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Abstract. Rational and structure-based drug design is more efficient than the traditional method of drug discovery because 

this method examines the molecular basis of disease and uses the three-dimensional structure of the biological target. A series 

of 2-pyrone derivatives of Nitrobenzothiazinone were developed and evaluated for their drug-likeness, solubilities and 

pharmacokinetic and pharmacodynamic data employing two free software packages (SwissADME and admetSAR). The 

compounds were further evaluated for their binding affinities against DprE1, an essential enzyme involved in fatty acid 

biosynthesis, leading to cell death of Mycobacterium tuberculosis (M. tuberculosis) and three of compounds showed affinities 

higher than 5-nitrobenzothiazinone. Virtual screening showed a high molecular similarity (<90%) between the developed 

ligands. The potential of 2-pyrone-tethered Nitrobenzothiazinone towards DprE1 indicates the need for further evaluation in 

animal studies against both M. tuberculosis and other non-tuberculous Mycobacteria.  
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1. Introduction: 

Developing new drugs is challenging, costly, and 

is flawed with low success rates. The vast majority of 

drugs evaluated in clinical trials do not reach the market 

due to high attrition rate (Lahti et. al., 2012). Drug 

development is a balance between optimizing druglike 

properties, efficacy, safety, and pharmacokinetic data. 

Therefore, the early stage of drug discovery focuses on 

identifying molecules that can bind to a target. Though 

potency is a driving factor in these early stages, the 

pharmacokinetic and toxicity properties are better 

indicators of drug success than potency. The 

pharmacokinetic profile of a compound defines its 

absorption, distribution, metabolism, and excretion 

(ADME) properties. Optimal binding properties of a new 

drug to its cellular target are vital, but drug concentration 

at its target site that produces the desired physiological 

effect in the clinic is more relevant. Hence, the recent 

attention on virtual screening of the ADME properties 

which has led to a significant reduction in the number of 

compounds that fail in clinical trials due to poor ADME 

properties (Hoang et al., 2017; Yang et al., 2018). 

There are several strategies such as Lipinski’s 

“Rule of 5” (Lipinski et al., 1997; Lipinski, 2016), and 

Egan Egg (Egan et al., 2000; Egan & Lauri, 2002), as 

guidelines that constitute a filter on what drug might be 

well- or poorly absorbed, and which are brain permeant, 

and which are non-permeant. The strategies try to 

identify broad chemical properties that may increase a 

molecule’s chances to reach the market, within a large 

and unexplored chemical space (Reymond and Awale, 

2012). Another is data mining which seeks to explore the 

extensive data available within pharmaceutical 

companies and the internet, (Qing et al., 2014) though 

there are still challenges within these filters. But the early 

ADME profiling of drug candidates is now a crucial 

component in the success of any new compound and has 

been integrated into the drug development process which 

should hopefully mitigate late-stage drug failure. More 

so, evaluation of experimental ADMET properties is 

time-consuming and costly. Hence the use of virtual or 

in silico screening to optimize pharmacokinetics and 

toxicity properties to obtain leads that progress to drug 

candidates. There are many in silico approaches for 

predicting pharmacokinetics and toxicity properties of 

compounds from their chemical structure (Mascarenhas 

& Gottlieb, 1975), ranging from data mining approaches 

such as quantitative structure-activity relationship 

(Kaloga & Christiansen, 1981), similarity searches 

(Kuroyanagi et al., 1982), and three-dimensional QSAR 

(Shin et al., 2016), to structure-based methods such as 

ligand-protein docking (Sagawa et al., 2005) and 
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pharmacophore mapping which is based on ligand 

properties (Giddens et al., 2008). Some of these in silico 

methods are freely available but several are not thus 

limiting the application of these methods in drug design 

and development.  

Tuberculosis (TB) is an infection caused by 

Mycobacterium tuberculosis that affects the lung, and all 

other major organs and tissues of the body. At least 2.3 

billion people worldwide are infected with this 

bacterium. The control of TB has led to increase in the 

prevalence of multi-resistant (MDR) and extensively 

drug-resistant (XDR) TB. The challenges with current 

TB drugs, is the long period of drug regimen, raising 

cases of resistant TB including the recent report of totally 

resistant TB (TR-TB) and the coinfection of TB and 

HIV. To address these challenges, efforts have been 

directed towards TB drug design and development. 

Traditional methods of antibiotic discovery have failed 

to keep pace with the evolution of this resistance. Over 

the last few years, progress has been made in the search 

for new anti-TB compounds (De Luca et al., 2009). 

