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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Schedule

• 12/5, 12/7: Machine learning (classification, regression, 

clustering, deep learning(neural networks))

• 12/7: Project presentations and class project due

– Project code due 12/5 at 12am on Moodle.

• Final exam on 12/14

– 12pm in GL-139

• Evaluation

– Log on to MyFIU portal at https://my.fiu.edu.

– Click on SPOTs.

– Select the course from the list of SPOTs.

– Click on the instructor's name.

– You will now be on the form and can share your perceptions and type 

comments.

https://my.fiu.edu/
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Announcements

• HW4 back next week

• Project final paper due today 12/7: 2-4 page paper in pdf

• Project presentations today: ~2-3 minutes each

– Ok for just one student to present from a group of 2-3

• Project competition results available next week
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Supervised vs. unsupervised learning

• Supervised learning is the machine learning task of inferring a 

function from labeled training data. The training data consist of a 

set of training examples. In supervised learning, each example is a 

pair consisting of an input object (typically a vector) and a desired 

output value (also called the supervisory signal). A supervised 

learning algorithm analyzes the training data and produces an 

inferred function, which can be used for mapping new examples. 

An optimal scenario will allow for the algorithm to correctly 

determine the class labels for unseen instances. This requires the 

learning algorithm to generalize from the training data to unseen 

situations in a "reasonable" way (see inductive bias).

– Includes classification (e.g., for decision trees) and regression.
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Bias-variance tradeoff for supervised learning

• A first issue is the tradeoff between bias and variance. Imagine that we have 

available several different, but equally good, training data sets. A learning 

algorithm is biased for a particular input x if, when trained on each of these 

data sets, it is systematically incorrect when predicting the correct output for 

x. A learning algorithm has high variance for a particular input x if it predicts 

different output values when trained on different training sets. The prediction 

error of a learned classifier is related to the sum of the bias and the variance 

of the learning algorithm. Generally, there is a tradeoff between bias and 

variance. A learning algorithm with low bias must be "flexible" so that it can 

fit the data well. But if the learning algorithm is too flexible, it will fit each 

training data set differently, and hence have high variance. A key aspect of 

many supervised learning methods is that they are able to adjust this tradeoff 

between bias and variance (either automatically or by providing a 

bias/variance parameter that the user can adjust).
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Bias-variance tradeoff
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Supervised learning approaches

• We covered decision trees and regression

• Boosting

• Naïve Bayes classifier (e.g., for natural language processing)

• Nearest neighbor algorithm (“k-nn”)

• Maximum entropy classifier

• Support vector machines

• Random forests

• Many others. Python has built-in libraries and packages for the 

main ones.

• Logistic regression

• Neural networks
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Unsupervised learning

• Unsupervised machine learning is the machine learning task of 

inferring a function to describe hidden structure from 

"unlabeled" data (a classification or categorization is not 

included in the observations). Since the examples given to the 

learner are unlabeled, there is no evaluation of the accuracy of 

the structure that is output by the relevant algorithm—which is 

one way of distinguishing unsupervised learning from 

supervised learning and reinforcement learning.

• Approaches to unsupervised learning include:

– Clustering

– Anomaly detection

– Neural networks

– Approaches for latent variable modeling (e.g., expectation-maximization 

(EM) algorithm)
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Clustering for hurricane classification



10

Hurricane AI
• The Saffir–Simpson hurricane wind scale (SSHWS), formerly the Saffir–

Simpson hurricane scale (SSHS), classifies hurricanes – Western Hemisphere 

tropical cyclones that exceed the intensities of tropical depressions and 

tropical storms – into five categories distinguished by the intensities of their 

sustained winds. To be classified as a hurricane, a tropical cyclone must have 

maximum sustained winds of at least 74 mph (33 m/s; 64 kn; 119 km/h) 

(Category 1). The highest classification in the scale, Category 5, consists of 

storms with sustained winds exceeding 156 mph (70 m/s; 136 kn; 251 km/h).

• The classifications can provide some indication of the potential damage and 

flooding a hurricane will cause upon landfall.

• Officially, the Saffir–Simpson hurricane wind scale is used only to describe 

hurricanes forming in the Atlantic Ocean and northern Pacific Ocean east of 

the International Date Line. Other areas use different scales to label these 

storms, which are called "cyclones" or "typhoons", depending on the area.

