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Executive Summary

Business Problem
Currently, PESC provides standards for the electronic exchange of Transcripts, Application for Admission,

Electronic Portfolios, Test Scores, Common Credentials, and other standards. These standards provide

exchange partners to have a basis for creating exchange software and for interpreting the data sent to

them. These standards currently support Electronic Data Exchange (EDI) and eXtensible Markup

Language (XML) formats. With the recent increased use of Javascript Object Notation (JSON) as an

exchange medium for web services and other data exchanges, users of PESC standards have expressed

the desire to use JSON as an exchange medium.

Solution
PESC has embarked on a phased approach to provide PESC Compliant exchanges of PESC standards

using JSON. The first phase is to provide rules for interpreting XML schema standards in the generation

and parsing of JSON. While this might appear to be a manual process, the EdExchange project, using

Java technology, has demonstrated that the XML schema can be used to automate the creation of

programming language objects which then enforce the constraints of the schema on the generation of

JSON, as well as determine the validity of an incoming JSON instance. This document provides detailed

rules and examples that will assist the PESC community in generating and consuming PESC compliant

JSON. Our experience with EdExchange is that most of these rules are implicit in tools such as JAXB, and

those that are not implemented by default can be implemented by configuration options.

The second phase of this project is to explore the application of PESC standards through JSON schema
language, JSON-LD, and/or OpenAPI specifications. In addition, PESC will continue to search for the holy
grail of a modeling language that will act as Chomsky's "deep structure" [3] for standards so that one
specification will encapsulate the constraints on any type of serialization and provide for the translation
between them. This phase is not in the scope of this document.
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1 Introduction

1.1 Overview

This document describes a set of rules for the creation of JSON exchanges that must be followed if an

exchange is to be considered PESC compliant. PESC uses XML Schema Language to specify the data

model for its various standards (e.g., High School Transcript). The rules in this document instruct the

implementer how to interpret the XML Schema as a data model for JSON exchanges. In addition, the

document summarizes guidelines for simplifying XML Schema to promote consistency between XML and

JSON serializations.

1.2 Purpose

The purpose of this document is to establish JSON as a viable format for PESC data exchanges without

sacrificing standardization. There have been many attempts to define translation rules between XML

and JSON. Most of these rely on direct syntactical transformations without reference to an underlying

data model, thus resulting in difficult interpretations and excessive type checking on the part of the

receiving application code. For example, a repeatable element in XML schema that is a single element in

an XML instance document, would be rendered in JSON as a name-value pair (e.g., {"A": 3}, but if the

element was repeated, it would be serialized as a JSON array (e.g., {"A": [3, 4]}). The receiving program

then must do type checking and process the two cases differently. In the data model aware situation,

the type would always be an array and type checking would not be needed.

This document is the first step in establishing JSON as a standard of exchange for PESC. The next step is

exploring alternative expression of data and validation models that would complement or replace XML

Schema Language. Some of the alternatives that PESC will explore include JSON Schema, JSON-LD, and

the Content Assembly Mechanism (CAM).

1.3 Scope

This document applies to the exchange of JSON formatted content for any PESC standard.

1.4 Intended Audience

The audience for this document is managers and programmers wishing to exchange JSON content

compliant with the PESC data model for any of its standards.
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1.5 Assumptions

The reader should have knowledge of XML, XML Schema, and JSON. For a review of these topics, the

following sites have easy to read tutorials:

 XML: https://www.w3schools.com/xml/

 XML Schema: https://www.w3schools.com/xml/schema_intro.asp

 JSON: http://www.json.org/

2 XML Schema Simplification
In order to align with technology trends in information exchange while still supporting PESC's existing

standards, the standards for both XML and JSON should promote expression of comparable semantics,

simplicity of translation, and ease of implementation. Thus, the education community can have a choice

of exchange formats without sacrificing interoperability. To accomplish this objective, the following

requirements should be followed when creating new XML schemas for PESC standards:

 Do not define mixed elements with complex content

 Limit the use of attributes

 Use a single namespace if possible so that name conflicts will not occur in JSON

 Do not define global elements in XML schemas as this will require namespace

qualification of elements in instance documents.

 An element name should not be used twice in a sequence; however, an element can be

repeatable.

3 JSON Generation and Translation Rules

3.1 Requirements for Rules

 JSON exchange data shall comply with RFC8259, "The JavaScript Object Notation
(JSON) Data Interchange Format" [2].

