
Computing Strong Game-Theoretic Strategies and Exploiting
Suboptimal Opponents in Large Games

Sam Ganzfried

Abstract

Designing successful agents in large multiagent strategic settings is a challenging problem for several
reasons. First, many games of interest are far too large to be solved (for a relevant game-theoretic solution
concept) by the best current algorithms. For example, no-limit Texas Hold’em has approximately 10165

states in its game tree, while the best algorithms for computing a Nash equilibrium only scale to games
with around 1012 states. A second challenge is that it is not even clear that our goal should be computing
a Nash equilibrium in the first place. In games with more than two players (or two-player games that
are not zero sum), playing a Nash equilibrium has no performance guarantee. Furthermore, even in two-
player zero-sum games, we can often obtain significantly higher payoffs by learning to exploit mistakes
of a suboptimal opponent than by playing a Nash equilibrium.

The standard paradigm for addressing the first challenge is to first approximate the full game with
a strategically similar, but significantly smaller game, and then to solve this smaller abstract game. All
of this computation is done offline in advance, and the strategies are then looked up in a table for actual
game play. We have developed new algorithms for improving each step of this paradigm. In particular,
we propose new algorithms for computing equilibria in several classes of games and new techniques for
performing game abstraction, as well as new approaches for addressing the problem of the strategies we
compute being overfit to the abstraction and a new approach for addressing the problem of interpreting
actions of the opponent that have been removed from the abstraction. We also propose approaches for
extracting human-understandable knowledge from the computed strategy files.

In addition, we propose a new paradigm in which relevant portions of the game are solved in real
time in much finer degrees of granularity than the abstract game which is solved offline. We have demon-
strated that this new paradigm can lead to significantly stronger performance in no-limit Texas Hold’em.
We also propose an approach that uses this real-time solver to create an endgame database which can
be integrated with our offline equilibrium solver in order to dramatically improve the algorithm’s perfor-
mance, enabling us to solve games with significantly less abstraction for the initial betting rounds.

In the final portion of the proposal, we address the second challenge by proposing new algorithms
for effectively learning to exploit unknown opponents in large games after only a small number of inter-
actions. Furthermore, we propose new algorithms for exploiting opponents that are able to guarantee a
good performance in the worst case even against strong dynamic opponents.

1 Background

A game is an abstract model of strategic interaction between multiple agents, or players. Formally, a
strategic-form game G consists of a finite set of players N = {1, . . . , n}, a finite set of pure strategies
Si for each player, and a utility function ui : ×Si → R for each player. Here ×Si denotes the space of pure
strategy profiles—vectors of pure strategies, one for each player. To play a game, each agent i simultane-
ously selects a pure strategy si ∈ Si, and then receives a payoff of ui(s1, . . . , sn). In general, players are
allowed to randomize over their pure strategies, and need not play deterministically. Let Σi denote the space
of probability distributions over Si, which we call the mixed strategy space of player i. When each agent i

1

plays σi ∈ Σi, the expected payoff to player i is

ui(σ1, . . . , σn) =
∑
s1∈S1

. . .
∑
sn∈Sn

ui(s1, . . . , sn)

n∏
j=1

σj(sj)

 .
Note that we have overloaded the utility operator to be defined over Σ = ×Σi, the space of mixed strategy
profiles. If the players are following the mixed strategy profile σ ∈ Σ, let σ−i denote the vector of strategies
taken by all players other than i, and let Σ−i denote the space of mixed strategies for these players. The
support of a mixed strategy σi is the set of pure strategies for player i played with nonzero probability
under σi. Mixed strategy σi weakly dominates σ′i if ui(σi, σ∗−i) ≥ ui(σ

′
i, σ
∗
−i) for all σ∗−i ∈ Σ−i, where the

inequality is strict for at least one σ∗−i.
If the other agents are playing strategy profile σ−i, then a best response (aka nemesis) for player i is

any strategy in arg maxσ′
i∈Σi

ui(σ
′
i, σ−i). A Nash equilibrium is a strategy profile σ such that σi is a best

response to σ−i for all i. Thus, in a Nash equilibrium, all players are simultaneously playing a best response
to the strategy profile of the other agents, and no agent has an incentive to deviate to a different strategy
given that the other agents follow the prescribed profile.

John Nash first introduced the Nash equilibrium in 1951, and in that paper he proved that a Nash equi-
librium exists in every strategic-form game [47]. Subsequently, the Nash equilibrium has emerged as the
central solution concept in the field of game theory. If all agents were perfectly rational, then we would
intuitively expect them to follow a Nash equilibrium; if they instead followed a non-equilibrium strategy
profile, then at least one agent could improve his performance by playing a different strategy, in which case
it would not be rational for him to follow the prescribed strategy profile.

The Nash equilibrium solution concept is particularly compelling in a class of games known as two-
player zero-sum games (aka matrix games). A two-player game is zero sum if u1(s) + u2(s) = 0 for all
s ∈ ×iSi. These are fully non-cooperative, competitive games where one player’s loss is exactly equal to
the other player’s gain. In this class of games, we have the following result, which is called the minimax
theorem:

v∗ = max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2).

The minimax theorem was first published by John von Neumann [55] in 1928, several decades before Nash’s
existence theorem. This theorem states that there exists a unique value v∗ such that player 1 can guarantee
himself an expected payoff of at least v∗ regardless of the strategy chosen by player 2, and similarly that
player 2 can guarantee himself an expected payoff of at least−v∗ regardless of the strategy chosen by player
1. We refer to v∗ as the value of the game. Sometimes we will write v1 = v∗ as the value of the game to
player 1, and v2 = −v∗ as the value of the game to player 2. The exploitability of a strategy is the difference
between the value of the game and worst-case performance against a nemesis.

In two-player zero-sum games, the Nash equilibrium strategies for player 1 are precisely those strategies
that guarantee a worst-case expected payoff of at v∗ (and similarly, the Nash equilibrium strategies for
player 2 are precisely those strategies that guarantee a worst-case expected payoff of at least −v∗). For any
non-equilibrium strategy for player 1, there exists some strategy for player 2 such that player 1’s expected
payoff is strictly less than v∗. Thus, Nash equilibrium strategies have a strictly better worst-case guarantee
than all other strategies. If we assume players took turns having the role of player 1 and player 2, then
a Nash equilibrium strategy would guarantee at least breaking even against any opponent, while for every
non-equilibrium strategy, there exists some counter strategy against which it would lose.

An additional property of Nash equilibria in two-player zero-sum games is that they are exchangeable: if
(σ1, σ2) and (σ′1, σ

′
2) are Nash equilibria, then (σ1, σ

′
2) and (σ′1, σ2) are also Nash equilibria. Thus, if player

1 follows his portion of the strategy profile from one Nash equilibrium, and player 2 follows his portion of

2

the strategy profile from a different Nash equilibrium, the overall strategy profile played still constitutes a
Nash equilibrium.

One final property of Nash equilibria in two-player zero-sum games is that they can be computed in
polynomial time using a linear programming (LP) formulation [9]. This means that, at least in theory, an
efficient procedure exists for computing a Nash equilibrium that will scale to large games. As we will see,
this does not necessarily mean that we can compute a Nash equilibrium in a satisfactory amount of time for
specific games we are interested in, which may be extremely large.

Unfortunately, none of these properties that make Nash equilibrium compelling in two-player zero-sum
games hold in more general classes of games. In two-player general-sum games and games with more than
two players, there can exist multiple equilibria, each yielding different payoffs to the players. If one player
follows one equilibrium while other players follow a different equilibrium, the overall strategy profile is not
guaranteed to be an equilibrium. And furthermore, if one player plays an equilibrium strategy, he could do
arbitrarily poorly if the opponents do not follow their components of that same equilibrium. In addition,
the problem of computing a Nash equilibrium in these game classes has recently been shown to be PPAD-
complete, and it is widely conjectured that no efficient algorithms exist [8, 10]. So even if we wanted to play
a Nash equilibrium in these games, we may not be able to compute one, even in relatively small games. In
two-player general-sum and multiplayer games, the Nash equilibrium is a much less satisfactory solution
concept than in two-player zero-sum games.

Even in two-player zero-sum games, the Nash equilibrium is not quite the end of the story. For one,
algorithms may not scale to specific games we are interested in. Furthermore, we can often obtain a sig-
nificantly higher payoff than the value of the game against suboptimal opponents who are not playing an
equilibrium strategy. Against such opponents, it may be desirable to try to learn and exploit their mistakes
rather than to simply follow a static equilibrium strategy. Of course, such opponent exploitation would be
similarly beneficial in general-sum and multiplayer games as well.

Despite the theoretical limitations described above, we will follow traditional terminology and refer to
the problem of computing an (approximate) Nash equilibrium of a game as solving the game. The first
portion of the proposal will focus on new approaches for solving games, while the latter portion will address
the problem of developing game-playing agents that potentially deviate from a Nash equilibrium strategy in
order to exploit opponents’ mistakes.

1.1 Extensive-form games

While the strategic form can be used to model simultaneous actions, another representation, called the ex-
tensive form, is generally preferred when modeling settings that have sequential moves. The extensive form
can also model simultaneous actions, as well as chance events and imperfect information (i.e., situations
where some information is available to only some of the agents and not to others). Extensive-form games
consist primarily of a game tree; each non-terminal node has an associated player (possibly chance) that
makes the decision at that node, and each terminal node has associated utilities for the players. Additionally,
game states are partitioned into information sets, where the player whose turn it is to move cannot distin-
guish among the states in the same information set. Therefore, in any given information set, a player must
choose actions with the same distribution at each state contained in the information set. If no player forgets
information that he previously knew, we say that the game has perfect recall. A (behavioral) strategy for
player i, σi ∈ Σi, is a function that assigns a probability distribution over all actions at each information set
belonging to i.

In theory, every extensive-form game can be converted to an equivalent strategic-form game; however,
there is an exponential blowup in the size of the game representation, and therefore such a conversion is
undesirable. Instead, new algorithms have been developed that operate on the extensive form representation
directly. It turns out that the complexity of computing equilibria in extensive-form games is similar to that

3

of strategic-form games; a Nash equilibrium can be computed in polynomial time in two-player zero-sum
games (with perfect recall) [41], while the problem is hard for two-player general-sum and multiplayer
games.