• There is some criticism of the SSHS for not taking rain, storm surge, and 

other important factors into consideration, but SSHS defenders say that part 

of the goal of SSHS is to be straightforward and simple to understand.
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Hurricane AI

• The scale was developed in 1971 by civil engineer Herbert 

Saffir and meteorologist Robert Simpson, who at the time was 

director of the U.S. National Hurricane Center (NHC).[1] The 

scale was introduced to the general public in 1973,[2] and saw 

widespread use after Neil Frank replaced Simpson at the helm of 

the NHC in 1974.[3]

• The initial scale was developed by Saffir, a structural engineer, 

who in 1969 went on commission for the United Nations to 

study low-cost housing in hurricane-prone areas.[4] While 

performing the study, Saffir realized there was no simple scale 

for describing the likely effects of a hurricane. Mirroring the 

utility of the Richter magnitude scale in describing earthquakes, 

he devised a 1–5 scale based on wind speed that showed 

expected damage to structures. Saffir gave the scale to the NHC, 

and Simpson added the effects of storm surge and flooding.
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AI clustering

• Cluster analysis or clustering is the task of grouping a 

set of objects in such a way that objects in the same 

group (called a cluster) are more similar (in some sense 

or another) to each other than to those in other groups 

(clusters). It is a main task of exploratory data mining, 

and a common technique for statistical data analysis, 

used in many fields, including machine learning, 

pattern recognition, image analysis, information 

retrieval, bioinformatics, data compression, and 

computer graphics.
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Clustering
• Cluster analysis itself is not one specific algorithm, but the general 

task to be solved. It can be achieved by various algorithms that 

differ significantly in their notion of what constitutes a cluster and 

how to efficiently find them. Popular notions of clusters include 

groups with small distances among the cluster members, dense 

areas of the data space, intervals or particular statistical 

distributions. Clustering can therefore be formulated as a multi-

objective optimization problem. The appropriate clustering 

algorithm and parameter settings (including values such as the 

distance function to use, a density threshold or the number of 

expected clusters) depend on the individual data set and intended 

use of the results. Cluster analysis as such is not an automatic task, 

but an iterative process of knowledge discovery or interactive 

multi-objective optimization that involves trial and failure. It is 

often necessary to modify data preprocessing and model 

parameters until the result achieves the desired properties.
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K-means clustering algorithm
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Other clustering approaches

• K-medoids

• K-medians

• Different initialization methods, e.g., kmeans++

– Typically initial cluster means are chosen at random
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Artificial neural networks

• We now turn to what seems to be a somewhat unrelated 

topic: the brain. In fact, as we will see, the technical 

ideas we have discussed so far in this chapter turn out to 

be useful in building mathematical models of the brain’s 

activity; conversely, thinking about the brain has helped 

in extending the scope of the technical ideas.
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Neuron
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Artificial neural networks

• One of the basic findings of neuroscience is the hypothesis that 

mental activity consists primarily of electrochemical activity in 

networks of brain cells called neurons. Inspired by this 

hypothesis, some of the earliest AI work aimed to create 

artificial neural networks. Figure 18.19 shows a simple 

mathematical model of the neuron devised by McCulloch and 

Pitts (1943). Roughly speaking, it “fires” when a linear 

combination of its inputs exceeds some (hard or soft) 

threshold—that is, implements a linear classifier of the kind 

described previously. A neural network is just a collection of 

units connected together; the properties of the network are 

determined by its topology and the properties of the “neurons.”
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Linear classification
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Artificial neural networks

• Since 1943, much more detailed and realistic models have been 

developed, both for neurons and for larger systems in the brain, 

leading to the modern field of computational neuroscience. On 

the other hand, researchers in AI and statistics became interested 

in the more abstract properties of neural networks, such as their 

ability to perform distributed computation, to tolerate noisy 

inputs, and to learn. Although we understand now that other 

kinds of systems—including Bayesian networks–have these 

properties, neural networks remain one of the most popular and 

effective forms of learning system and are worthy of study in 

their own right.
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Artificial neural networks

• Neural networks are composed of units connected by directed 

links. A link from unit i to unit j serves to propagate the 

activation ai from i to j. Each link also has a numeric weight wi,j

associated with it, which determines the strength and sign of the 

connection. Just as in linear regression models, each unit has a 

dummy input a0=1 with an associated weight w0,j. Each unit j 

first computes a weighted sum of its inputs:

inj = ∑n
i = 0 wi,j ai

• Then it applies an activation function g to this sum to derive the 

output: 

Aj = g(inj) = g(∑n
i = 0 wi,j ai)
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Mathematical model of neuron
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Artificial neural networks

• The activation function g is typically either a hard 

threshold (Figure 18.17a), in which case the unit is 

called a perceptron, or a logistic function (Figure 

18.17b), in which case the term sigmoid perceptron is 

sometimes used. Both of these nonlinear activation 

functions ensure the important property that the entire 

network of units can represent a nonlinear function. 

The logistic activation function has the added 

advantage of being differentiable.
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Threshold vs. logistic function
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Artificial neural networks

• Having decided on the mathematical model for individual “neurons,” the next 

task is to connect them together to form a network. There are two 

fundamentally distinct ways to do this. A feed-forward network has 

connections only in one direction—that is, it forms a directed acyclic graph. 

