North Texas GCD Board Meeting October 8, 2019

Discussion of DFCs and MAGs numbers for submission to GMA8

Agenda Item 9

Update and possible action regarding the process for the development of Desired Future Conditions (DFCs).

 Presentation, discussion and possible action on development of Desired Future Conditions and Modeled Available Groundwater numbers for submission to Groundwater Management Area 8 for the current joint planning cycle

GMA 8 - WSP Team Approach to Presenting Information on Nine Factors

(Texas Water Code Subsections 36.108(d)(1-9))

- Factor presentations Three GMA 8 Meetings (November 2019, February 2020, and May 2020)
- Focused discussion on factors during each meeting
- Factor presentation content to be reflective of explanatory report content
- Re-visit factor discussions as needed when various GAM runs, or DFC statements considered

GMA 8 Schedule to Discuss Nine Factors

November 2019							
Environmental Impacts	Subsidence Impacts	Hydrological Conditions					
February 2020							
Aquifer Uses or Conditions	Supply Needs & Management Strategies	Private Property Rights					
	May 2020						

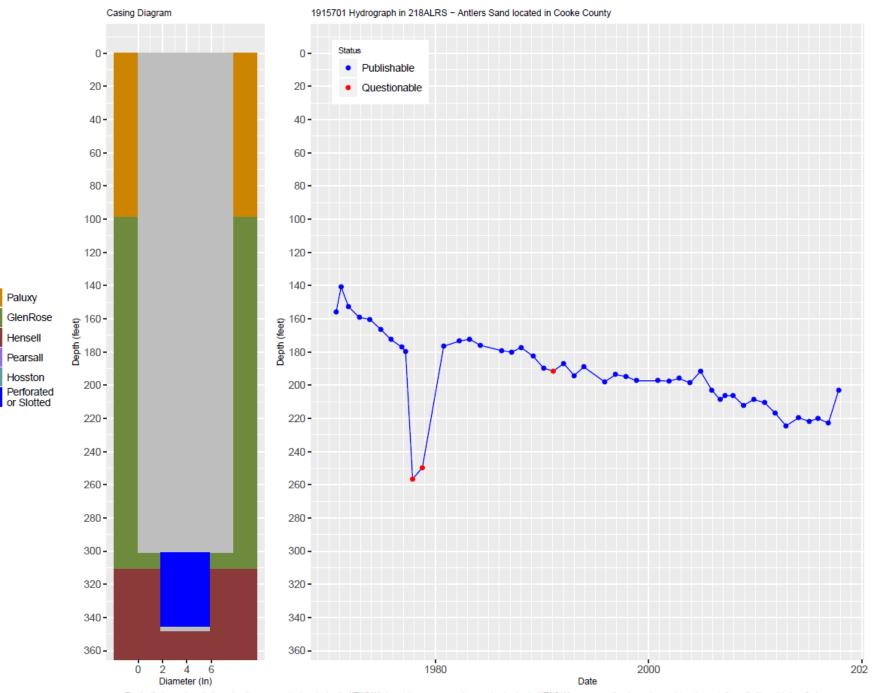
4

NSD

MAGs, Pumping, and DFCs

Three primary factors for consideration:

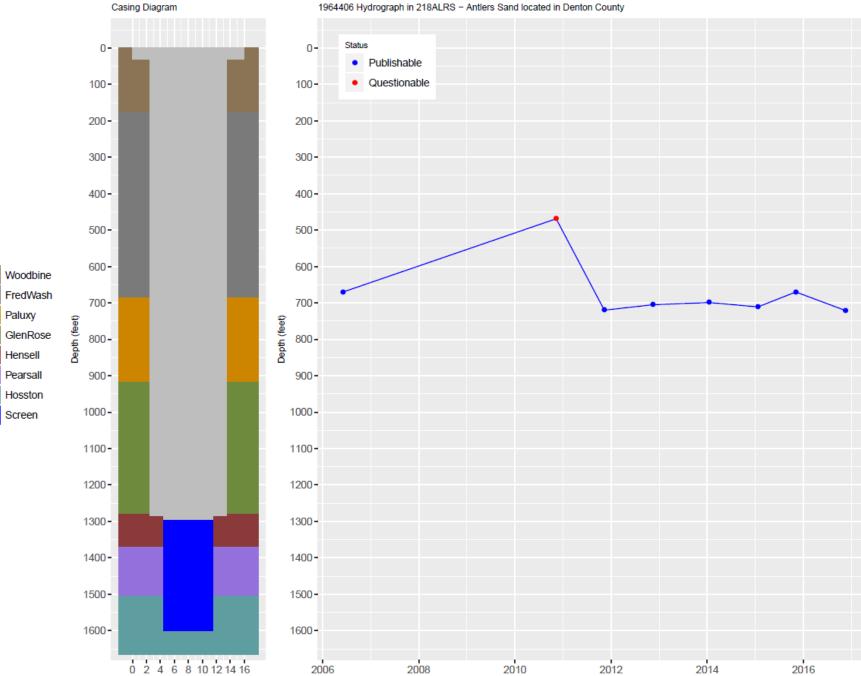
- 1. Hydrological Conditions
- 2. Subsidence
- 3. Environmental Impacts


