
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu

2

Schedule

• 12/5, 12/7: Machine learning (classification, regression,

clustering, deep learning(neural networks))

• 12/7: Project presentations and class project due

– Project code due 12/5 at 12am on Moodle.

• Final exam on 12/14

– 12pm in GL-139

• Evaluation

– Log on to MyFIU portal at https://my.fiu.edu.

– Click on SPOTs.

– Select the course from the list of SPOTs.

– Click on the instructor's name.

– You will now be on the form and can share your perceptions and type

comments.

https://my.fiu.edu/

3

Announcements

• HW4 back next week

• Project final paper due today 12/7: 2-4 page paper in pdf

• Project presentations today: ~2-3 minutes each

– Ok for just one student to present from a group of 2-3

• Project competition results available next week

4

Supervised vs. unsupervised learning

• Supervised learning is the machine learning task of inferring a

function from labeled training data. The training data consist of a

set of training examples. In supervised learning, each example is a

pair consisting of an input object (typically a vector) and a desired

output value (also called the supervisory signal). A supervised

learning algorithm analyzes the training data and produces an

inferred function, which can be used for mapping new examples.

An optimal scenario will allow for the algorithm to correctly

determine the class labels for unseen instances. This requires the

learning algorithm to generalize from the training data to unseen

situations in a "reasonable" way (see inductive bias).

– Includes classification (e.g., for decision trees) and regression.

5

Bias-variance tradeoff for supervised learning

• A first issue is the tradeoff between bias and variance. Imagine that we have

available several different, but equally good, training data sets. A learning

algorithm is biased for a particular input x if, when trained on each of these

data sets, it is systematically incorrect when predicting the correct output for

x. A learning algorithm has high variance for a particular input x if it predicts

different output values when trained on different training sets. The prediction

error of a learned classifier is related to the sum of the bias and the variance

of the learning algorithm. Generally, there is a tradeoff between bias and

variance. A learning algorithm with low bias must be "flexible" so that it can

fit the data well. But if the learning algorithm is too flexible, it will fit each

training data set differently, and hence have high variance. A key aspect of

many supervised learning methods is that they are able to adjust this tradeoff

between bias and variance (either automatically or by providing a

bias/variance parameter that the user can adjust).

6

Bias-variance tradeoff

7

Supervised learning approaches

• We covered decision trees and regression

• Boosting

• Naïve Bayes classifier (e.g., for natural language processing)

• Nearest neighbor algorithm (“k-nn”)

• Maximum entropy classifier

• Support vector machines

• Random forests

• Many others. Python has built-in libraries and packages for the

main ones.

• Logistic regression

• Neural networks

8

Unsupervised learning

• Unsupervised machine learning is the machine learning task of

inferring a function to describe hidden structure from

"unlabeled" data (a classification or categorization is not

included in the observations). Since the examples given to the

learner are unlabeled, there is no evaluation of the accuracy of

the structure that is output by the relevant algorithm—which is

one way of distinguishing unsupervised learning from

supervised learning and reinforcement learning.

• Approaches to unsupervised learning include:

– Clustering

– Anomaly detection

– Neural networks

– Approaches for latent variable modeling (e.g., expectation-maximization

(EM) algorithm)

9

Clustering for hurricane classification

10

Hurricane AI
• The Saffir–Simpson hurricane wind scale (SSHWS), formerly the Saffir–

Simpson hurricane scale (SSHS), classifies hurricanes – Western Hemisphere

tropical cyclones that exceed the intensities of tropical depressions and

tropical storms – into five categories distinguished by the intensities of their

sustained winds. To be classified as a hurricane, a tropical cyclone must have

maximum sustained winds of at least 74 mph (33 m/s; 64 kn; 119 km/h)

(Category 1). The highest classification in the scale, Category 5, consists of

storms with sustained winds exceeding 156 mph (70 m/s; 136 kn; 251 km/h).

• The classifications can provide some indication of the potential damage and

flooding a hurricane will cause upon landfall.

• Officially, the Saffir–Simpson hurricane wind scale is used only to describe

hurricanes forming in the Atlantic Ocean and northern Pacific Ocean east of

the International Date Line. Other areas use different scales to label these

storms, which are called "cyclones" or "typhoons", depending on the area.

• There is some criticism of the SSHS for not taking rain, storm surge, and

other important factors into consideration, but SSHS defenders say that part

of the goal of SSHS is to be straightforward and simple to understand.