Every node receives input from “upstream” nodes and delivers output to 

“downstream” nodes; there are no loops. A feed-forward network represents 

a function of its current input; thus, it has no internal state other than the 

weights themselves. A recurrent network, on the other hand, feeds its 

outputs back into its own inputs. This means that the activation levels of the 

network form a dynamical system that may reach a stable state or exhibit 

oscillations or even chaotic behavior. Moreover, the response of the network 

to a given input depends on its initial state, which may depend on previous 

inputs. Hence, recurrent networks (unlike feed-forward networks) can 

support short-term memory. This makes them more interesting as models of 

the brain, but also more difficult to understand. 
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Artificial neural networks

• Feed-forward networks are usually arranged in layers, such that 

each unit receives input only from units in the immediately 

preceding layer. In the next two subsections, we will look at 

single-layer networks, in which every unit connects directly from 

the network’s inputs to its outputs, and multilayer networks, which 

have one or more layers of hidden units that are not connected to 

the outputs of the network. So far, we have considered only 

learning problems with a single output variable y, but neural 

networks are often used in cases where multiple outputs are 

appropriate. For example, if we want to train a network to add two 

input bits, each a 0 or a 1, we will need one output for the sum bit 

and one for the carry bit. Also, when the learning problem involves 

classification into more than two classes—for example, when 

learning to categorize images of handwritten digits—it is common 

to use one output unit for each class.
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Artificial neural networks
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Artificial neural networks

• A network with all the inputs connected directly to the 

outputs is called a single-layer neural network, or a 

perceptron network. Figure 18.20 shows a simple 

two-input, two-output perceptron network. With such a 

network, we might hope to learn the two-bit adder 

function, for example. Here are all the training data we 

will need:
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Perceptron network
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Artificial neural networks

• The first thing to notice is that a perceptron network 

with m outputs is really m separate networks, because 

each weight affects only one of the outputs. Thus, there 

will be m separate training processes. Furthermore, 

depending on the type of activation function used, the 

training processes will be either the perceptron 

learning rule or gradient descent rule for the logistic 

regression. 
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Artificial neural networks

• If you try either method on the two-bit-adder data, something 

interesting happens. Unit 3 learns the carry function easily, but 

unit 4 completely fails to learn the sum function. No unit 4 is not 

defective! The problem is with the sum function itself. We saw 

that linear classifiers (whether hard or soft) can represent linear 

decision boundaries in the input space. This works fine for the 

carry function, which is a logical AND. The sum function, 

however, is an XOR (exclusive OR) of the two inputs. As Figure 

18.21© illustrates, this function is not linearly separable so the 

perceptron cannot learn it.
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Linear separability
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Artificial neural networks

• The linearly separable functions constitute just a small fraction of 

all Boolean functions. The inability of perceptrons to learn even 

such simple functions as XOR was a significant setback to the 

nascent  neural network community in the 1960s. Perceptrons are 

far from useless, however. Section 18.6.4 noted that logistic 

regression (i.e., training a sigmoid perceptron) is even today a very 

popular and effective tool. Moreover, a perceptron can represent 

some quite “complex” Boolean functions very compactly. For 

example, the majority function, which outputs a 1 only if more 

than half of its n inputs are 1, can be represented by a perceptron 

with each wi = 1 and with w0 = -n/2. A decision tree would need 

exponentially many nodes to represent this function.
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Artificial neural networks

• Figure 18.22 shows the learning curve for a perceptron on two 

different problems. On the left, we show the curve for learning 

the majority function with 11 Boolean inputs (i.e., the function 

outputs a 1 if 6 or more inputs are 1). As we would expect, the 

perceptron learns the function quite quickly, because the 

majority function is linearly separable. On the other hand, the 

decision-tree learner makes no progress, because the majority 

function is very hard (although not impossible) to represent as a 

decision tree. On the right, we have the restaurant example. The 

solution problem is easily represented as a decision tree, but is 

not linearly separable. The best plane through the data correctly 

classifies only 65%.
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Artificial neural networks

• (McCulloch and Pitts, 1943) were well aware that a 

single threshold unit would not solve all their 

problems. In fact, their paper proves that such a unit 

can represent the basic Boolean functions AND, OR, 

and NOT and then goes on to argue that any desired 

functionality can be obtained by connecting large 

numbers of units into (possibly recurrent) networks of 

arbitrary depth. The problem was that nobody knew 

how to train such networks.
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Artificial neural networks

• This turns out to be an easy problem if we think of a 

network the right away: as a function hw(x) 

parameterized by the weights w. Consider the simple 

network shown in 18.20(b), which has two input units, 

two hidden units, and two outputs. (In addition, each 

unit has a dummy input fixed at 1). Given an input 

vector x = (x1,x2), the activations of input units are set 

to (a1, a2) = (x1, x2). The output at unit 5 is given by
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Artificial neural networks

• Thus, we have the output expressed as a function of the 

inputs and the weights. A similar expression holds for 

unit 6. As long as we can calculate the derivatives of 

such expressions with respect to the weights, we can 

use the gradient-descent loss-minimization method to 

train the network. 
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Homework for next class

• Exam on 12/14 at 12pm in GL-139