 The name "value" will be used to name XML element values and thus may conflict with
attributes of the same name. The name conflict rule below shall be used to resolve this
conflict. JSON exchanges shall follow the data models as expressed in XML schemas as
interpreted by the rules below.

 Although there are no specific required reserved words the intent is to allow for

implementers to utilize JSON-LD so no "@" sign plus key words should be present

unless following JSON-LD syntax. The link to these key words can be found at

https://json-ld.org/spec/FCGS/json-ld/20180607/#syntax-tokens-and-keywords

 Any information for translating from JSON back to XML shall not be contained in the

JSON itself. For example, "@" or "_" will not appear before attribute names to denote that

name was associated with an XML attribute. This will allow programmers to view PESC

JSON as they would for any application natively using JSON.
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 If a name appears in JSON, the value should always be of the same type (string, number,

boolean, object, or array) or the value may be null under defined circumstances (see 3.3.8

Nillable Elements).

 If an element is optional, it may be omitted from the JSON. This may require existence

checking by a receiving program.

3.2 General Approach

The basic strategy is that XML elements are generally represented as a name-value pair. The
XML tag name becomes the JSON property name. The value (whether simple or complex)
becomes the JSON value. However, when XML attributes may be present, the JSON value part
is always an object. When that object contains simple content, a property named ‘value’ whose
JSON value is the value of the tag in the XML. Attributes become there own property
representing simple name value pairs.

Examples:
<TAGNAME>TAGVALUE</TAGNAME> =>
{"TAGNAME": "TAGVALUE"}

<TAGNAME someAttr="atrValue">TAGVALUE</TAGNAME> =>
{"TAGNAME": {"value": "TAGVALUE", "someAttr": "attrValue"}}

3.3 Rules

As with XML, it is understood that exchange partners may decide that certain rules as specified below do

not fit their business models or tools. The JSON produced by violating these rules would not be

considered PESC compliant and may not work in an exchange expecting such compliance; however,

PESC still encourages that exchanges use standards as guidelines even if not compliant. PESC would also

appreciate feedback as to the reasons for the deviations so that standards may be improved

The examples below assume element A, which is part of a complex type, is being defined by a type

definition

<xs:complexType name="top">
<xs:sequence>

<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>
</xs:sequence>

</xs:complexType>

3.3.1 Name Collisions

There may be rare cases where a schema element defines both an attribute and a child element with

the same name or an attribute on a simple content element with the name "value", which is reserved

for specific purposes. This will cause a name conflict, which is not allowed in JSON objects. To resolve

this conflict, the attribute name should be preceded by an underscore (i.e. "_").
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3.3.2 Optional Values, Arrays, or Objects

If the following rules would result in empty JSON values ("", [], {}), the name-value pair for that element

may be omitted from the JSON if the element in XML is not required. Examples of this are given below

for the various rules.

3.3.3 Complex Content with Attribute

Attributes on a complex element with complex content will be treated as another name-value pair in the

objects properties.

Schema:
<xs:complexType name="top">

<xs:sequence>
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="AType">
<xs:sequence>

<xs:element name="B" type="xs:string minOccurs="0">
</xs:sequence>
<xs:attribute name="attr" type="xs:string" use="optional"/>

</xs:complexType>

Translation:
<A attr="text"><B>text2</B></A>"A":{"attr": "text", "B": "text2"}
<A attr="text"></A>"A":{"attr": "text"}
<A><B>text2</B></A>"A":{"B": "text2"}
<A/>"A": {} or A is omitted

Generation:
attr="text" and B="text2""A":{"attr": "text", "B": "text2"}
attr="text" and B=no data"A":{"attr": "text"}
attr=no data and B=no data"A":{} or A is omitted.

3.3.4 Simple Content with Attribute

The simple content with an attribute will be converted into a JSON object named for the simple

element. If the attribute is optional according to the schema, the attribute will be generated only if it

has a value; however, even if the attribute is not present, the JSON serialization will always be an object

with a "value" property.

Schema:
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<xs:complexType name="top">
<xs:sequence>

<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="AType">
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="attr" use="optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

Translation:
<A attr="text">text2</A>"A":{"attr":"text","value":"text2"}
<A>text2</A"A": {"value": "text2"}
<A/>"A": {"value": ""} (since an empty tag is meaningful)

Generation:
A="text" and attr=no data"A": {"value": "text"}
A="text" and attr="text2""A": {attr="text2", "value": "text"}
A=empty string and attr=no data"A": {"value": ""} if A is an optional child
A=no data and attr=no dataomit A

3.3.5 XML Types to JSON Types

The schema type determines the type of a JSON value.
xs:string, xs:token, etc.