11

Hurricane AI

• The scale was developed in 1971 by civil engineer Herbert

Saffir and meteorologist Robert Simpson, who at the time was

director of the U.S. National Hurricane Center (NHC).[1] The

scale was introduced to the general public in 1973,[2] and saw

widespread use after Neil Frank replaced Simpson at the helm of

the NHC in 1974.[3]

• The initial scale was developed by Saffir, a structural engineer,

who in 1969 went on commission for the United Nations to

study low-cost housing in hurricane-prone areas.[4] While

performing the study, Saffir realized there was no simple scale

for describing the likely effects of a hurricane. Mirroring the

utility of the Richter magnitude scale in describing earthquakes,

he devised a 1–5 scale based on wind speed that showed

expected damage to structures. Saffir gave the scale to the NHC,

and Simpson added the effects of storm surge and flooding.

12

AI clustering

• Cluster analysis or clustering is the task of grouping a

set of objects in such a way that objects in the same

group (called a cluster) are more similar (in some sense

or another) to each other than to those in other groups

(clusters). It is a main task of exploratory data mining,

and a common technique for statistical data analysis,

used in many fields, including machine learning,

pattern recognition, image analysis, information

retrieval, bioinformatics, data compression, and

computer graphics.

13

Clustering
• Cluster analysis itself is not one specific algorithm, but the general

task to be solved. It can be achieved by various algorithms that

differ significantly in their notion of what constitutes a cluster and

how to efficiently find them. Popular notions of clusters include

groups with small distances among the cluster members, dense

areas of the data space, intervals or particular statistical

distributions. Clustering can therefore be formulated as a multi-

objective optimization problem. The appropriate clustering

algorithm and parameter settings (including values such as the

distance function to use, a density threshold or the number of

expected clusters) depend on the individual data set and intended

use of the results. Cluster analysis as such is not an automatic task,

but an iterative process of knowledge discovery or interactive

multi-objective optimization that involves trial and failure. It is

often necessary to modify data preprocessing and model

parameters until the result achieves the desired properties.

14

K-means clustering algorithm

15

Other clustering approaches

• K-medoids

• K-medians

• Different initialization methods, e.g., kmeans++

– Typically initial cluster means are chosen at random

16

Artificial neural networks

• We now turn to what seems to be a somewhat unrelated

topic: the brain. In fact, as we will see, the technical

ideas we have discussed so far in this chapter turn out to

be useful in building mathematical models of the brain’s

activity; conversely, thinking about the brain has helped

in extending the scope of the technical ideas.

17

Neuron

18

Artificial neural networks

• One of the basic findings of neuroscience is the hypothesis that

mental activity consists primarily of electrochemical activity in

networks of brain cells called neurons. Inspired by this

hypothesis, some of the earliest AI work aimed to create

artificial neural networks. Figure 18.19 shows a simple

mathematical model of the neuron devised by McCulloch and

Pitts (1943). Roughly speaking, it “fires” when a linear

combination of its inputs exceeds some (hard or soft)

threshold—that is, implements a linear classifier of the kind

described previously. A neural network is just a collection of

units connected together; the properties of the network are

determined by its topology and the properties of the “neurons.”

19

Linear classification

20

Artificial neural networks

• Since 1943, much more detailed and realistic models have been

developed, both for neurons and for larger systems in the brain,

leading to the modern field of computational neuroscience. On

the other hand, researchers in AI and statistics became interested

in the more abstract properties of neural networks, such as their

ability to perform distributed computation, to tolerate noisy

inputs, and to learn. Although we understand now that other

kinds of systems—including Bayesian networks–have these

properties, neural networks remain one of the most popular and

effective forms of learning system and are worthy of study in

their own right.

21

Artificial neural networks

• Neural networks are composed of units connected by directed

links. A link from unit i to unit j serves to propagate the

activation ai from i to j. Each link also has a numeric weight wi,j

associated with it, which determines the strength and sign of the

connection. Just as in linear regression models, each unit has a

dummy input a0=1 with an associated weight w0,j. Each unit j

first computes a weighted sum of its inputs:

inj = ∑n
i = 0 wi,j ai

• Then it applies an activation function g to this sum to derive the

output:

Aj = g(inj) = g(∑n
i = 0 wi,j ai)

22

Mathematical model of neuron

23

Artificial neural networks

• The activation function g is typically either a hard

threshold (Figure 18.17a), in which case the unit is

called a perceptron, or a logistic function (Figure

18.17b), in which case the term sigmoid perceptron is

sometimes used. Both of these nonlinear activation

functions ensure the important property that the entire

network of units can represent a nonlinear function.

The logistic activation function has the added

advantage of being differentiable.

24

Threshold vs. logistic function

25

Artificial neural networks

• Having decided on the mathematical model for individual “neurons,” the next

task is to connect them together to form a network. There are two

fundamentally distinct ways to do this. A feed-forward network has

connections only in one direction—that is, it forms a directed acyclic graph.