5

Hydrological Conditions Summary: Water Level Data

- TWDB GWDB water level data
- Define relevant aquifer codes
- Count measurements and throw out null values.
 - Wells with less than 3 measurements; and
 - Wells that do not have a measurement since 2000
- Selection criteria reduced well locations with water levels from 8,461 to 627 wells used for mapping/hydrographs

6


ANTLERS AQUIFER HYDROGRAPH

The Aquifer layers shown in the casing diagram were developed using the NTWGAM. In certain cases, assumptions used to develop the NTWGAM can cause well casing and screen intervals to not align well with modeled aquifer layers.

7

ANTLERS AQUIFER HYDROGRAPH

1964406 Hydrograph in 218ALRS - Antlers Sand located in Denton County

The Aquifer layers shown in the casing diagram were developed using the NTWGAM. In certain cases, assumptions used to develop the NTWGAM can cause well casing and screen intervals to not align well with modeled aquifer layers.

Date

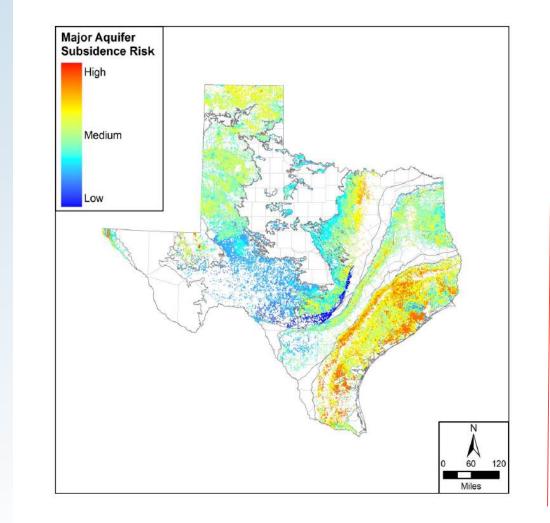
Diameter (In)

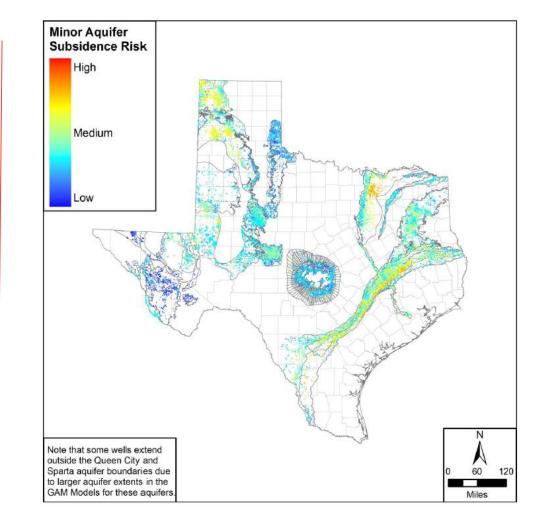
\\SD

TWDB Subsidence Tool- What Is It?

- Developed in 2017
- Helps GCDs identify risk subsidence due to groundwater pumping
- Capable in identifying risk subsidence in all major/minor aquifers in Texas

Subsidence

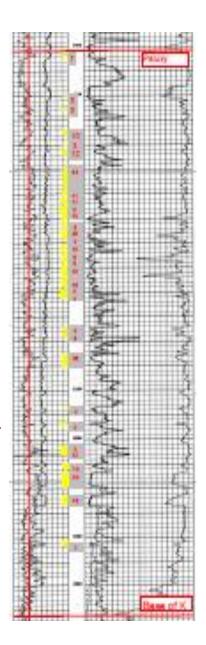

– How Is Subsidence Estimated?