For many years, the standard algorithm for computing an equilibrium in two-player zero-sum extensive-
form games with perfect recall was a linear programming formulation [41]. This formulation works by
modeling each sequence of actions for each player as a variable, and is often called the sequence form LP
algorithm. It runs efficiently in practice, but only scales to games with around 108 states in their game tree,
and runs into memory limitations for larger games.

Unfortunately, many interesting games have far more than 108 states in their game tree. To solve such
games, newer algorithms have been developed that are able to scale to games with approximately 1012 states
in their game tree. These algorithms are iterative and converge to a Nash equilibrium in the limit. While
the LP algorithm is able to compute an exact equilibrium, in practice these iterative algorithms can only
compute an approximate, or ε-, equilibrium. An ε-equilibrium is a strategy profile in which each player
achieves a payoff of within ε of his best response.

Two main iterative algorithms have been used for solving these larger games. The first, called EGT, is
based on a generalization of Nesterov’s excessive gap technique [32]. Recently, a more scalable version has
been developed that converges to an ε-equilibrium in O(ln(1

ε)) iterations [24]. The other algorithm, called
counterfactual regret minimization (CFR), stores the cumulative regret of each action at each information set,
contingent on the information set being reached [61]. At each iteration, each action is selected in proportion
to its counterfactual regret. This algorithm is run against itself in self play, and the average strategy for
each player is proven to converge to an equilibrium. CFR requires O(1

ε2
) iterations to converge to an ε-

equilibrium, though each individual iteration is much faster than an iteration of EGT. Several sampling
schemes have been used that significantly improve the performance of CFR in practice in various classes of
games [22, 23, 36, 43].

Both algorithms parallelize well, and have been shown to scale effectively in practice to very large
games, such as Texas Hold’em. While EGT has a better asymptotic performance guarantee in terms of the
number of iterations needed for convergence, each iteration of EGT takes much longer than each iteration
of CFR. Overall, these algorithms have selective superiority, and it is not clear which will perform best on
a given game. Unlike EGT, CFR can still be run on games that have imperfect recall, as well as two-player
general-sum and multiplayer games, though there are no significant general theoretical guarantees in such
settings [1, 21, 42, 60].

1.2 Other game representations

While the majority of this proposal will deal with strategic-form and extensive-form games, some parts will
deal with other game representations. A stochastic game is a collection of games (often these are strategic-
form games); the agents repeatedly play a game from this collection, and then transition probabilistically to
a new game depending on the previous game played and the actions taken by all agents in that game. We
will consider stochastic games where the individual stage games are themselves extensive-form imperfect-
information games. Unlike extensive-form games, stochastic games have a potentially infinite duration. In
discounted stochastic games, the expected payoff of a player is the weighted sum of payoffs from each iter-
ation, where weights are multiplied by some constant factor λ at each time step; in undiscounted stochastic
games, the expected payoff is the limit of the average iteration payoff. Prior algorithms are guaranteed to
converge to an equilibrium in certain classes of stochastic games [6, 33, 40, 44, 58]. However, no known
algorithms are guaranteed to converge to an equilibrium in three-player stochastic games (even in the zero-
sum case). In fact, it is unknown whether a Nash equilibrium is even guaranteed to exist in undiscounted
stochastic games with more than two players.

Continuous games generalize finite strategic-form games to the case of (uncountably) infinite strategy

4

spaces. Many natural games have an uncountable number of actions; for example, games in which strategies
correspond to an amount of time, money, or space. While Nash equilibria have been proven to exist in
some classes of games, simple examples have also been constructed that do not contain an equilibrium.
Algorithms have been developed for computing equilibria in certain subclasses of continuous games [53,
54, 57]; however, there are natural game classes for which neither the algorithms nor the existence results
apply.

1.3 Poker

While all of the new algorithms and techniques we present in this proposal are domain-independent and
apply to broad classes of games, we will primarily be evaluating them in the domain of Texas Hold’em poker.
Poker has received significant academic interest since the founding of the field of game theory [47, 56]. This
interest has been heightened in recent years due to the emergence of poker as a central AI challenge problem
and the development of the Annual Computer Poker Competition (ACPC) [3]. Two-player poker is a two-
player zero-sum extensive-form games with perfect recall; therefore, the algorithms described in Section 1.1
will apply. We will be considering several variants of poker including no-limit Texas Hold’em, the most
popular variant of poker among humans. Two-player no-limit Texas Hold’em is played competitively by
humans, and it is perhaps the game of most active research in the computer poker community currently. For
further information about AI research in poker, we refer the reader to recent survey articles [49, 51].

Two-player no-limit Texas Hold’em works as follows. Initially two players each have a stack of chips
(worth $20,000 in the computer poker competition). One player, called the small blind, initially puts $50
worth of chips in the middle, while the other player, called the big blind, puts $100 worth of chips in the
middle. The chips in the middle are known as the pot, and will go to the winner of the hand.

Next, there is an initial round of betting. The player whose turn it is to act can choose from three
available options:

• Fold: Give up on the hand, surrendering the pot to the opponent.

• Call: Put in the minimum number of chips needed to match the number of chips put into the pot by
the opponent. For example, if the opponent has put in $1000 and we have put in $400, a call would
require putting in $600 more. A call of zero chips is also known as a check.

• Bet: Put in additional chips beyond what is needed to call. A bet can be of any size from 1 chip up
to the number of chips a player has left in his stack, provided it exceeds some minimum value1 and is
a multiple of the smallest chip denomination (by contrast, in the limit variant, all bets must of a fixed
size, which varies depending on the round). A bet of all of one’s remaining chips is called an all-in
bet. If the opponent has just bet, then our additional bet is also called a raise. In some variants, the
number of raises in a given round is limited, and players are forced to either fold or call at that point.

The initial round of betting ends if a player has folded, if there has been a bet and a call, or if both players
have checked. If the round ends without a player folding, then three public cards are revealed face-up on the
table (called the flop) and a second round of betting takes place. Then one more public card is dealt (called
the turn) and a third round of betting, followed by a fifth public card (called the river) and a final round of
betting. If a player ever folds, the other player wins all the chips in the pot. If the final betting round is
completed without a player folding, then both players reveal their private cards, and the player with the best
five-card hand (out of his two private cards and the five public cards) wins the pot (it is divided equally if
there is a tie).

1The minimum allowable bet size is the maximum of the big blind and the size of the previous bet in the current betting round
(if one has occurred).

5

1.4 Standard paradigm for game solving

Two-player no-limit Texas Hold’em has about 10165 states in its game tree, while the limit variant has about
has about 1017 game states [34]; so neither of these can be solved directly using EGT or CFR, which only
scale to games with 1012 states. The traditional approach for solving games of this magnitude is depicted
in Figure 1. First, the original game is approximated by a smaller abstract game that hopefully retains
much of the strategic structure of the initial game. The first abstractions for two-player Texas Hold’em were
manually generated [5], while current abstractions are computed automatically [25, 38]. For smaller games,
such as Rhode Island Hold’em, abstraction can be performed losslessly, and the abstract game is actually
isomorphic to the full game [27]. However, for larger games, such as Texas Hold’em, we must be willing to
incur some loss in the quality of the modeling approximation due to abstraction.

Nash equilibrium Nash equilibrium

Original game

Abstracted game

Abstraction algorithm

Custom algorithm

for finding a Nash

equilibrium

Reverse mapping

Figure 1: Traditional paradigm for solving large games.

In general, extensive-form games can have enormous strategy spaces for two primary reasons: the game
tree has many information sets, or players have many actions available at each information set (e.g., when
actions correspond to real numbers from some large set). There are two kinds of abstraction to deal with
these two sources of complexity: information abstraction and action abstraction. In information abstraction,
one groups information sets of a player together in order to reduce the total number of information sets.
(Essentially this forces the player to play the game the same way in two different states of knowledge.) In
action abstraction, one reduces the size of the action space. The typical approach for performing action
abstraction is to discretize an action space into a smaller number of allowable actions; for example, instead
of allowing agents to bid any integral amount between $1 and $1000, perhaps we limit the actions to only
multiples of $10 or $100.

The second step in the traditional game-solving paradigm is to compute an ε-equilibrium in the smaller
abstracted game, using a custom equilibrium-finding algorithm such as CFR or EGT.

The final step is to construct a strategy profile in the original game from the approximate equilibrium of
the abstracted game by means of a reverse mapping procedure. When the action spaces of the original and
abstracted games are identical, the final step is often straightforward, since the equilibrium of the abstracted
game can be played directly in the full game. However, we will show that, even in this simplified setting,
often significant performance improvements can be obtained by applying a nontrivial reverse mapping.
In particular, we will introduce procedures, called purification and thresholding, that modify the action

6

probabilities of the abstract equilibrium by placing more weight on the higher-probability actions [20].
These procedures are able to achieve robustness against overfitting strategies to a lossy abstraction and the
failure of equilibrium-finding algorithms to fully converge within a given time limit.

When the action spaces of the original and abstracted games differ, an additional procedure is needed to
interpret actions taken by the opponent that are not allowed in the abstract game model. Such a procedure is
called an action translation mapping. The typical approach for performing action translation is to map the
opponent’s action to a nearby action that is in the abstraction (perhaps probabilistically), and then respond
as if the opponent had taken this action.

While the first two steps have received significant attention over the last several years, the final step has
received considerably little attention and is often overlooked. One of the main theses of this proposal is that
the final step can be extremely important, and there are potentially significant benefits to a more rigorous
and theoretically-principled study of reverse mapping. In fact, we will show that even with great abstraction
and equilibrium-finding algorithms, the performance difference between using a naı̈ve reverse mapping and
using a more sophisticated one can be enormous.

2 New approaches for game solving within the standard paradigm

In this section, we propose new algorithms for improving each step of the standard paradigm. Section 2.1
will address the first step, Sections 2.2 and 2.3 will address the second step, and Sections 2.4 and 2.5 will
address the third step. Finally, in Section 2.6, we propose approaches to obtain human-understandable
knowledge from the computed strategy files.

2.1 New algorithms for computing imperfect-recall potential-aware information abstrac-
tions in large extensive-form games

The typical approach for performing information abstraction in large extensive-form games is to combine
information sets together that are similar with respect to a relevant distance metric. Initially this was done
manually [5], while current abstractions are computed automatically [25, 38]. For poker, the earliest ab-
straction algorithms grouped hands together at each round that had a similar expected hand strength against
a uniform random hand for the opponent, assuming a random rollout of the future public cards and no ad-
ditional betting in the later rounds [25, 26]. These approaches used clustering and integer programming to
determine how many children to allocate to each information set at the next round.