However, strains resistant to these new molecules have 

already been reported (Parretti et al., 1997; Boucher et 

al., 2009; Arias and Murray 2008). The search for new 

drugs against TB plays a crucial role in meeting 

sustainable development goals (SDG) and in achieving 

global worldwide goals established by the WHO (WHO 

2016; De Lima and Nascimento, 2013). Infections 

caused by resistant bacteria are harder to treat and are 

associated with increasing healthcare costs in addition to 

higher mortality (Cleves et al., 2006). There is a need for 

novel treatment strategies to combat these resistant 

bacteria. Moreover, the high attrition rate of drug design 

research draws on the need for a more collaborative and 

holistic approach to drug discovery and development.  

In 2009, Makarov et al., (2009), described 

Nitrobenzothiazinone (BTZ043; Figure 1) as a new class 

of compounds with high anti-mycobacterial activity.  

 

 
Figure 1. Nitrobenzothiazinone an anti-tuberculosis 

drug undergoing clinical trials. 

 

DprE1 is a decaprenyl phosphoryl-D-ribose 

oxidase, involved in the biosynthesis of decaprenyl 

phosphoryl-D-arabinose (DPA), an essential component 

of the mycobacterial cell wall and is essential for cell 

growth and survival (Hann et al., 2001). The most 

promising BTZ compound BTZ043 (Fig 1) is 

characterized by a nitro group, opined to be fundamental 

to the anti-TB activity. The high ‘drug ability’ of DprE1 

is proven by the numerous structurally unrelated 

compounds that inhibit this enzyme. BTZ043 is the most 

promising inhibitor of DprE1 studied in recent times and 

we chose it as our target of interest because of this drug 

ability and tethered 2-pyrone compounds to BTZ043 to 

further evaluate the effect that these modifications would 

have on the drug-likeness, physicochemical and binding 

affinities of the designed compounds and DprE1 (Figure 

2; DprE1 docking simulation with the designed 

compounds). 

 

 
Figure 2. Docking pose of 2-pyrone-tethered 5-

nitrobenzothiazinone. 

 

2-Pyrone motif is ubiquitous in nature and a wide 

range of activities have been reported for them such as 

cytotoxicity against HeLa cells (Fang et al., 2015) 

anticancer against human breast cancer (Fairlamb et al., 

2004), antimicrobial activity (Fairlamb et al., 2004), 

protein kinase C inhibition (Zhao et al., 2015), and 

inhibition of cyclic AMP-dependent protein kinase 

(Peltola et al., 2001). Nocapyrones A-J (Figure 3) below 

are reported to have neuroprotective activities in 

inflammation-related brain damage induced by 

microglial cell activation (Yamashita et al., 1988; Dolak 

et al., 1980).  Severe brain inflammation could lead to 

neuronal cell death and is believed to be a cause of 

Parkinson’s disease, Alzheimer’s disease or cerebral 

ischemia (Stoll et al., 1998; Kim & Joh, 2006). In this 

same vine, Myxopyronin A, B and corallopyronin A, B 

and Csypyrone Bs (B1-B3) are novel inhibitors of RNA 

polymerase (RNAP) that binds this protein in a different 

manner to other known antibiotics (Kreutzberg, 1996).  

In line with our interest in designing 2-pyrone-based 

anti-TB drugs, we are exploring the combination of 

Nitrobenzothiazinone with 6-styryl-2-pyrone and 

screening them for their drug-likeness, synthetic 

accessibility, their ADMET profile and their 

physicochemical properties relative to 

Nitrobenzothiazinone.  

Pharmacophore mapping involves computer-

based methods that recognises ligands’ molecular 

features essential for biological activity. It is employed 

to reduce the number of compounds to purchase, test and 

synthesise in any drug design and discovery research. 
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Figure 3: Selected Natural and Biologically active 2-pyrone Compounds. 

 

 It leads to a reduction in cost of rational/modern drug discovery relative to conventional drug design process (Tsai et 

al., 2008; Day et al., 2009). It involves three steps: identifying elements responsible for biological activity, generating 

the different poses the ligands can adopt and determine the 3D relationship between each element in the generated 

poses.  Herein, we employ pharmacophore mapping to design 2-pyrone-based anti-TB drug-like compounds in line 

with our interest in developing anti-tuberculosis drugs (figure 4).  

