

Technical Data Sheet

6-3/4" OD X 3.250" ID DRILL COLLAR, NON MAG SLICK, NMS 100, NC50

DRILL COLLAR BODY		
Nominal OD (in)	6-3/4	
Nominal ID (in)	3.250	
Pipe Wall Thickness (in)	1.750	
Surface Finish	NON MAG SLICK	
Grade	NMS 100	
Cross Sectional Area of Pipe Body (in²)	27.489	
Cross Sectional Area OD (in²)	35.785	
Cross Sectional Area ID (in²)	8.296	
Section Modulus (in³)	28.571	
Polar Section Modulus (in³)	57.142	
Momet of Inertia Drill Collar Body (in⁴)	96.43	
Polar Moment of Inertia Drill Collar Body (in⁴)	192.85	

DRILL COLLAR CONNECTION		
Connection	NC50	
OD (in)	6.750	
ID (in)	3.250	

DRILL COLLAR ASSEMBLY		
Approx Average Length (ft)	31.00	
Open End Displacement (gal/ft)	1.43	
Closed End Displacement (gal/ft)	1.86	
Fluid Capacity (gal/ft)	0.43	
Drift Size (in)	3.125	

All information contained herein is provided for reference/illustration purpose only. Data compiled are using information available from respective Manufacturer and/or other public sources. Even though due care has been exercised while compiling the data. PST Energy Ltd. accept no responsibility or liability for its accuracy, errors, omissions or misinterpretation. User is advised to examine the suitability and accuracy by their own resources.