One limitation of these approaches is that they do not capture the fact that hands can have different
potential; for example, both 5s5h and QsJs will win approximately 60% of the time against a random hand
for the opponent (assuming no more betting and a random rollout of community cards). However, 5s5h will
usually be a mediocre hand that cannot be played very aggressively (since the board will often have several
higher cards), while QsJs will often make a very strong hand (such as a straight or flush) or a very weak
hand (Q high with no pair). We would like to group hands together that have similar distributions of hand
strength—not just similar expected hand strength. This can be accomplished by creating a histogram for each
hand, and grouping hands together if they have similar histograms. This was initially done doing a bottom-
up pass of the tree, first computing an abstraction for the final round, then computing an abstraction for the
third round taking into account distributions over buckets in the final round, etc. [28, 29]. However, more
recent algorithms consider each round independently, and cluster hands together based on their histograms
of hand strength assuming a uniform random hand for the opponent and the public cards, with no further
betting [38].

Initially potential-aware abstractions were computed using the L2 distance metric [28, 29]. However,
L2 is not ideal for comparing histograms, as the example in Figure 2 shows. The L2 distance between

7

Histogram 1 and Histogram 2 is√
(1− 0)2 + (0− 1)2 + (0− 0)2 + (0− 0)2 + (0− 0)2 =

√
2.

However, the L2 distance between Histogram 1 and Histogram 3 equals
√

2 as well. The problem is that L2
distance does not take into account how far apart the entries of the histogram are. Recent work has shown
the earth mover’s distance (EMD) metric to be more useful in this setting [38]. Informally, EMD is the
“minimum cost of turning one pile into the other; where the cost is assumed to be amount of dirt moved
times the distance by which it is moved.” The EMD between Histogram 1 and Histogram 2 is 1, while the
EMD between Histogram 1 and Histogram 3 is 4.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

Histogram 1

Histogram 2

Histogram 3

Figure 2: The L2 distance between Histogram 1 and Histogram 2 equals the L2 distance between Histogram
1 and Histogram 3, while the earth-mover’s distances are different.

The initial algorithms created abstractions that had perfect recall; that is, they forced all players to
remember exactly what private information they had in prior rounds [25, 26, 28, 29]. Recent algorithms
have shown that using imperfect recall abstractions instead can lead to significant improvements in perfor-
mance [38, 60]. As an informative example, consider the hands Ks3h and Ks2h on a board of KcQh9d.
These two hands have top pair (kings), with a very low “kicker,” that will very often be irrelevant (since
only the best five card hand will win, out of the two private and five public cards). If we allow imperfect
recall, then we can group these two hands together on the flop even if we were able to differentiate them on
the preflop round. This allows much more flexibility in our choices of abstractions.

In summary, the state-of-the-art algorithms today use imperfect recall, earth-mover’s distance, and take
into account potential assuming uniform rollouts of all of the public cards and no further betting [38]. For
the final betting round (aka the river), where there is no potential since there are no more public cards, the
current approach is to first cluster the opponent’s starting hands into some number k of clusters (typically
8), then make a vector of size k for the hand strength of each river hand against a uniform random hand
in the given opponent cluster, and then to cluster these river hand-strength vectors using the L2 distance
function [38].

While experiments have validated that imperfect recall performs better than perfect recall and EMD
performs better than L2 (for the first three rounds, where we use histograms to take into account potential),

8

we conjecture that the round-by-round bottom-up approach of earlier work [28, 29] is better than the current
approach, since we care about how strong our hand will be on all future rounds, not just after the final round.
The main reason this approach is not used is that the standard algorithm for computing the EMD between
two histograms (where the x-axis corresponds to real numbers that have a well-defined ordering and distance
metric) does not apply when we have histograms over buckets in the next round, which are not ordered.

We propose to address this by first presenting new algorithms for computing the EMD between two
histograms over unordered buckets of the next round. One algorithm is an LP formulation, while the other
is combinatorial (we expect the combinatorial one to perform better in practice). These algorithms assume
no ordering over the buckets in the future round, but they assume a distance is given between each pair
of buckets. We plan to use the distance (L2 for the river, and EMD for the earlier rounds) between the
next-round bucket means as the distance function. We will then perform a bottom-up pass, starting with the
turn, using the same clustering algorithm as before with the new algorithms for computing the earth-mover
distances between points.

We also propose a new abstraction algorithm that will allow our implementation of counterfactual regret
minimization to parallelize on the ccNUMA architecture, which uses shared memory. We will first cluster
the public flop cards, and then compute abstractions separately on each public bucket, ensuring hands are
only grouped together in a given round if their public cards are in the same public bucket. We will also
ensure that buckets from one round only transition to buckets in the next round that have public cards in the
same public bucket.

2.2 Computing equilibria in multiplayer stochastic imperfect-information games

We propose new algorithms for computing ε-equilibrium strategies in undiscounted multiplayer stochastic
games, where the stage games are themselves extensive-form games of imperfect information [11, 12]. No
prior algorithms are guaranteed to converge to an equilibrium in three-player stochastic games in this class
of games, and it is still an open problem whether a Nash equilibrium is guaranteed to exist. We applied
our algorithms to compute an ε-equilibrium of the three-player endgame of a poker tournament. While
poker cash games, which are described in Section 1.3, are often modeled as extensive-form games, poker
tournaments are often modeled as stochastic games because of their potentially infinite duration. In a poker
tournament, players pay an entry fee and are given some number of tournament chips; a player is eliminated
from the tournament when he runs out of chips, and prizes are awarded to the top finishers according to a
prespecified payoff structure.

The most successful algorithm, called PI-FP, used a two-level iterative procedure, with a variant of
policy iteration (an iterative algorithm for solving Markov decision processes) [48] in the inner loop and an
extension of fictitious play (an iterative algorithm for solving and learning in games) [7] in the outer loop.
Our main theoretical result is that if this algorithm converges, then the resulting strategy profile is a Nash
equilibrium [12].

Proposition 1. If the sequence of strategies {sn} determined by iterations of PI-FP converges, then the final
strategy profile s∗ is an equilibrium.

We verified that our algorithms did in fact converge to an ε-equilibrium in a three-player poker tourna-
ment for very small ε (0.5% of the tournament entry fee). We were able to make several observations from
the computed strategies, some of which challenged popular heuristics from the poker community [11]:

• A common method for evaluating the monetary value of tournament chip vectors, known as the In-
dependent Chip Model, can sometimes lead to predictions that differ substantially from the expected
payoffs in our approximate equilibrium strategy profile.

• There is no single fixed ranking of hands.

9

• Our strategies deviate significantly from a popular hand-ranking system, known as the Karlson-
Sklansky system.

• Equilibrium strategies for playing a tournament and playing a cash game differ significantly when
there are more than two agents (while they are similar for the case of two agents)

• Equilibrium strategies for three-player tournament endgames involve very little randomization.

2.3 Computing equilibria in continuous Bayesian games with small action spaces by incor-
porating qualitative models

We propose a new algorithm for computing equilibria in a class of continuous imperfect-information games
where each agent has a private signal drawn from a compact subset Xi of R according to independent distri-
butions Fi, and each agent has a finite action space Ci [13, 14]. The Nash existence theorem does not apply
to this class of games, nor do existing algorithms for solving subclasses of continuous games. However,
we show that natural games fall into this class, including simplified poker games that have previously been
studied. While solving this general class of games is intractable, we show that it becomes tractable if we are
given a qualitative model of the structure of an equilibrium. We have shown that if we are able to restrict
strategies to conform to a qualitative model (e.g., by showing that the other strategies are dominated), then
we can prove existence of an equilibrium. If we are given a candidate qualitative model, we have developed
an algorithm that will compute an equilibrium consistent with the model if one exists, and will output that
the problem is infeasible otherwise.

Proposition 2. Given the distributions F1, F2 and a qualitative model, we have a complete mixed-integer
linear feasibility program for finding an equilibrium.

We have applied this approach to compute an equilibrium for a simplified model of the river betting
round of two-player limit Texas Hold’em. (We assume that only one bet or raise is allowed per player in
our model, and apply a heuristic to account for additional raises). We first constructed the three qualitative
models shown in Figures 3- 5. The first one was constructed previously for the special cases when the Fi
are the uniform distribution [2]. We constructed the final two by trial and error. Our experiments show that
for every hand encountered in actual play in the poker competition, there was an equilibrium consistent with
at least one of the three models. Furthermore, we showed that all three models were necessary to achieve
this—no subset of two models sufficed. We showed that this approach led to an improved performance
against our base equilibrium agent, and improved performance against 4 of the 5 entries from the 2008
ACPC.

We also have the following additional results:

• Algorithms for both the cases of discrete and continuous private signal distributions.

• An extension to the case when the private signals are dependent.

• An algorithm for computing an ε-equilibrium when there are more than two players.

• A new mixed integer programming formulation for computing an ε-equilibrium in strategic-form and
extensive-form games with more than two players.

• An extension to the case when there are multiple qualitative models satisfying a technical condition.

• Experiments showing that solving a continuous approximation of a large finite game can outperform
the standard approach of solving a smaller abstracted version of the game.

10

Figure 3: First qualitative model for limit Texas Hold’em.

Figure 4: Second qualitative model for limit Texas Hold’em.

• Experiments demonstrating the convergence of our algorithm in a previously unsolved three-player
game.

We think we have a new polynomial-time algorithm for finding an equilibrium given a qualitative model
(which would be an exponential improvement over the MILP formulation). Remaining work will explore
this approach further, theoretically and experimentally. We also plan to investigate the limit Texas Hold’em

11

Figure 5: Third qualitative model for limit Texas Hold’em.

results further, and to characterize the situations in which each of the three models were used.