 
Figure 4. 2-Pyrone-tethered 5-nitro-benzothiazinone. 
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2. Methodology: 

A designed dataset of a fifty 2-pyrone-tethered 5-

nitrobenzothiazinone compounds containing alkyl, aryl 

and halide groups as structural key elements were used 

to perform 3D-QSAR studies. In such investigations, the 

molecular alignment and conformation determination 

are very important for the reliability and validity of the 

resulting model. The availability of X-ray data from 

crystallized protein-ligand complexes enabled the 

inclusion of additional information from the receptor 

site. Therefore, we applied a strategy of combining 

conformations obtained by employing bio isosteric (H 

and F, CH3 and CF3, Cl, and Br) for pharmacophoric 

alignment. In this case, we mapped the 2-pyrone scaffold 

onto 5-nitrobenzothiazinone to obtain structural 

molecules with high similarity (<95%) to each other and 

moderate similarity to (BTZ043, similarity score ca 

50%) as showed in figure 5 below. 

 

 

 

 

 

 

 

 

 

Figure 5: Molecular alignment of the designed 

compounds to BTZ043.  

2.1. Preparation for Virtual Screening: The designed 

dataset containing 50 compounds were drawn using 

ChemDraw 16. The Protein Drug Bank (PDB) structure 

of DprE1 protein (PDB Code: 6hf0, Makarov et al., 

2014), was retrieved from the PDB 

(http://www.rcsb.org/pdb/home/home.do). 

 

2.2. First Round of Screening Based on Lipinski’s and 

Egan’s Lead-Likeness Criteria: The 50 compounds were 

filtered to exclude compounds that did not follow 

SwissADME lead-likeness criteria (Daina et al., 2017),  

(150 < MW < 500, −3.5 < C log P < 4.5, 0 < number of 

rings < 5,  0 < rotational bonds < 10, 0 < donors < 5, 0 < 

acceptors < 10 (Daina et al., 2017; Lipinski et al., 1997). 

The filtered compounds contained 45 potential lead 

compounds (Fig 4). Based on the results in Table 1, we 

screened out molecules with more than three filters (or 

limits) as indicated by the red-colored highlights. 

Therefore, twenty compounds were dropped leaving us 

with 30 molecules to advance to the next stage. Some of 

the parameters that were calculated included iLOGP 

which is the closest to atom-based LogP 98 (ALogP98), 

and ADME 2D Topological Polar Surface Area (TPSA). 

 

2.3. ADMET Prediction: To estimate the drug-likeness 

of the compounds, in silico absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) 

prediction was carried out (Lagorce et al., 2011). We 

investigated the ADMET properties of the 10 selected 

compounds using the ADMET Protocol in the 

SwissADME software package (Christ et al., 2010). 
These studies were solely based on the chemical 

structure of the molecule. Some of the parameters that 

were calculated include the Blood-Brain Barrier (BBB), 

Cytochrome P4502D6 (CYP2D6), Cytochrome 

P4501A19 (CYP1A19), Cytochrome P4503A4 

(CYP3A4), Cytochrome P4502C9 (CYP2C9) and 

Cytochrome P4501A1 (CYP1A1).  The designed 

Table 1: Physicochemical properties for designed compounds 1a-j. 

Entry 1a 1b 1c 1d 1e 1f 1g 1h 1i 1j 

Mol. wt. 523.48 541.47 537.51 591.5 602.38 557.93 593.61 563.35 613.6 663.75 

#Heavy atoms 36 37 37 40 37 37 41 39 43 46 

#arom. Heavy atoms 12 12 12 12 12 12 12 12 18 12 

fraction Csp3 0.39 0.39 0.41 0.42 0.39 0.39 0.5 0.38 0.33 0.58 

#rot. Bonds 5 5 5 6 5 5 9 7 7 14 

# H-B acceptors 10 11 10 10 13 10 10 10 10 10 

#H-B donors 0 0 0 0 0 0 0 0 0 0 

MR 134.2 134.15 139.16 139.2 141.9 139.21 158.39 148.3 163.65 182.43 

TPSA 135.39 135.39 135.39 135.4 135.39 135.39 135.39 135.39 135.39 135.39 

logP o/w (ILOGP) 3.6 3.7 3.63 3.78 3.78 3.67 4.5 4.01 4.08 5.66 

LogS (ESOL) -5.31 -5.31 -5.34 -5.92 -6.06 -5.74 -6.70 -6.74 -5.81 -8.49 
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compounds were found to be non-inhibitors of CYP1A2 

and CYP2C19. Whilst compounds 1g and 1j are 

inhibitors of CYP2D6 in addition, all the compounds 

were druglike with the exception of 1f, 1i and 1j (Table 

2) employing Lipinski’s filter guideline. 