<A>3.3</A>"A": "3.3"
xs:integer, xs:decimal, etc.

<A>3.3</A>"A": 3.3
xs:boolean

<A>true</A>"A": true
xs:date, xs:time, xs:dateTime to JSON String using ISO 8601 string format

<A/>1990-09-02T03:03:00-0500</A>"A":"1990-09-02T03:03:00-0500"

3.3.6 Repeatable Element

The values of a repeatable element are translated to a JSON array even if the element only has one

instance.

Schema:
<xs:complexType name="top">

<xs:sequence>
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>

</xs:sequence>
</xs:complexType>
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<xs:complexType name="AType">
<xs:sequence>

<xs:element name="B" type="xs:string minOccurs="0" maxOccurs="unbounded">
<xs:element name="C" type="xs:string minOccurs="0">

</xs:sequence>
</xs:complexType>

Translation:
<A>

<B>text1</B>
<B>text2</B>
<C>text3</C>

</A>
"A":{"B": ["text1", "text2"], "C": "text3"}

<A>
<B>text1</B>
<C>text3</C>

</A>
"A":{"B": ["text1"], "C": "text3"}

Generation:
B="text1" only and C="text3""A":{"B": ["text1"], "C": "text3"}
B=no data and C="text3" "A":{"C": "text3"}
B=no data and C=no data "A":{} or omitted

3.3.7 XML List Type

If the schema specifies a list then the space separated list is specified as an array.

Schema:
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>
<xs:simpleType name="AType">

<xs:list itemType="xs:integer"/>
</xs:simpleType>

Translation:
<A>1 2 3</A>"A": [1, 2, 3]

Generation:
A= a list of "C", "CD", and "E"["C", "CD", "E"]
A= no data"A": [] or omitted
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3.3.8 Nillable Elements

Elements defined with the xs:nillable="true" (by default xs:nillable is false) may carry xsi:nil attribute in
the instance documents. These elements will be assigned the value of null in JSON. The xsi:nil will not
be treated as an attribute for translation puposes.

Schema:
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>
<xs:simpleType name="AType" type=xs:integer/>

Translation:
<A xsi:nil="true"/>"A":null
<A xsi:nil="false"/> or <A/> is not valid XML for this integer simple type so it cannot not
appear in valid XML. Translation will not be necessary.

Generation:
A=no dataomitted
A=null value to be transmitted"A": null

3.3.9 Required Empty Simple Element

If an element is required (minOccurs > 0) and the element is not nillable or xsi:nil is false, the empty tag

(e.g., <A/> or <A></A>) will be translated into the empty string if the empty string is allowed by the type

definition (e.g., xs:string with minLength="0"). If the XML instance document being translated is valid,

the empty tag cannot occur for any type that does not include the empty string, and thus there will be

no need for translation.

Translation:
<A/>"A": "" if a string with minLength="0"
<A/>"A": [""] if repeatable and a string with minLength="0"
<A/> cannot exist in a valid XML instance document if its type does not include the empty
string

3.3.10 Required Empty Complex Content Element

A complex element with excluded children that must be present (i.e., minOccurs > 0) shall be

represented as a empty object in JSON("A": {}).

3.3.11 Sequence and Choice

XML schemas can specify that child elements be presented in a particular order through the xs:sequence

and xs:choice constructs. JSON objects do not have an explicit order to their properties. Indeed, some

JSON tools will alphabetize the property names for display. As a result, the order of JSON properties are

not required to be in the same order as specified in the XML Schema xs:choice or xs:sequence. If

translation from JSON to XML is required, then the XML Schema may be used to reorder the property

names for an XML instance document.
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3.3.12 Union Types

The xs:union schema element allows for the defined element to be one of several types. For translation,

this requires that the value be interpreted by determining the most specific constraint of the XML

element value. For example, an integer is more constrained than a string. Processing of the union type

requires type checking when parsing the JSON string so it should be discouraged in XML schemas.