2.4 Strategy purification and thresholding

We next present new approaches for reverse mapping that are aimed at addressing the problems of over-
fitting the abstract equilibrium strategies to a lossy abstraction, and the failure of an equilibrium-finding
algorithm to fully converge within a given time limit [20]. These have both been demonstrated to be very
significant and real problems in large imperfect-information games. Figure 6 gives a graphical depiction
of the overfitting phenomenon, showing that full-game exploitability can start to increase while abstract
exploitability continues to decrease [35]. Additionally, we computed the exploitability of our entry in the
2012 two-player no-limit division of the ACPC, and determined that it was 800 mbb/hand even within its
own abstraction [17]! (By contrast, folding every hand would have an exploitability of only 750 mbb/hand.)
This indicates that the equilibrium-finding algorithm was very far from convergence.

We propose family of modifications to the standard approach that work by constructing non-equilibrium
strategies in the abstract game, which are then played in the full game. If a mixed strategy σi plays a
single pure strategy with highest probability, then the purification will play that strategy with probability
1. (If there is a tie between several pure strategies of the maximum probability played under σi, then the
purification will randomize equally between all maximal such strategies). If σi is a behavioral strategy in
an extensive-form game, we define the purification similarly; at each information set I , pur(σi) will play the
purification of σi at I. We also consider a more relaxed approach, called thresholding, that only eliminates
actions below a prescribed ε (the action probabilities are then renormalized so they sum to one).

We first show, in Proposition 3, that purified abstraction can perform arbitrarily better than abstraction
alone against the full equilibrium strategy of the opponent. We can similarly show that purified abstraction
can also do arbitrarily worse than unpurified abstraction, and that both procedures can do arbitrarily better
or worse than thresholding (using any threshold cutoff). We can also show similar results using an arbitrary
multiplicative (rather than additive) constant k. One motivation for using the full equilibrium strategy as the
opponent’s strategy is that many agents in the ACPC play static approximate equilibrium strategies.

12

Figure 6: An example of overfitting using the standard game-solving paradigm.

Proposition 3. For any equilibrium-finding algorithms A and A′, and for any k > 0, there exists a game Λ
and an abstraction Λ′ of Λ, such that

u1(pur(σ′1), σ2) ≥ u1(σ′1, σ2) + k,

where σ′ is the equilibrium of Λ′ computed by algorithm A′, and σ is the equilibrium of Λ computed by A.

In random matrix games, we showed that purified abstraction outperforms the standard unpurified ab-
straction approach against the full equilibrium strategy of the opponent. We did this by simulating random
4×4 matrix games with payoffs drawn uniformly in [−1, 1], and using abstractions that were the 3×3 games
resulting from removing the final row and column. Results from these experiments are given in Table 1.

Observation 1. Abstraction followed by purification outperforms abstraction alone against the full equi-
librium strategy of the opponent in uniform random 4 × 4 matrix games using random 3 × 3 abstractions.

u1(pur(σA
1), σF

2) (purified average payoff) −0.050987± 0.00042
u1(σA

1 , σ
F
2) (unpurified average payoff) −0.054905± 0.00044

Number of games where purification led to improved performance 261569 (17.44%)
Number of games where purification led to worse performance 172164 (11.48%)

Number of games where purification led to no change in performance 1066267 (71.08%)

Table 1: Results for experiments on 1.5 million random 4×4 matrix games using random 3×3 abstractions.
The ± given is the 95% confidence interval.

We present several general sets of conditions under which purified abstraction and unpurified abstrac-
tion lead to the same performance, which are given in Proposition 4. We further propose that the relative
performances would not change if weakly dominated strategies were eliminated. We also observe a set of
conditions on the support of the full game equilibrium for which purified abstraction leads to a higher, or
equal, payoff to unpurified abstraction; these are given in Observation 2.

Proposition 4. Let Λ be a two-player zero-sum game, and let Λ′ be an abstraction of Λ. Let σF and σA be
equilibria of Λ and Λ′ respectively. Then

u1(σA1 , σ
F
2) = u1(pur(σA1), σF2)

13

if either of the following conditions is met:

1. σA is a pure strategy profile

2. support(σA1) ⊆ support(σF1)

Observation 2. In random 4× 4 matrix games using 3× 3 abstractions, pur(σA1) performs better than σA1
using a 95% confidence interval for each support of σF except for supports satisfing one of the following
conditions, in which case neither pur(σA1) nor σA1 performs significantly better:

1. σF is the pure strategy profile in which each player plays his fourth pure strategy

2. σF is a mixed strategy profile in which player 1’s support contains his fourth pure strategy, and player
2’s support does not contain his fourth pure strategy.

Experimental results indicate that purification and thresholding lead to significantly stronger play than
the standard approach in several variants of poker. We submitted two programs to the no-limit Texas
Hold’em division of the 2010 ACPC: Tartanian4-IRO (IRO) to the instant-runoff competition and Tar-
tanian4-TBR (TBR) to the total bankroll competition. Both use the same abstraction and equilibrium-finding
algorithms. They differ only in their reverse-mapping algorithms: IRO uses thresholding with a threshold
of 0.15 while TBR uses purification. TBR performed better than IRO against every single opponent except
for one, and beat IRO when they played head-to-head. We observed similar performance improvements of
purification and aggressive thresholding in Leduc Hold’em, a simplified poker variant.

Furthermore, we observed that surprisingly more extreme thresholding does not necessarily produce
more exploitable strategies. The exploitability of a purified version of our 2010 limit Texas Hold’em agent
GS6 was significantly lower than the original version, while the minimum exploitability was attained using
an intermediate threshold of 0.15. For Alberta’s Hyperborean agent, exploitability increased monotonically
with the threshold, as one might expect.

As remaining work, we hope to provide formal proofs of the results for matrix games given in Observa-
tions 1 and 2, as well as generalizations to games with arbitrary numbers of actions and abstraction sizes.
We also plan to study the poker results further, and gain a better understanding of when and why purification
and thresholding improve performance.

2.5 Action translation

When we perform action abstraction, we need a technique for determining how to respond when the oppo-
nent takes an action that has been removed from the model [18]. For example, we may have limited bids
to multiples of $100, but the opponent makes a bid of $215. This is accomplished by an action translation
mapping. Suppose the opponent bids x ∈ [A,B], where A and B are the nearest action sizes in the abstrac-
tion. An action translation mapping corresponds to a function f : [A,B]→ [0, 1], where f(x) is probability
we map x to A.

The obvious approach would be to simply map x toA if x < A+B
2 , and otherwise map x toB. However,

consider a natural poker situation where the pot is 1, A = 1, and B = 100.2 For example, suppose
our strategy calls a pot-sized bet of 1 with probability 1

2 with a medium-strength hand (this probability is
consistent with the analytical solution to many poker games [2]). If the opponent bets 1 with a very strong
hand, his expected payoff will be 1 · 12 +2 · 12 = 1.5. However, if instead he bets 50, then his expected payoff
will be 1 · 1

2 + 51 · 1
2 = 26. So the opponent wins an additional $24.50 by exploiting this mapping. In fact,

2The betting abstraction {fold, call, pot, all-in} is a common benchmark in no-limit poker [29–31, 52]: “previous expert knowl-
edge [has] dictated that if only a single bet size [in addition to all-in] is used everywhere, it should be pot sized” [31].

14

this phenomenon was observed in the 2007 Annual Poker Competition when the agent Tartanian1 used this
mapping and lost to an exploitative agent that did not even look at its private cards [29].

All of the prior action translation mappings that have been developed for poker are purely heuristic, and
lack any theoretical justification. These include:

• Deterministic arithmetic: If x < A+B
2 , then x is mapped to A; otherwise x is mapped to B (the

mapping described above).

• Randomized arithmetic: f(x) = B−x
B−A .

• Deterministic geometric: If A
x > x

B then x is mapped to A; otherwise x is mapped to B. Used by
CMU’s 2008 agent [29].

• Randomized geometric 1: f(x) = A(B−x)
A(B−x)+x(x−A) . Used by Alberta’s 2011 agent [52].

• Randomized geometric 2: f(x) = A(B+x)(B−x)
(B−A)(x2+AB)

. Used by CMU’s 2010 agent.

The randomized geometric mappings were the state of the art as of 2011, and even as of 2013 some strong
agents continue to use one of them.

By contrast, we propose a new mapping that is theoretically motivated as a generalization of the analyt-
ical solution to a simplified poker game. Our mapping, called the randomized pseudo-harmonic mapping,
is:

f(x) =
(B − x)(1 +A)

(B −A)(1 + x)
.

We show that our mapping produces much lower exploitability than the prior mappings in several variants
of poker (the clairvoyance game, Kuhn poker, and Leduc Hold’em). For example, exploitabilities for the
clairvoyance game [2] are given in Table 2. Furthermore, our new mapping performs competitively against
no-limit Texas Hold’em agents submitted to the 2012 ACPC, in particular significantly outperforming the
previously state-of-the-art randomized geometric approaches.

Stack Size (n)
1 3 5 10 20 50 100

Det-Arith 0.01 0.24 0.49 1.12 2.38 6.12 12.37
Rand-Arith 0.00 0.02 0.09 0.36 0.96 2.82 5.94

Det-Geo 0.23 0.28 0.36 0.63 0.99 1.68 2.43
Rand-Geo-1 0.23 0.23 0.23 0.24 0.36 0.66 1.01
Rand-Geo-2 0.23 0.23 0.23 0.25 0.36 0.65 1.00
Det-psHar 0.15 0.19 0.33 0.47 0.59 0.67 0.71

Rand-psHar 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2: Exploitability of mappings for the clairvoyance game, using betting abstraction {fold, check, pot,
all-in}.

We also propose a natural set of domain-independent desiderata that well-behaved translation mappings
should satisfy.

1. Boundary Constraints. f(A) = 1 and f(B) = 0.

2. Monotonicity. f is non-increasing.

3. Scale Invariance. Scaling A, B, and x by some multiplicative factor k > 0 does not affect the
mapping. (In poker for example, it is common to scale all bet sizes by the size of the big blind or the
size of the pot).

15

4. Action Robustness. Small changes in x to not lead to large changes in f . (If f changes abruptly
at some x∗, then the opponent could potentially significantly exploit us by betting slightly above or
below x∗).

5. Boundary Robustness. Small changes in A or B do not lead to large changes in f (for all x). (If a
tiny change in A (say from A1 to A2) caused fA,B(x) to change dramatically, then it would mean that
f was incorrectly interpreting a bet of size x for either A = A1 or A = A2, and could be exploited if
the boundary happened to be chosen poorly).

The following is a summary of our theoretical findings:

• The deterministic mappings violate action and boundary robustness.