 

2.4. Second Round of Screening: Based on Docking 

PyRx virtual screening package was used to screen 45 

compounds in the database by docking (Autogrid, 2019). 

For the docking studies, the X-ray crystallographic 

structure of the DprE1 complexed with BTZ043 (PDB 

Code: 6hf0) from the Protein Data Bank (PDB) was 

used. The PDB protein and converted to pdbqt format by 

PyRx and Openbabel (O’Boyle et al., 2011). A grid box 

with dimensions of 25×25×25 Å (-4.0157, -12.402, 

18.7581) with a spacing of 0.313 Å2 was constructed 

around the docking area using PyRx software (Autogrid, 

2019). Molecules were docked using Vina with 

exhaustiveness grade of 8, with up to nine poses saved 

per molecule. The docking procedure was carried out for 

the unchanged conformation of the receptor and flexible 

ligand molecules. BTZ043 was redocked in the 6hf0 

model to validate the docking algorithms of PyRx 

docking program (the root-mean-square deviation value 

is 2.254). The lowest energy conformations were 

selected and the ligand interactions with DprE1 were 

determined.  

 

3. Results and Discussion: 

conjugates of Nitrobenzothiazinone and 6-styryl-

2-pyrone fight against different diseases but modular 

molecules against anti-tuberculosis are urgently needed. 

Synthetic methods for substituted 2-pyrone and 

Nitrobenzothiazinone derivatives have been reported 

(Lipinski et al., 1997; Makarov et al., 2014; Daina et al., 

2017), however, so far, their combined activities have 

not been investigated. From data mining it was reported 

that Nitrobenzothiazinone (figure 5) showed significant 

anti-tuberculosis activity against Mtb with MIC values 

of 0.004 µM and 5-substituted 6-styryl-2-pyrone showed 

significant activity against Mtb, this inspired us to 

conduct the structure-based and ligand-based activity 

combining both for more potent anti-tuberculosis 

activity. We further attempted to optimize the structures 

and focused on two aspects: (a) introduction of a series 

of chemical bridges (-NH–, -O- or -S-) to eliminate 

planarity and enhance drug-likeness. (b) Different 

substitutions introduced to C-6 and C-8 positions of the 

Nitrobenzothiazinone ring to improve potency was taken 

into account but the change in substitution pattern did not 

lead to a significant change in ADMET nor solubility 

score for these compounds. Moreover, it should be 

mentioned that in order to evaluate the contribution of 

Nitrobenzothiazinone and 2-pyrone to the anti-

tuberculosis activity, respectively, the replacements of 

Nitrobenzothiazinone with naphthalene and 2-pyrone 

with a phenyl ring were conducted and their binding 

affinity were also evaluated. 

The pharmacokinetic profile of all the molecules 

under investigation was predicted by ADMET models 

provided by the SwissADME program. The human 

intestinal absorption (HIA) and the blood-brain barrier 

(BBB) models.  Polar surface area (PSA) has an inverse 

relationship with percent HIA, and thus with cell wall 

permeability (Palm et al., 1997). Although a relationship 

between PSA and permeability has been demonstrated, 

the models usually do not consider the effects of other 

descriptors. Despite the general use of logP to estimate a 

compound’s lipophilicity, logP is a ratio (Arnott & 

Planey, 2012).  Thus, the hydrogen bonding 

characteristics obtained by calculating the PSA could be 

considered along with the logP calculation (Pliska et al., 

1996).  According to the model, a compound with 

optimum cell permeability should follow the criteria 

PSA < 140 Å2 and ILOGP< 5 (Pliska et al., 1996).  All 

the compounds showed PSA<140Å2, and All 

compounds showed PSA <140A2, and all compounds, 

except 1J had ILOGP<5 (Table 1).  

The solubility of the designed compounds varied 

from poorly soluble to insoluble (Table 1). Cytochrome 

P450 2D6 (CYP2D6) metabolises numerous compounds 

and its inhibition has the potential for dangerous drug-

drug interactions (DDIs, Gonzalez and Gelboin 1992). 

Determination of CYP2D6 inhibition is therefore 

important in drug discovery and it is the only 

Cytochrome P450 that is non-inducible as others are 

Table 2: Results of the pharmacokinetics, drug likeness and lead likeness. 