- Saturated thickness and extent of clay
- Clay compressibility
- Aquifer lithology
- Pre-consolidation characterization
- Predicted DFC water level decline

Visualizing the Subsidence Risk

- 340,000 wells statewide
- "High Risk" include Yegua Jackson and Gulf Coast
- "Low Risk" include igneous and Edwards aquifers
- The only common characteristic shared by all "High Risk" aquifers is that they all have unconsolidated clastic aquifers

11



The Localized Evaluation Process

- 1. Identify the downdip area
- 2. Find 2-3 TWBD or GCD wells that meet available data criteria
- 3. Analyze logs to determine aquifer thickness and clay thickness
- 4. Calculate the risk using the tool

City of Celina 18-42-604 Clay thickness = 354 feet

Subsidence Calculations

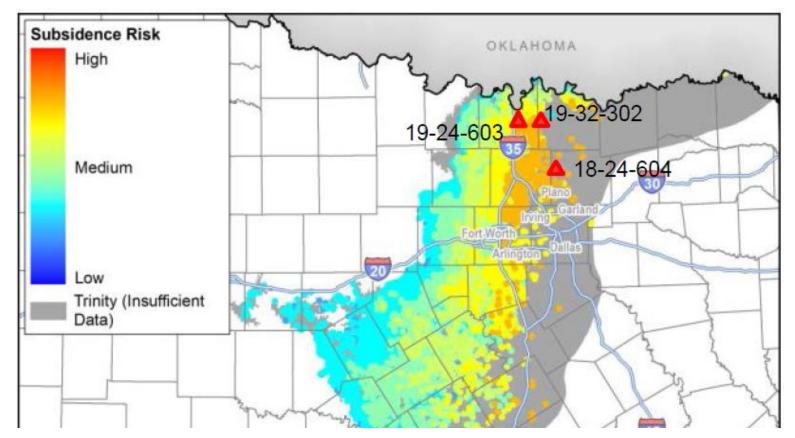
<u>Aquifer</u> <u>Report Generated by</u> <u>Report Date</u> <u>Well Name</u> <u>Water Levels to Use for Predictions</u>	<u>Trinity</u> A. Feigenbaum 9/5/2019 Celina 18-42-604 Base and Future	
<u>Location and Water Level Based</u> <u>User Input</u>	User Input Values	<u>Units</u>
Land Surface (feet MSL)	691	feet
Aquifer Top (feet MSL)	-720	feet
Aquifer Thickness	1,150	feet
Clay Thickness within Aquifer	354	feet
Groundwater Temperature	34	Degrees Celsius
Groundwater Total Dissolved Solids (TDS)	591	mg/l
Predevelopment Water Level (feet MSL)	401	feet
Current Water Level (feet MSL)	-10	feet
Unsaturated Thickness	701	feet
Preconsolidation (deepest) Water Level (feet MSL)	-17	feet
Base Water Level (feet MSL)	45	feet
Future Water Level (feet MSL)	-206	feet
Beginning Year for Subsidence Evaluation	2010	year
Ending Year for Subsidence Evaluation	2070	year

vsp

Subsidence Risk Results

Aquifer Subsidence Calculations based on overall aquifer information and user supplied input values

Water Level Trend ft/year; negative for decline -9.50 Predominant Aquifer Lithology Consolidated Clastic Description Dimensionless Aquifer Storage Coefficient 0.0001 25 Aquifer Porosity Percent Predominant Aquifer Clay Type Hard Clay Type 50 Aquifer Clay Porosity Percent psi⁻¹ Minimum Aquifer Compressibility 8.96E-05 psi⁻¹ Maximum Aquifer Compressibility 1.38E-04 psi⁻¹ Minimum Clay Compressibility 4.76E-04 psi⁻¹ Maximum Clay Compressibility 8.96E-04 Minimum Elastic Specific Storage (Sske) ft⁻¹ 2.37E-07 Maximum Elastic Specific Storage (S_{ske}) ft⁻¹ 4.22E-07 Minimum Inelastic Specific Storage (Serv) ft⁻¹ 2.37E-05 ft⁻¹ Maximum Inelastic Specific Storage (S_{sky}) 4.22E-05