• For A = 0, the geometric mappings are the constant function f(x) = 0, and violate the boundary
condition f(A) = 1.

• The randomized geometric mappings violate boundary robustness. If we allow A = 0 they are dis-
continuous in A. Otherwise they are Lipschitz-discontinuous in A.

• Only the randomized arithmetic and randomized pseudo-harmonic mappings satisfy all of the desider-
ata. In particular, we show that they are Lipschitz continuous in A and B.

2.6 Extracting human-understandable knowledge from strategy files

Typically equilibrium-finding algorithms output strategies represented as a massive table, often in binary.
While these can be easily implemented by a computer agent by a table lookup, it is difficult to extract any
human-understandable knowledge from these strategy files (other than by simply observing the agent play
for many hands). We propose to apply techniques from machine learning to extract knowledge from our
strategy files that humans can actually understand. One approach would be to use algorithms from the Weka
workbench, such as an algorithm for learning decision lists, to extract simple and interpretable rules from
the files.

3 New paradigm for game solving

So far we have proposed new approaches for game solving that fit within the standard paradigm. In the
standard paradigm, strategies are computed offline in advance, and the strategies are then looked up in a
table for actual game play. We propose a new paradigm, depicted in Figure 7, in which relevant portions of
the game are solved in real time in much finer degrees of granularity than the abstract game which is solved
offline [19].

3.1 Improving performance in imperfect-information games with large state and large ac-
tion spaces by solving endgames

We define an endgame E of game G as follows:3

Definition 1. E is an endgame of game G if the following two properties hold:

1. If s′ is a child of s and s is a state in E, then s′ is also a state in E.

3An endgame is not the same as a subgame. In game theory, a subgame is a game rooted at a node (of the full game) that is
alone in its information set.

16

Strategies for entire game
computed offline in a
coarse abstraction

Endgame strategies
computed in real time
in finer abstraction

Figure 7: New paradigm for game solving by solving relevant portions of the game in real time.

2. If s is in the same information set as s′ and s is a state in E, then s′ is also a state in E.

For example, in poker we can consider endgames where several rounds of betting have taken place and
several public cards have already been dealt. In these endgames, we can assume both players have distribu-
tions of private information from states prior to the endgame that are induced from the base approximate-
equilibrium strategy that we have precomputed in the coarse abstraction of the entire game. Given these
distributions as inputs, we can then solve individual endgames in real time using much finer abstractions.

A tempting technique to help mitigate the effects of abstraction and approximate-equilibrium finding is
to solve the endgame that we actually reach during play separately online. Unfortunately, this approach has
some fundamental theoretical shortcomings. It turns out that even if we computed an exact equilibrium in
the initial portion of the game prior to the endgame (which is an unrealistically optimistic assumption), and
even if we are able to compute an exact equilibrium in the endgame, that the combined strategies for the
initial game and endgame may fail to be an equilibrium in the full game. One obvious reason for this is that
the game may contain many equilibria, and we might choose one for the initial game that does not match
up correctly with the one for the endgame; or we may compute different equilibria in different endgames
that do not balance appropriately. However, we show in Proposition 5 that it is possible for this procedure
to output a non-equilibrium strategy profile in the full game even if the full game has a unique equilibrium
and a single endgame.

Proposition 5. There exist games with a unique equilibrium and a single endgame for which endgame
solving can produce a non-equilibrium strategy profile in the full game.

Despite this negative result, we show that endgame solving has many theoretical benefits, and that it can
lead to a significantly better performance in practice. These benefits include:

• Computation of exact equilibria. Iterative equilibrium-finding algorithms (such as CFR and EGT)
guarantee convergence to equilibrium in the limit, but in practice the strategies they compute may
be very far from equilibrium (for example, we observed this when our 2010 no-limit Texas Hold’em
agent had a higher exploitability within its own abstraction than if it had folded every hand [17]). For
endgames with up to 108 states, we can use the LP algorithm and obtain an exact equilibrium.

17

• Computation of relevant equilibrium refinements. Many equilibrium refinement solution concepts
have been proposed, such as sequential, perfect, and proper equilibrium. Specialized algorithms have
been developed for computing many of these concepts, but they do not scale to large games [45, 46].
When solving smaller endgames, it may be possible to compute a relevant equilibrium refinement.
In particular, we can use an algorithm consisting of solving two LPs to compute an undominated
equilibrium strategy.

• Significantly finer-grained information and abstraction abstraction.

• New algorithms for strategy-biased information abstraction. The standard approach for informa-
tion abstraction is to bucket hands that perform similarly against a uniform distribution of hands of
the opponent [38]. However, the assumption that the opponent has a hand uniformly at random is
extremely unrealistic in many situations. When solving endgames separately, we can group hands
together that perform similarly against the relevant distribution of hands the opponent actually has at
the given situation.

• Solving the “off-tree problem.” When the opponent takes an action that falls outside of our action
model for him, we must apply an action translation mapping to interpret his action; however, this
mapping may ignore relevant game state information. For example, consider the situation in no-limit
Texas Hold’em where remaining stacks are 17,500, the pot is 5,000, and our abstraction allows for
bets of size 5,000 and 17,500. Now suppose the opponent bets 10,000, which we map to 5,000 (if
we use a randomized translation mapping, we will do this with some probability). So we map his
action to 5,000, and simply play as if he had bet 5,000. If we call his bet, we will think the pot has
15,000 and stacks are 12,500. However, in reality the pot has 25,000 and stacks are 7,500. These
two situations are completely different and should be played very differently (for example, we should
be more reluctant to bluff in the latter case because the opponent will be getting much better odds to
call). This is known as the off-tree problem. When performing endgame solving in real time, we can
solve the off-tree problem completely.

• Dynamically deciding the granularity of action abstraction.

• Different degrees of thresholding for playing and modeling.

We observed that adding the endgame solver to our 2012 no-limit Texas Hold’em agent Tartanian5 led
to an improved performance against the strongest competitors in the 2012 ACPC (Figure 3.1). Computing a
non weakly-dominated equilibrium led to a further improvement against each opponent.

Proposed remaining work will investigate the tradeoff between computing an undominated equilibrium
and computing a potentially dominated equilibrium in a larger abstraction (using the same time limit). We
also plan to experiment with an algorithm for computing a quasi-perfect equilibrium [46], a refinement of
undominated equilibrium. The algorithm just involves solving a single LP, but may be problematic due to
numerical stability issues.

We also plan to further investigate the theoretical limitations of endgame solving. While we have shown
it can produce strategies with extremely high exploitability in some games, it is possible that in interesting
classes of games (perhaps a class that includes Texas Hold’em), it actually produces strategies with a very
low exploitability. Proposition 6 shows that endgame solving can produce strategies with low exploitability
in games where the opponent has a high degree of exploitative power within the endgames.

Proposition 6. If every strategy that has exploitability of at least ε in the full game has exploitability of
strictly more than δ within the endgame, then the strategy output by a solver that computes a δ-equilibrium
in the endgame would constitute an ε-equilibrium of the full game.

18

0

50

100

150

200

250

m
ill

i b
ig

 b
lin

d
s

p
e

r
h

an
d

Top competitors from 2012

Improvement from adding endgame solver
to Tartanian5

Tartanian5 with
endgame solver

Tartanian5 with
undominated
endgame solver

3.2 Extending the endgame solver to solve intermediate portions of the game

While we have primarily focused on solving endgames, the same approach could be used to solve interme-
diate portions of the game in real time as well. We propose to create a no-limit Texas Hold’em agent that
solves each betting round (other than the first one) dynamically in real time, assuming that both agents are
following the strategies that were precomputed offline. The input distributions to each round will be the
distributions that were computed by the ‘midgame’ solver of the prior round. The main challenge will be to
estimate the payoffs for the midgames. Possible approaches we will explore include precomputing a table,
simulation, or using a machine learning algorithm.

Note that the endgame and midgame solvers takes arbitrary distribution of private signals as input. For
our competition agent we used the approximate equilibrium strategy we precomputed as input for both
agents. We also propose to integrate this approach with opponent exploitation and use a model as the
input for the opponent’s strategy. This is discussed further in Section 4.3. The endgame and midgame
solvers could also be used in poker variants with more than two agents, as long as there are only two agents
remaining in the relevant portion of the game (and we have input strategies to use).

3.3 An algorithm for efficiently computing equilibria in imperfect-information games with
large state and large action spaces by incorporating an endgame database

We propose to create an endgame database consisting of the equilibria of the endgames from last year’s
computer poker competition. In addition, the database entries will store the pot size, and an encoding of
the input distributions of private signals for both players. From the distributions, we can compute a vector
of each player giving the equity of each private signal with respect to the opponent’s input distribution of

19

hands (i.e., the CDF with respect to the opponent’s distribution). When a new endgame is encountered, its
distance from each of the endgames in the database will be computed, and it will be mapped to the closest
one. The distance metric will be the maximum over both players of the value of the earth mover distance
between the CDF vectors. To look up the strategy once the closest endgame in the database is selected, we
will look up the corresponding entry for the hand that is closest in equity to the given hand.

The endgame database will be computed offline. When an endgame is encountered in real time, we will
just need to look up the closest endgame in the database rather than solve the new endgame in real time.
Therefore, this will give a faster technique for approximating the solutions of endgames.

Furthermore, we plan to integrate this with our main CFR solver. Instead of sampling all the way down
to the river during an iteration of MCCFR, we will sample down to the turn, then look up the equilibrium of
the closest endgame in the database. This will significantly decrease the amount of memory needed, since
we will not need to store strategies for the river betting round (which are larger than the strategies for the
other rounds combined). Therefore, we will be able to use significantly larger abstractions for the first three
rounds (possibly using no information abstraction at all).

4 Opponent exploitation

The previous portions of the proposal have focused on the problem of approximating Nash equilibrium
strategies in large games. While equilibrium strategies guarantee a good performance in the worst case (at
least in two-player zero-sum games), they potentially fail to take advantages of opponents’ mistakes. We
now turn to the problem of exploiting the mistakes of suboptimal opponents.

