−∞, xt−1}

in every minimum-threat period and xt = max{xpeace, xt−1} in every maximum-threat period; the

max function accounts for the inability to lower basement spoils below those chosen in previous

periods.

Given this result, the comparative statics on s are identical to those in the baseline game. We

simply replace the conflict region in Figure 1 with a “reform” region. In other words, the parameter

values in the baseline model for which conflict would ensue is identical to the parameter values in

the present extension for which institutional reform will occur.

Therefore, higher pmax increases the range of parameter values in which any institutional reform

occurs. An additional result is that higher pmax also increases the extent of institutional reforms

(conditional on any occurring). To establish this result, we differentiate xpeace (see Equation (A.1))

with respect to pmax. Increasing the challenger’s opportunity cost to not fighting in a maximum-

threat period bolsters the credibility of its demands for more institutional reform.
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