Schema:
<xs:complexType name="top">

<xs:sequence>
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="AType">
<xs:union memberTypes="xs:string xs:integer" />

</xs:simpleType>

Translation:
<A>3</A>"A": 3
<A>450-3</A> "A": "450-3"

Generation:
A=number 34"A": 34
A=string 345->"A": "345"

3.3.13 Facets

Facets in a XML schemas are used to further constrain the value of a simple type. These constraints

should be used in generating JSON content. For example, if the maxLength in the schema for an

element is 80, the value for that corresponding JSON property should not be greater than 80 characters.

String Facets:
xs:length, xs:minLength, xs:maxLength, xs:enumeration, xs:pattern, xs:whitespace

Number Facets:
xs:totalDigits, xs:fractionDigits,etc. xs:minInclusive, xs:maxInclusive

Schema:
<xs:complexType name="top">

<xs:sequence>
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="Atype">
<xs:restriction base="xs:decimal">
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<xs:totalDigits value="9"/>
<xs:fractionDigits value="3"/>

<xs:restriction>
</xs:simpleType>

Valid: {"A": 3.45}, {"A": 123456.123}
Invalid:

{"A": 0.12345}, {"A": 123456789.123}, {"A": "Three point five"}

Note: fractionDigits is the maximum number of decimal digits not the required number.

3.3.14 Namespaces

Namespace definitions will be treated like any other attributes and added as properties to the JSON

object. Namespace prefixes in XML will be part of the name used for JSON properties. Namespace

definitions with prefixes not used in the XML instance document may be excluded from the JSON

instance.

3.3.15 Schema Information

Attributes related to XML Schemas (e.g., xmlns:xsi namespace and xsi:SchemaLocation) may be excluded

from the JSON instance.

3.3.16 Root Element

The XML root element name shall be included as a property of the top level JSON object.

3.3.17 XPath Expressions

Some PESC standards use XPath expressions to identify a particular element in an XML instance

document. While there could be an interpretation of XPath for JSON, JSON tools are using other

expressions to identify elements in a more straight-forward manner. JSONPath appears to be

implemented in most programming languages. Since XPath expressions appear to be just strings in XML,

it may require schema-specific code to identify and translate XPath to JSONPath.

/AcademicEPortfolio/Competencies[CompetencyID="Competency1"] 
$.AcademicEPortfolio.Competencies[?(@.CompencyID == "Comptency1")] or
$["AcademicEPortfolio"]['Competencies'][?(@.CompetencyID =="Comptency1")]

JSONPath specification is here:
http://goessner.net/articles/JsonPath/

This translation table was extracted from theGoessners's JSONPath specification above:

XPath JSONPath Description

/ $ the root object/element

. @ the current object/element
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/ . or [] child operator

.. n/a parent operator

// .. recursive descent. JSONPath borrows this syntax from E4X.

* * wildcard. All objects/elements regardless their names.

@ n/a attribute access. JSON structures don't have attributes.

[] []
subscript operator. XPath uses it to iterate over element collections and
for predicates. In Javascript and JSON it is the native array operator.

| [,]
Union operator in XPath results in a combination of node sets.
JSONPath allows alternate names or array indices as a set.

n/a [start:end:step] array slice operator borrowed from ES4.

[] ?() applies a filter (script) expression.

n/a () script expression, using the underlying script engine.

() n/a grouping in Xpath

3.3.18 XML Features Not Translated

XML has several notations that do not have a corresponding construct in JSON. Therefore, to meet the

"no special names" requirement, the following XML notations will not be translated from XML to JSON.

 Processing instructions

 Comments

 xsi attributes: xsi:lang, xsi:type, xsi:schemaLocation

4 Tools Support
To assist with the creation of data model aware JSON, various software tools may be used to encode the

XML schema rules into language objects that can then be serialized into JSON, XML or other language.

Our experience with these tools indicates that they may not enforce all constraints in their objects and

that some additional code or post processing may need to be provided to meet this specification.

Currently, a combination of JAXB (Java object model creation from XML Schema) and MoXY (JSON

serialization) have been successfully used to create data model aware JSON. The PESC EdExchange

program uses this tool to create JSON for transcript exchanges.

The xmlschema package for Python has been used to translate between XML instance documents and

JSON using the XML schema to drive the translation. This solution appears to implement most of the

rules above. It has the advantage that XML is translated into Python dictionaries where additional

transformations can be applied before converting to JSON. Unfortunately, some XML Schema Language

constructs such as xs:union are not supported.
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