The natural approach for opponent exploitation is to try to learn a model of the opponent’s strategy
(based on prior game iterations and possibly additional historical data about the given opponent or other
agents), then to maximally exploit this model. However, this approach has several drawbacks. First, it
is incredibly difficult to learn an accurate model of the opponent’s strategy quickly in large games. For
example, no-limit Texas Hold’em has approximately 10165 states in its tree, while typical matches in the
poker competition consist of just 3000 hands. So we only observe the opponent’s actions at a minuscule
portion of the information sets. The guarantees of no-regret learning algorithms are meaningless in such
situations. This is further complicated by the fact that we may only see the opponent’s private information
after some hands and not others (e.g., in poker we only get to see the opponent’s hand if no player folded
in any betting round). For these reasons, opponent exploitation has been largely abandoned in recent years
as a viable approach for strong agents in large imperfect-information games, in favor of the game-solving
approach previously described.

An additional problem with this approach to opponent exploitation is that it can lead the exploiter to
play a highly exploitable strategy himself. In general, a full best response will be a deterministic strategy
that can be arbitrarily exploitable. This is problematic for several reasons. First, our model of the opponent
will not be exact. If our model is wrong, we would like to not perform too poorly. Second, the opponent
may not simply be playing a static strategy, and may try to deceive us by playing one way at the start of a
match, then altering his strategy to exploit us once we start to exploit his initial strategy; this is known as
the “get taught and exploited problem” [50]. A third reason is that if we play a maximal best response, it
may be easier for the opponent to recognize his mistakes and fix his strategy (possibly exploiting us along
the way).

Therefore, we would like to perform exploitation in a way that is robust to deviations of the opponent’s
strategy from our model. One approach that has been proposed is the ε-safe best response [37, 39]. In this
approach, we assume the opponent plays according to our opponent model σ∗ with some probability p, and
that he can play arbitrarily with probability 1 − p. Our strategy will be the solution to this new game. The
parameter p is adjusted so that some desired level of exploitability ε for our own strategy is obtained.

20

This approach has been demonstrated to be successful in the setting where we have access to massive
databases of historical play of our specific opponent with his private information labeled for each hand. It
does the computation of the ε-safe best response offline in advance, using a standard equilibrium-finding
algorithm such as CFR. Notice that a full best response can be computed much more efficiently than an
ε-safe best response. A full best response can be computed by performing a matrix-vector product followed
by a single pass up the game tree; by contrast, an ε-safe best response takes orders of magnitude longer
(though both tasks can be done in polynomial time), requiring the computation of an equilibrium in the
modified game. Therefore, this approach is intractable for real-time computation.

Furthermore, the assumptions of the approach are extremely strong. It is extremely rare to have a large
amount of labelled data on the specific opponent at hand. Often we have unlabelled, or semi-labelled, data
from the play of some pool of agents, which may or may not resemble the given opponent in any meaningful
way. In many situations there may be no historical data available at all, and if we hope to exploit mistakes of
an opponent, we must learn to do so in real time solely based on our observations of his play in prior game
iterations.

A recent approach precomputes several exploitative strategies in advance using the procedure described
above, then decides dynamically between then in real time using a no-regret algorithm [4]. However, this
approach is also limited by the issues discussed above; specifically, it relies on having access to massive
amounts of labelled data, and also relies on the fact that the given opponent will play similarly to the
opponents represented in the dataset (and that we can determine which expert to play very quickly with
partial observability of the opponent’s private information).

We propose new approaches for opponent exploitation that do not rely on such strong (and often unre-
alistic) assumptions. They are able to effectively learn to exploit opponents in real time in large imperfect-
information games after only a small number of interactions, without access to any historical data, and with
partial or no observability of the opponent’s private information in past game iterations. In addition, we
show that in some games, it is actually possible to exploit suboptimal opponents significantly more than
playing a static Nash equilibrium strategy while still guaranteeing zero exploitability in the worst case.

4.1 DBBR: A scalable, domain-independent opponent exploitation algorithm

Our first exploitation algorithm works by modeling the opponent using the strategy that is “closest” to the
approximate equilibrium strategy we have computed in advance, subject to the constraint that it is consis-
tent with our observations of the opponent’s play thus far [15]. We consider several different measures of
closeness, each of which can be computed efficiently in real time. Once we have constructed the opponent
model, we compute a full best response to this model in real time, using a sufficiently coarse abstraction.
Note that we can compute a full best response in real time in a reasonable abstraction in some games (such
as limit Texas Hold’em), while computing an ε-safe best response would be infeasible. We repeat these
steps of updating the opponent model and computing a best response as often as we can while staying under
the given time limit (for the ACPC, the time limit is 7 seconds per hand on average throughout the match).
We call the algorithm Deviation-Based Best Response (DBBR), since it builds the opponent model from
observed deviations of the opponent’s play from the approximate equilibrium strategy; pseudocode is given
in Algorithm 1. While our exposition and experiments are for the two-player zero-sum case, we note that
the algorithm applies just as well to non-zero-sum and multi-player games, since best response remains
tractable for those game classes.

In more detail, we first partition all game states into public history sets, PHi, where states in the same
public history set correspond to the same history of publicly observed actions. In the first step of DBBR, an
approximate equilibrium σ∗ of the game is precomputed offline. Next, when the game begins, the frequen-
cies of the opponent’s actions at different public history sets are recorded. These are used to compute the
probabilities with which he chooses each action at each public history set n ∈ PH−i. We do not assume any

21

Algorithm 1 High-level overview of DBBR
Compute an approximate equilibrium of the game.
Maintain counters from observing opponent’s play throughout the match.
for n = 1 to |PH−i| do

Compute posterior action probabilities at n.
Compute posterior bucket probabilities at n.
Compute full model of opponent’s strategy at n.

end for
return Best response to the opponent model.

observations of the opponent’s private information, and use a Dirichlet prior for initialization that assumes
the opponent has played according to σ∗ for some number of fictitious hands at each public history set (since
we may have very few or no observations at some public history sets). Next, we compute the probability the
opponent is in each bucket at n given our model of his play so far; these are computed in a single top-down
pass using a BFS traversal order of the public history sets. We then compute a full model of the oppo-
nent’s strategy by computing the closest strategy to σ∗ that is consistent with our model of the opponent’s
action probabilities. We consider three different distance metrics; weighted L1 and L2 minimization (using
CPLEX’s LP and QP solvers respectively), and a new custom algorithm for minimizing the earth mover’s
distance. Finally, after we have constructed the full opponent model, we compute a best response.

We experimented in two-player limit Texas Hold’em against several naı̈ve opponents, as well as several
agents submitted to previous poker competitions. Matches consist of 3000 hands, and we play σ∗ for the first
1000 hands before turning on the exploitation. Results are given in Figure 3. GS5 was our base approximate
equilibrium strategy, which plays the role of σ∗. In nearly all the cases, each variant of our algorithm
significantly outperformed GS5, while the earth-mover variant performed the best overall.

Random AlwaysFold AlwaysCall AlwaysRaise GUS2 Dr. Sahbak Tommybot
GS5 0.854 ± 0.008 0.646 ± 0.0009 0.582 ± 0.005 0.791 ± 0.009 0.636 ± 0.004 0.665 ± 0.027 0.552 ± 0.008

DBBR-EM 1.769 ± 0.025 0.719 ± 0.002 0.930 ± 0.014 1.391 ± 0.034 0.807 ± 0.011 1.156 ± 0.043 1.054 ± 0.044
DBBR-L1 2.164 ± 0.036 0.717 ± 0.002 0.935 ± 0.017 0.878 ± 0.032 0.609 ± 0.054 1.153 ± 0.074
DBBR-L2 2.287 ± 0.046 0.716 ± 0.002 0.931 ± 0.026 1.143 ± 0.084 0.721 ± 0.050 1.027 ± 0.072

Table 3: Win rate in small bets/hand of the bot listed in the row. The ± given is the standard error (standard
deviation divided by the square root of the number of hands). The final opponent was not available for
testing against each agent due to technical issues on the competition testing server.

We expected that our win rate would increase steadily starting at hand 1001—when we begin the ex-
ploitation. This happened in most of the matches. For example, Figure 8(a) shows that DBBR’s profits
against AlwaysFold increase linearly over time, and Figure 8(d) shows that DBBR’s win rate increases in a
concave fashion. However, we observed a different behavior in the matches against AlwaysRaise and GUS2.
In both of these matches, the win rate decreases significantly for the first several hundred hands before it
starts to increase, as shown in Figure 8. This happens because the approximate-equilibrium strategy plays
some action sequences with very low probability, leading it to not explore the opponent’s full strategy space
in the first 1000 hands. This will lead to a significant disparity between the prior and actual strategies of the
opponent at hand 1001 if the opponent’s strategy differs significantly from the approximate equilibrium in
those unexplored regions. This in turn may cause DBBR to think it can immediately exploit the opponent in
certain ways, which turn out to be unsuccessful; but eventually as DBBR explores these sequences further
and gathers more observations, it figures out successful exploitations.

22

(a) (b)

(c) (d)

(e) (f)

Figure 8: Profits and win rates over time of DBBR-EM against several opponents. Results against Al-
waysFold are shown in Figures 8(a) and 8(d), results against AlwaysRaise are shown in Figures 8(b)
and 8(e), and results against GUS2 are shown in Figures 8(c) and 8(f). The top three graphs show profit over
time, and the bottom three show win rates over time.

23

4.2 Safe opponent exploitation

One limitation of DBBR is that it plays a full best response, and could perform very poorly against a strong
dynamic opponent. We propose a new methodology for opponent exploitation that addresses this limitation.
We show that in some games, it is possible to exploit the opponent for significantly greater profits than a
static equilibrium strategy while still guaranteeing the value of the game in expectation in the worst case [16].
While our analysis will be for two-player zero-sum games, the analysis and approaches will apply to non-
zero-sum and multiplayer games as well if we compare our payoff to the maximin value (aka security level),
rather than the minimax game value (which is not defined in such games).

We first observe that in some games, such as rock-paper-scissors, it is not possible to deviate from
equilibrium while still guaranteeing the value of the game in the worst case. However, if we give the
opponent an additional pure strategy T that is strictly dominated (Figure 9), then it is possible to deviate
from the stage-game equilibrium and still guarantee the value; for example, we could play R if the opponent
played T in the prior iteration, and play the equilibrium otherwise. Such safe exploitation is possible because
of the presence of the ‘gift’ strategy T.

R P S T
R 0 -1 1 4
P 1 0 -1 3
S -1 1 0 3

Figure 9: Payoff matrix of RPST.