ENTRY 1a 1b 1c 1d 1e 1f 1g 1h 1i 1j 

GI absorption low low low low low low low low low low 

BBB permeant No No No No No No No No No No 

P-gp Substrate Yes Yes Yes Yes Yes Yes Yes No Yes Yes 

CYP1A2 inhibitor No No No No No No No No No No 

CYP2C19 inhibitor No No No No No No No No No No 

CYP2C9 inhibitor Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

CYP2D6 inhibitor No No No No No No Yes No No Yes 

CYP3A4 inhibitor No No No No No No Yes No No No 

DRUGLIKENESS Yes Yes Yes Yes Yes Yes No Yes No No 

LEADLIKENESS No No No No No No No No No No 
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made more active by the presence of some drugs (e.g. 

rifampicin induces CYP2C9). All the designed 

compounds were non-inhibitors of CYP2D6, except 1h 

and 1i. In addition, all but 1h are non-inhibitors of 

CYP34A. All the compounds were classified as 

inhibitors of CYP2C9 except 1j (Table 2). CYP2C9 is 

fundamental to the metabolism of 25% of drugs in 

common use in the clinic (e.g. tamoxifen, diclofenac, and 

ibuprofen). Drug interactions arise when one of the 

inhibitor drugs is administered with drugs with a low 

therapeutic index such as S-warfarin and phenytoin. 

Azole antifungal drugs work by inhibition of the 

fungal cytochrome P450 14α-demethylase. This 

interrupts the conversion of lanosterol to ergosterol, a 

component of the fungal cell membrane. The possible 

use of fungal P450s, as a target against human 

pathogenic fungi is generating a lot of interest. (Trott & 

Olson, 2010). 

The pharmaceutical activity is determined by the 

free drug concentration; therefore, the possible plasma 

protein binding of compounds must be considered 

(Moroy et al., 2012). Six of the 30 tested compounds 

were likely to be <90% binding, five were likely to be 

≥90% binding, and 19 were likely to be ≥95% binding 

(Table 3). Plasma protein binding refers to the degree to 

which medications attach to proteins within the blood. A 

drug's efficiency may be affected by the degree to which 

it binds. The less bound a drug is, the more efficiently it 

can traverse cell membranes or diffuse.  

 

Table 3: Binding affinity in Kcal/mol of 6hf0 with BT043 

Binding 

affinity / 

Kcal/mol 

mode 
RMSD 

Lower 

RMSD 

UPPER 

-13.3 0 0 0 

-13.2 1 5.425 7.606 

-13.1 2 3.627 6.831 

-13.1 3 2.759 6.144 

-13 4 3.095 4.273 

-12.9 5 2.64 3.393 

-12.8 6 18.637 19.828 

-12.8 7 1.649 4.817 

-12.7 8 12.396 14.354 

 

Due to the ADMET predictions, the docking 

studies, and chemical structures (refers to structural 

modification) compounds 1a-c, 2a-c and 3a-c are 

suitable for further in vitro and in vivo evaluation. In the 

docking study, the developed compounds formed 

hydrogen bond interactions with N of the Gly 109 and 

Ala 104 to fluorine of the trifluoromethyl group on the 

middle-fused phenyl group. There are several 

unfavorable interactions with groups of Ile 83, Pro316, 

Ala 104, and Ala 105. 

The middle-fused phenyl ring of 5-

nitrobenzothiazinone hydrophobic interactions with the 

corresponding parts of Phe 108, Ala 104, Ala 105, Pro 

107, Met 102 and Lys 149. Halogen interaction between 

Ala 105, Phe 108 and Pro 107. Thus, the developed 

compounds could be used as potential hits for further in 

vitro and in vivo evaluation. 

 

Figure 6. Picture showing the docking pose of 1c in 6hf0. 

 
Figure 7. Picture showing the various interactions 

between 1c and 6hf0. 

 

 
Figure. 8: Picture showing protein interaction around 

the ligand surface as solved by Bio solve software 

package.  

 

3.1. Molecular Docking: Structure-based drug design is 

a tool for reducing the overall period for drug discovery. 

