## Calculus II Sample Final Questions

1. Integrate the following
(i) $\int \sin ^{2} x \cos ^{3} x d x$
(ii) $\int x \ln x d x$
(iv) $\int x \sin 2 x d x$
(iv) $\int \frac{d x}{x^{2}+3 x+2}$
(v) $\int \frac{x}{\sqrt{1-x^{2}}} d x$
(vi) $\int_{0}^{\infty} x e^{-x^{2}} d x$
(viii) $\int \frac{d x}{\left(x^{2}+1\right)^{3 / 2}}$
(viii) $\int \frac{x d x}{(x-1)(x-2)^{2}}$
(ix) $\int \frac{d x}{x\left(x^{2}+1\right)}$
(x) $\int x e^{-3 x} d x$
(xi) $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$
(xii) $\int \frac{d x}{x^{2} \sqrt{x^{2}-4}}$
2. Do the following
(i) $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}$
(ii) $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$
(iii) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}$
(iv) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$
(v) $\sum_{n=1}^{\infty} \frac{n}{n+1}$
(vi) $\sum_{n=3}^{\infty} \frac{1}{n \ln n}$
(vii) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+1}$
(viii) $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$
(ix) $\sum_{n=1}^{\infty}\left(\frac{1}{2}+\frac{1}{n}\right)^{n}$
3. Calculate the $4^{\text {th }}$ degree Taylor polynomial with remainder for the following. Expand about the point $x=c$ given.
(i) $f(x)=\sin x$ about $x=\pi$
(ii) $f(x)=\frac{1}{x+2}$ about $x=1$
4. Determine the radius and interval of convergence of the following.

$$
\text { (i) } \sum_{n=1}^{\infty} \frac{(4 x)^{n}}{(n+1)!} \quad \text { (ii) } \quad \sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n 3^{n}}
$$

5. Polar Areas
(i) Find the area inside both $r=\sin \theta$ and $r=\cos \theta$.
(ii) Find the area inside $r=2 \cos \theta$ and outside $r=1 / 2+\cos \theta$.
6. Planes and Lines
(i) Find the equation of the plane contains the lines

$$
\begin{array}{ll}
x=-1+t, & x=2-s \\
y=1+t, & y=s \\
z=2 t, & z=2
\end{array}
$$

(ii) Find the equation of the plane that contains the points $P(1,1,3), Q(-2,4,-3)$ and $R(3,-4,4)$
(iii) Find the equation of the line perpendicular to the plane in part (i) through the point $P$.
(iv) Find the equation of the line through $P$ and $Q$ in part (ii).
7. Vector Projections

Find the projection of $\vec{u}$ onto $\vec{v}$ and its orthogonal complement for the following:
(i) $\vec{u}=\langle-1,3\rangle, \vec{v}=\langle 2,2\rangle$,
(ii) $\vec{u}=\langle 5,5\rangle, \quad \vec{v}=\langle 1,2\rangle$.