Recent work has conjectured the following:

Conjecture 1. [59] An equilibrium strategy makes an opponent indifferent to all non-[weakly]-iteratively-
dominated strategies. That is, to tie an equilibrium strategy in expectation, all one must do is play a non-
[weakly]-iteratively-dominated strategy.

This conjecture would seem to imply that gifts correspond to strategies that put weight on pure strategies
that are weakly iteratively dominated. However, we present a counterexample to this conjecture, from which
we have Proposition 7. In Proposition 8, we invalidate another candidate definition of gift strategies.

Proposition 7. It is possible for a strategy that survives iterated weak dominance to obtain expected payoff
worse than the value of the game against an equilibrium strategy.

Proposition 8. It is possible for a strategy that is not in support of an equilibrium to obtain the value of the
game against an equilibrium strategy.

Having ruled out several candidate definitions of gift strategies, we now present our new definition,
which we relate formally to safe exploitation in Proposition 9.

Definition 2. A strategy σ−i is a gift strategy if there exists an equilibrium strategy σ∗i for the other player
such that σ−i is not a best response to σ∗i .

Proposition 9. Assuming we are not in a trivial game in which all of player i’s strategies are minimax
strategies, then non-stage-game-equilibrium safe strategies exist if and only if there exists at least one gift
strategy for the opponent.

One natural exploitation algorithm is ‘Risk What You’ve Won’ algorithm (RWYW); at each iteration,
maximally exploit the opponent subject to risking only the amount of profit won so far. More specifically,

24

at each iteration t, RWYW plays an ε-safe best response to a model of the opponent’s strategy (according
to some opponent modeling algorithm M), where ε is our current cumulative payoff minus (t − 1)v∗.
Pseudocode is given in Algorithm 2. We show in Proposition 10 that RWYW is not safe; intuitively, this is
because it does not adequately differentiate between whether profits were due to skill (i.e., from gifts) or to
luck.

Algorithm 2 Risk What You’ve Won (RWYW)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πt ← argmaxπ∈SAFE(kt)M(π)

Play action ati according to πt

Update M with opponent’s actions, at−i
kt+1 ← kt + ui(a

t
i, a

t
−i)− v∗

end for

Proposition 10. RWYW is not safe.

A better approach than RWYW would be to risk the amount won so far in expectation. Ideally we would
like to do the expectation over both our randomization and our opponent’s, but this is not possible in general
since we only observe the opponent’s action, not his full strategy. However, it would be possible to do the
expectation only over our randomization. It turns out that we can indeed achieve safety using this procedure,
which we call RWYWE. Pseudocode is given in Algorithm 3. Here ui(πti , a

t
−i) denotes our expected payoff

of playing our mixed strategy πti against the opponent’s observed action at−i.

Algorithm 3 Risk What You’ve Won in Expectation (RWYWE)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πt ← argmaxπ∈SAFE(kt)M(π)

Play action ati according to πt

The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
kt+1 ← kt + ui(π

t
i , a

t
−i)− v∗

end for

Proposition 11. RWYWE is safe.

We also propose several other safe exploitative algorithms, which alter between playing a best response
and an equilibrium. These algorithms are less aggressive than RWYWE, because they only play a (non-
equilibrium) exploitative strategy when enough gifts have been accrued to risk playing a full best response
(while RWYWE will potentially deviate from the stage-game equilibrium once any gifts have been accrued).
In Proposition 12, we provide a full characterization of all safe strategies. We also present analogous al-
gorithms and characterization results in sequential games of perfect and imperfect information, where we
make pessimistic assumptions that the opponent is playing a best response in unobserved portions of the
game.

25

Definition 3. An algorithm for selecting strategies is expected-profit-safe if it satisfies the rule

πt ∈ SAFE(kt)

at each time step t from 1 to T , where initially k1 = 0 and k is updated using the rule

kt+1 ← kt + ui(π
t, at−i)− v∗.

Proposition 12. A strategy π (for the full game, not the stage game) is safe if and only if it is expected-
profit-safe.

We showed that our safe exploitation algorithms significantly outperformed playing the best Nash equi-
librium against several opponent classes in Kuhn poker, a sequential game of imperfect information. Against
strong dynamic opponents, our algorithms significantly outperformed playing a full best response, which ob-
tained a payoff below the value of the game. Overall, our most aggressive algorithm, RWYWE, performed
best.

Table 4: Win rate in $/hand of the five algorithms against opponents from each class. The ± given is the
95% confidence interval.

Opponent
Random Sophisticated static Dynamic Equilibrium

RWYWE 0.3636 ± 0.0004 -0.0110 ± 0.0004 -0.02043 ± 0.00044 -0.0556 ± 0.0004
BEFEWP 0.3553 ± 0.0004 -0.0115 ± 0.0004 -0.02138 ± 0.00045 -0.0556 ± 0.0004
BEFFE 0.1995 ± 0.0004 -0.0131 ± 0.0004 -0.03972 ± 0.00044 -0.0556 ± 0.0004

Best Nash 0.1450 ± 0.0004 -0.0148 ± 0.0004 -0.03522 ± 0.00044 -0.0556 ± 0.0004
Best response 0.4700 ± 0.0004 0.0548 ± 0.0004 -0.12094 ± 0.00039 -0.0556 ± 0.0004

In some matches, RWYWE steadily accumulates gifts along the way, and kt increases throughout the
match. An example of the graph of profit and kt for one such opponent is given in Figure 10. In this
situation, the opponent is frequently giving us gifts, and we quickly start playing (and continue to play) a
full best response according to our opponent model. In other matches, kt remains very close to 0 throughout
the match, despite the fact that profits are steadily increasing; one such example is given in Figure 11.
Against this opponent, we are frequently playing an equilibrium or an ε-safe best response for some small
ε, and only occasionally playing a full best response.

4.3 New algorithm for exploiting opponents in large imperfect-information games using
game decomposition and real-time equilibrium computation

We also propose a new algorithm for opponent exploitation in large imperfect-information games that ad-
dresses limitations of DBBR, which we intend to apply to no-limit Texas Hold’em. The new algorithm
will perform opponent modeling in the preflop betting round only. To compute the opponent model, we
will consider both DBBR’s approach and a new constrained clustering algorithm. For both approaches, we
will take into account hands that go to showdown by fixing the opponent to take the observed action with
those private cards (DBBR does not take showdowns into account). Once the preflop opponent model has
been constructed, we will compute an approximate equilibrium in the flop ‘midgame’ using the approach
described in Section 3.1. Note that our endgame (and midgame) solver takes any distribution of private
hands as input; in particular, we can input the precomputed approximate equilibrium for our strategy, and an

26

Figure 10: Profit and kt over the course of a match of RWYWE against a random opponent. Profits are
denoted by the thick blue line using the left Y axis, while kt is denoted by the thin green line and the right
Y axis. Against this opponent, both kt and profits steadily increase.

Figure 11: Profit and kt over the course of a match of RWYWE against a random opponent. Profits are
denoted by the thick blue line using the left Y axis, while kt is denoted by the thin green line and the right
Y axis. Against this opponent, kt stays relatively close to 0 throughout the match, while profit steadily
increases.

27

opponent model for the opponent’s strategy (as opposed to the approximate equilibrium for both players).
We can then propagate the new distributions induced by the flop midgame solver as inputs to the relevant
turn midgame, and similarly to the river endgame. For the preflop round, we can either just play the equilib-
rium strategy, or we can compute an ε-safe best response to the opponent’s strategy just within the preflop
game. While it is generally intractable to compute ε-safe best responses in real time, we can do it in this
situation because we are solving smaller games.

This new algorithm takes into account several limitations of DBBR. First, it accounts for situations when
the opponent’s private information is either observed or unobserved after the hand. Second, it is significantly
less exploitable, since it is playing an equilibrium of a modified game where the opponent’s hand distribution
is fixed, rather than playing a full best response. Third, it takes advantage of all of the benefits of endgame
solving described in Section 3.1. In particular, it allows for much better abstractions in the relevant portions
of the game tree. By contrast, DBBR must use very coarse abstractions so that full best responses can be
computed. And finally, we propose to only do the opponent modeling component for the preflop round. This
has several advantages. First, we have many more observations in the preflop round than in later rounds.
And second, DBBR only uses aggregate statistics for the later rounds, since it uses public history sets, which
abstract away relevant information like the public cards. For example, an opponent may bet on 80% of flops
overall, but on certain flops he will bet 100% of the time and on others he will only bet 10%. Using one
aggregate statistic is probably too simplistic to be useful against any relatively strong opponent. We expect
our new algorithm to be able to successfully exploit even strong no-limit Texas Hold’em opponents.

5 Summary and timeline

5.1 Completed work

• Computing equilibria in multiplayer stochastic imperfect-information games [11, 12].

• Computing equilibria by incorporating qualitative models [13, 14].

• Strategy purification and thresholding [20].

• Action translation [18].

• Tartanian5 agent for no-limit Texas Hold’em [17].

• Endgame solving [19].

• Algorithm for opponent exploitation in large imperfect-information games [15].

• Safe opponent exploitation [16]. Journal version in submission to TEAC.

5.2 Work to be done

• Improvements for qualitative model project: implement new polynomial-time algorithm and try to
characterize the situations in which the different models are used in limit Texas Hold’em.

• New algorithm for information abstraction based on a new algorithms for computing earth-mover’s
distance between histograms of unordered clusters.

• New algorithm for information abstraction that will allow MCCFR to parallelize on ccNUMA archi-
tecture.

28

• Gain a better theoretical understanding of purification and thresholding by providing formal proofs of
Observations 1 and 2, and generalizing results to games of arbitrary size.

• Apply machine learning algorithms to extract human-understandable knowledge from the computed
strategy files.

• Additional enhancements and experiments for the endgame solver.

• Extending the endgame solver to solve intermediate portions of the game.

• New algorithm for solving large imperfect-information games by creating an endgame database and
integrating it with MCCFR.

• New algorithm for opponent exploitation that utilizes the endgame solver.

5.3 Timeline

• 9/2013: Thesis proposal

• 8/2013–10/2013: Improve endgame solving paper for submission to AAMAS.

• 8/2013–12/2013: Implement new information abstraction algorithms on no-limit Texas Hold’em.