Every node receives input from “upstream” nodes and delivers output to

“downstream” nodes; there are no loops. A feed-forward network represents

a function of its current input; thus, it has no internal state other than the

weights themselves. A recurrent network, on the other hand, feeds its

outputs back into its own inputs. This means that the activation levels of the

network form a dynamical system that may reach a stable state or exhibit

oscillations or even chaotic behavior. Moreover, the response of the network

to a given input depends on its initial state, which may depend on previous

inputs. Hence, recurrent networks (unlike feed-forward networks) can

support short-term memory. This makes them more interesting as models of

the brain, but also more difficult to understand.

26

Artificial neural networks

• Feed-forward networks are usually arranged in layers, such that

each unit receives input only from units in the immediately

preceding layer. In the next two subsections, we will look at

single-layer networks, in which every unit connects directly from

the network’s inputs to its outputs, and multilayer networks, which

have one or more layers of hidden units that are not connected to

the outputs of the network. So far, we have considered only

learning problems with a single output variable y, but neural

networks are often used in cases where multiple outputs are

appropriate. For example, if we want to train a network to add two

input bits, each a 0 or a 1, we will need one output for the sum bit

and one for the carry bit. Also, when the learning problem involves

classification into more than two classes—for example, when

learning to categorize images of handwritten digits—it is common

to use one output unit for each class.

27

Artificial neural networks

28

Artificial neural networks

• A network with all the inputs connected directly to the

outputs is called a single-layer neural network, or a

perceptron network. Figure 18.20 shows a simple

two-input, two-output perceptron network. With such a

network, we might hope to learn the two-bit adder

function, for example. Here are all the training data we

will need:

29

Perceptron network

30

Artificial neural networks

• The first thing to notice is that a perceptron network

with m outputs is really m separate networks, because

each weight affects only one of the outputs. Thus, there

will be m separate training processes. Furthermore,

depending on the type of activation function used, the

training processes will be either the perceptron

learning rule or gradient descent rule for the logistic

regression.

31

Artificial neural networks

• If you try either method on the two-bit-adder data, something

interesting happens. Unit 3 learns the carry function easily, but

unit 4 completely fails to learn the sum function. No unit 4 is not

defective! The problem is with the sum function itself. We saw

that linear classifiers (whether hard or soft) can represent linear

decision boundaries in the input space. This works fine for the

carry function, which is a logical AND. The sum function,

however, is an XOR (exclusive OR) of the two inputs. As Figure

18.21© illustrates, this function is not linearly separable so the

perceptron cannot learn it.

32

Linear separability

33

Artificial neural networks

• The linearly separable functions constitute just a small fraction of

all Boolean functions. The inability of perceptrons to learn even

such simple functions as XOR was a significant setback to the

nascent neural network community in the 1960s. Perceptrons are

far from useless, however. Section 18.6.4 noted that logistic

regression (i.e., training a sigmoid perceptron) is even today a very

popular and effective tool. Moreover, a perceptron can represent

some quite “complex” Boolean functions very compactly. For

example, the majority function, which outputs a 1 only if more

than half of its n inputs are 1, can be represented by a perceptron

with each wi = 1 and with w0 = -n/2. A decision tree would need

exponentially many nodes to represent this function.

34

35

Artificial neural networks

• Figure 18.22 shows the learning curve for a perceptron on two

different problems. On the left, we show the curve for learning

the majority function with 11 Boolean inputs (i.e., the function

outputs a 1 if 6 or more inputs are 1). As we would expect, the

perceptron learns the function quite quickly, because the

majority function is linearly separable. On the other hand, the

decision-tree learner makes no progress, because the majority

function is very hard (although not impossible) to represent as a

decision tree. On the right, we have the restaurant example. The

solution problem is easily represented as a decision tree, but is

not linearly separable. The best plane through the data correctly

classifies only 65%.

36

Artificial neural networks

• (McCulloch and Pitts, 1943) were well aware that a

single threshold unit would not solve all their

problems. In fact, their paper proves that such a unit

can represent the basic Boolean functions AND, OR,

and NOT and then goes on to argue that any desired

functionality can be obtained by connecting large

numbers of units into (possibly recurrent) networks of

arbitrary depth. The problem was that nobody knew

how to train such networks.

37

Artificial neural networks

• This turns out to be an easy problem if we think of a

network the right away: as a function hw(x)

parameterized by the weights w. Consider the simple

network shown in 18.20(b), which has two input units,

two hidden units, and two outputs. (In addition, each

unit has a dummy input fixed at 1). Given an input

vector x = (x1,x2), the activations of input units are set

to (a1, a2) = (x1, x2). The output at unit 5 is given by

38

Artificial neural networks

• Thus, we have the output expressed as a function of the

inputs and the weights. A similar expression holds for

unit 6. As long as we can calculate the derivatives of

such expressions with respect to the weights, we can

use the gradient-descent loss-minimization method to

train the network.

39

Homework for next class

• Exam on 12/14 at 12pm in GL-139