As precise knowledge of protein-ligand complexes can 

lead to the design and optimization of new compounds 

with better intermolecular interactions and/or 

improvement of the physicochemical profile of the lead 

compound without perturbing the interaction between 

the drug and the target. X-ray crystallography and NMR 

spectroscopy are the two most relevant techniques for 

obtaining protein-ligand complexes. One limitation with 

X-ray crystallography is the requirement of crystallizing 

the complex and this is still an issue even with the 

http://www.jomenas.org/


The Journal of Middle East and North Africa Sciences 2019; 5(10)            http://www.jomenas.org 

 

   
7 

advancement in the area (DeLucas, 2001). High-

resolution structure determination using NMR 

spectroscopy has many disadvantages, but the major 

disadvantage is the need to observe, resolve and sign 

numerous protein signals though this can be solved by 

employing labeling procedures such as per deuteration 

(Opella et al., 2001). 

In the absence of high-resolution structural data 

on protein-ligand complexes, computational docking 

strategies can be used to attempt prediction of not only 

the ligand-binding site (Liang et al., 1998), but also the 

structure of the protein-ligand complex for use in 

structure-based design (Kuntz et al., 1994; Hajduk et al., 

2004). This research reports the binding affinity of 2-

pyrone tethered 5-nitrobenzothiazinone compounds with 

DprE1. Employing the first screening filter as stated 

above we would have screened compounds 1h, 1i and 1j. 

Evaluation of the compounds anyway led to potential 

drug compounds that were better binder than the 

antitubercular compound BTZ043 (Tables 4-8).  

 

Table 4: Binding affinity in Kcal/mol of 6hf0 with 1b.  

Binding 

affinity / 

Kcal/mol 

mode 
RMSD 

Lower 

RMSD 

UPPER 

-13.5 0 0 0 

-13.2 1 2.908 7.063 

-13.2 2 3.816 7.958 

-13.1 3 4.524 8.424 

-13.1 4 6.094 10.104 

-13 5 3.522 5.746 

-12.9 6 10.75 12.938 

-12.8 7 1.532 5.915 

-12.8 8 4.998 7.569 

 

Table 5: Binding affinity in Kcal/mol of 6hf0 with 1c 

Binding 

affinity / 

Kcal/mol 

mode 
RMSD 

Lower 

RMSD 

UPPER 

-13.8 0 0  
-13.7 1 4.211 8.383 

-13.6 2 2.61 6.908 

-13.5 3 3.762 7.847 

-13.5 4 5.009 8.826 

-13.4 5 3.7 5.998 

-13.3 6 6.254 10.317 

-13.3 7 4.157 5.349 

-13.2 8 6.551 9.754 

 

Table 6: Binding affinity in Kcal/mol of 6hfo with 1i 

Binding 

affinity / 

Kcal/mol 

mode 
RMSD 

Lower 

RMSD 

UPPER 

-15.4 0 0 0 

-15 1 3.021 7.733 

-14.7 2 3.166 6.781 

-14.6 3 3.67 5.448 

-14.5 4 4.667 6.502 

-14.5 5 5.829 9.482 

-14.4 6 6.694 9.513 

-14.3 7 6.748 10.86 

-14.2 8 3.71 4.967 

 

Table 7: Binding affinity in Kcal/mol of 1h with 6hf0. 

Binding 

affinity / 

Kcal/mol 

mode 
RMSD 

Lower 

RMSD 

UPPER 

-15.5 0 0 0 

-15.3 1 3.236 6.391 

-15.2 2 12.904 16.216 

-15.1 3 2.308 5.976 

-15 4 5.096 7.007 

-15 5 3.361 6.94 

-14.9 6 4.689 9.088 

-14.9 7 12.988 16.208 

-14.8 8 13.425 16.523 

 

Table 8: Binding affinity in Kcal/mol of 1j with 6hf0. 

Binding 

affinity / 

Kcal/mol 

mode 
RMSD 

Lower 

RMSD 

UPPER 

-15.4 0 0 0 

-15.3 1 1.482 5.386 

-15.1 2 11.584 15.201 

-15 3 12.217 15.466 

-15 4 11.22 4.02 

-14.9 5 3.555 6.523 

-14.8 6 10.064 13.562 

-14.7 7 2.324 3.292 

-14.6 8 17.716 19.4 

 

The binding affinity shows that compounds 1b, 

and 1c had binding affinity values similar to that of the 

antitubercular compound BTZ043 as showed in Tables 

4-6 whilst compounds 1h, 1i and 1j had higher binding 

affinities as showed in Tables 7-9. The implication of 

this is that we have successfully designed molecules that 

are better binder to this Mtb target enzyme. More so, the 

experimental values of these compounds should be 

evaluated for the possible new anti-tuberculosis drug 

candidate. The other compounds showed similar trend 

amongst their type hence we can use the results below to 

represent the whole set.  
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