• 12/2013–6/2014: Implement midgame solver, new opponent exploitation algorithm, and new game-
solving algorithm that uses an endgame database. Work on no-limit Texas Hold’em agents for the
Annual Computer Poker Competition.

• 6/2014–8/2014: Work on approaches for extracting human-understandable knowledge from strate-
gies.

• 6/2014–12/2014: Work on new conference and journal papers.

• 12/2014: Thesis defense

29

References

[1] Nick Abou Risk and Duane Szafron. Using counterfactual regret minimization to create competitive
multiplayer poker agents. In International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 2010.

[2] Jerrod Ankenman and Bill Chen. The Mathematics of Poker. ConJelCo LLC, 2006.

[3] Annual Computer Poker Competition. http://www.computerpokercompetition.org.

[4] Nolan Bard, Michael Johanson, Neil Burch, and Michael Bowling. Online implicit agent modelling.
In International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2013.

[5] Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Schaeffer, Terence Schauenberg,
and Duane Szafron. Approximating game-theoretic optimal strategies for full-scale poker. In Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence (IJCAI), 2003.

[6] Ronen Brafman and Moshe Tennenholtz. Learning to coordinate efficiently: A model-based approach.
Journal of Artificial Intelligence Research, 19:11–23, 2003.

[7] George W. Brown. Iterative solutions of games by fictitious play. In Tjalling C. Koopmans, editor,
Activity Analysis of Production and Allocation, pages 374–376. John Wiley & Sons, 1951.

[8] Xi Chen and Xiaotie Deng. Settling the complexity of 2-player Nash equilibrium. In Proceedings of
the Annual Symposium on Foundations of Computer Science (FOCS), 2006.

[9] George Dantzig. A proof of the equivalence of the programming problem and the game problem. In
Tjalling Koopmans, editor, Activity Analysis of Production and Allocation, pages 330–335. John Wiley
& Sons, 1951.

[10] Constantinos Daskalakis, Paul Goldberg, and Christos Papadimitriou. The complexity of computing a
Nash equilibrium. In Proceedings of the Annual Symposium on Theory of Computing (STOC), 2006.

[11] Sam Ganzfried and Tuomas Sandholm. Computing an approximate jam/fold equilibrium for 3-player
no-limit Texas Hold’em tournaments. In International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), 2008.

[12] Sam Ganzfried and Tuomas Sandholm. Computing equilibria in multiplayer stochastic games of im-
perfect information. In Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI), 2009.

[13] Sam Ganzfried and Tuomas Sandholm. Computing equilibria by incorporating qualitative models. In
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2010.

[14] Sam Ganzfried and Tuomas Sandholm. Computing equilibria by incorporating qualitative mod-
els. Technical Report CMU-CS-10-105, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, PA, 2010.

[15] Sam Ganzfried and Tuomas Sandholm. Game theory-based opponent modeling in large imperfect-
information games. In International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 2011.

[16] Sam Ganzfried and Tuomas Sandholm. Safe opponent exploitation. In ACM Conference on Electronic
Commerce (EC), 2012.

30

[17] Sam Ganzfried and Tuomas Sandholm. Tartanian5: A heads-up no-limit Texas Hold’em poker-playing
program. In Computer Poker Symposium at the National Conference on Artificial Intelligence (AAAI),
2012.

[18] Sam Ganzfried and Tuomas Sandholm. Action translation in extensive-form games with large action
spaces: Axioms, paradoxes, and the pseudo-harmonic mapping. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2013.

[19] Sam Ganzfried and Tuomas Sandholm. Improving performance in imperfect-information games with
large state and action spaces by solving endgames. In Computer Poker and Imperfect Information
Workshop at the National Conference on Artificial Intelligence (AAAI), 2013.

[20] Sam Ganzfried, Tuomas Sandholm, and Kevin Waugh. Strategy purification and thresholding: Effec-
tive non-equilibrium approaches for playing large games. In International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), 2012.

[21] Richard Gibson. Regret minimization in non-zero-sum games with applications to building champion
multiplayer computer poker agents. ArXiv e-prints, April 2013.

[22] Richard Gibson, Neil Burch, Marc Lanctot, and Duane Szafron. Efficient Monte Carlo counterfactual
regret minimization in games with many player actions. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS), 2012.

[23] Richard Gibson, Marc Lanctot, Neil Burch, Duane Szafron, and Michael Bowling. Generalized sam-
pling and variance in counterfactual regret minimization. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), 2012.

[24] Andrew Gilpin, Javier Peña, and Tuomas Sandholm. First-order algorithm with O(ln(1/ε)) conver-
gence for ε-equilibrium in two-person zero-sum games. Mathematical Programming, 133(1–2):279–
298, 2012. Conference version appeared in AAAI-08.

[25] Andrew Gilpin and Tuomas Sandholm. A competitive Texas Hold’em poker player via automated
abstraction and real-time equilibrium computation. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), 2006.

[26] Andrew Gilpin and Tuomas Sandholm. Better automated abstraction techniques for imperfect infor-
mation games, with application to Texas Hold’em poker. In International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), pages 1168–1175, 2007.

[27] Andrew Gilpin and Tuomas Sandholm. Lossless abstraction of imperfect information games. Journal
of the ACM, 54(5), 2007.

[28] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. Potential-aware automated abstraction
of sequential games, and holistic equilibrium analysis of Texas Hold’em poker. In Proceedings of the
National Conference on Artificial Intelligence (AAAI), 2007.

[29] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. A heads-up no-limit Texas Hold’em
poker player: Discretized betting models and automatically generated equilibrium-finding programs.
In International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2008.

[30] John Hawkin, Robert Holte, and Duane Szafron. Automated action abstraction of imperfect infor-
mation extensive-form games. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), 2011.

31

[31] John Hawkin, Robert Holte, and Duane Szafron. Using sliding windows to generate action abstractions
in extensive-form games. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
2012.

[32] Samid Hoda, Andrew Gilpin, Javier Peña, and Tuomas Sandholm. Smoothing techniques for com-
puting Nash equilibria of sequential games. Mathematics of Operations Research, 35(2):494–512,
2010.

[33] Junling Hu and Michael P. Wellman. Nash Q-learning for general-sum stochastic games. Journal of
Machine Learning Research, 4:1039–1069, 2003.

[34] Michael Johanson. Measuring the size of large no-limit poker games. Technical Report TR13-01,
Department of Computing Science, University of Alberta, 2013.

[35] Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. Finding optimal abstract strategies
in extensive-form games. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
2012.

[36] Michael Johanson, Nolan Bard, Marc Lanctot, Richard Gibson, and Michael Bowling. Efficient Nash
equilibrium approximation through Monte Carlo counterfactual regret minimization. In International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2012.

[37] Michael Johanson and Michael Bowling. Data biased robust counter strategies. In International Con-
ference on Artificial Intelligence and Statistics (AISTATS), 2009.

[38] Michael Johanson, Neil Burch, Richard Valenzano, and Michael Bowling. Evaluating state-space
abstractions in extensive-form games. In International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), 2013.

[39] Michael Johanson, Martin Zinkevich, and Michael Bowling. Computing robust counter-strategies. In
Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), 2007.

[40] Michael Kearns, Yishay Mansour, and Satinder Singh. Fast planning is stochastic games. In Proceed-
ings of the Conference on Uncertainty in Artificial Intelligence (UAI), 2000.

[41] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Fast algorithms for finding randomized
strategies in game trees. In Proceedings of the 26th ACM Symposium on Theory of Computing (STOC),
1994.

[42] Marc Lanctot, Richard Gibson, Neil Burch, and Michael Bowling. No-regret learning in extensive-
form games with imperfect recall. In International Conference on Machine Learning (ICML), 2012.

[43] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo sampling for re-
gret minimization in extensive games. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), pages 1078–1086, 2009.

[44] Michael Littman. Friend-or-foe Q-learning in general-sum Markov games. In International Conference
on Machine Learning (ICML), pages 322–328, 2001.

[45] Peter Bro Miltersen and Troels Bjerre Sørensen. Fast algorithms for finding proper strategies in game
trees. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.

[46] Peter Bro Miltersen and Troels Bjerre Sørensen. Computing a quasi-perfect equilibrium of a two-player
game. Economic Theory, 42(1):175–192, 2010.

32

[47] John Nash. Non-cooperative games. Annals of Mathematics, 54:289–295, 1951.

[48] Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2005.

[49] Jonathan Rubin and Ian Watson. Computer poker: A review. Artificial Intelligence, 175(5–6):958–987,
2011.

[50] Tuomas Sandholm. Perspectives on multiagent learning. Artificial Intelligence, 171:382–391, 2007.

[51] Tuomas Sandholm. The state of solving large incomplete-information games, and application to poker.
AI Magazine, pages 13–32, Winter 2010. Special issue on Algorithmic Game Theory.

[52] David Schnizlein, Michael Bowling, and Duane Szafron. Probabilistic state translation in extensive
games with large action sets. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI), 2009.

[53] Satinder P Singh, Vishal Soni, and Michael P Wellman. Computing approximate Bayes-Nash equi-
libria in tree-games of incomplete information. In Proceedings of the ACM Conference on Electronic
Commerce (ACM-EC), pages 81–90, New York, NY, 2004. ACM.

[54] Noah D. Stein, Asuman Ozdaglar, and Pablo A. Parillo. Separable and low-rank continuous games.
International Journal of Game Theory, 37(4):475–504, 2008.

[55] John von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100:295–320,
1928.

[56] John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton
University Press, 1947.

[57] Yevgeniy Vorobeychik and Michael Wellman. Stochastic search methods for Nash equilibrium ap-
proximation in simulation-based games. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Estoril, Portugal, 2008.

[58] Xiaofeng Wang and Tuomas Sandholm. Reinforcement learning to play an optimal Nash equilibrium
in team Markov games. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NIPS), 2002.

[59] Kevin Waugh. Abstraction in large extensive games. Master’s thesis, University of Alberta, 2009.

[60] Kevin Waugh, Martin Zinkevich, Michael Johanson, Morgan Kan, David Schnizlein, and Michael
Bowling. A practical use of imperfect recall. In Symposium on Abstraction, Reformulation and Ap-
proximation (SARA), 2009.

[61] Martin Zinkevich, Michael Bowling, Michael Johanson, and Carmelo Piccione. Regret minimization in
games with incomplete information. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), 2007.

33