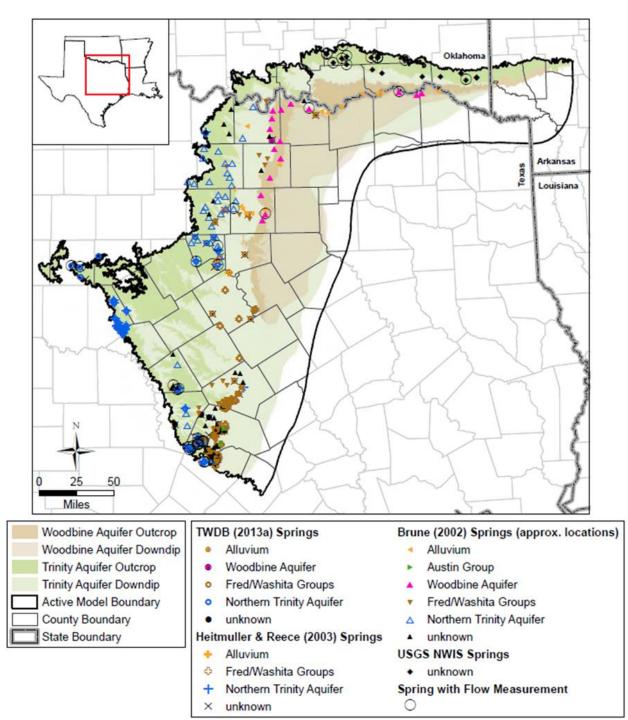

Total Weighted Risk for Well 0 (low risk) to 10 (high risk)

7.81

Units

Evaluation: North Texas GCD

Well Owner	State Well ID	Aquifer Thickness (feet)	Clay Thickness (feet)	Subsidence Risk Score		Maximum Subsidence (feet)
Kiowa SUD	19-32-302	1,250	547	7.03	0.56	1.02
City of Celina	18-24-604	1,150	354	7.81	0.53	0.94
Camp Sweeney	19-24-603	800	267	7.19	1.01	1.95

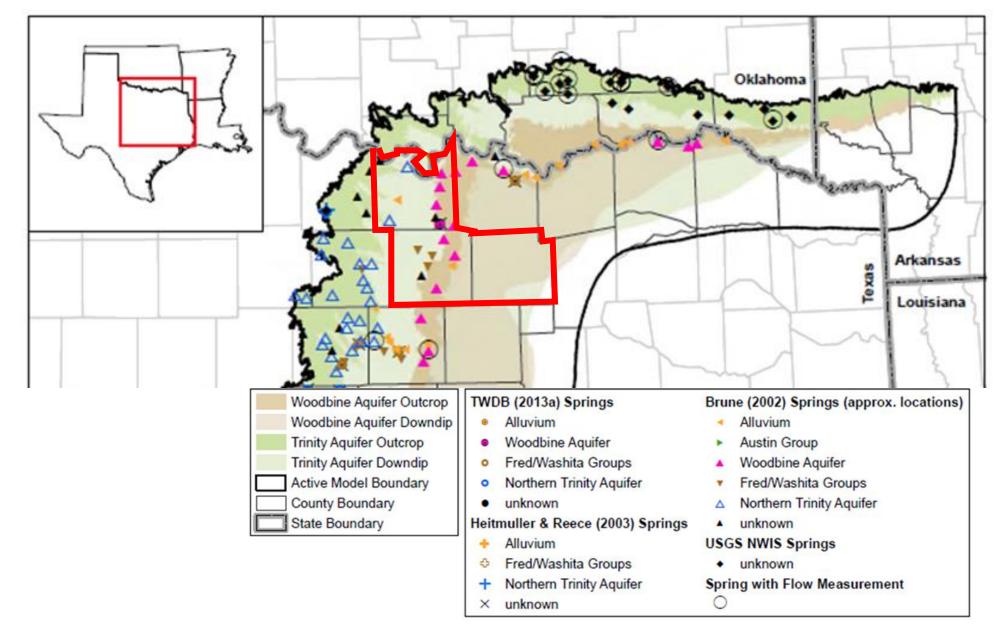

vsp

Evaluation: North Texas GCD Results

- Trinity Aquifer has a subsidence risk score of 4.5
- The 3 wells used in our study have risk scores from 7.03 to 7.81
 - These are downdip wells characteristic of worst case scenario
- Clay thicknesses range from 267-547 feet
- Aquifer thicknesses range from 800-1,250 feet

Conclusion: The calculated risk values are indicative of a moderate subsidence risk.

Environmental Impacts: Spring Locations



1150

Environmental Impacts: Spring Discharge and Streamflow

- Southern portion of GMA 8 has the greatest density of springs.
- Most are in the Washita/Fredericksburg, which includes Edwards BFZ.
- Many located in far western extent of GMA 8.
- Also found in the northern Trinity in Hood, Montague, Parker, and Wise counties.
- Springs flow when the water level elevation of the aquifer is higher than the spring elevation.
- Water level declines reduce spring flow.

Environmental Impacts: Spring Locations

Environmental Impacts Summary

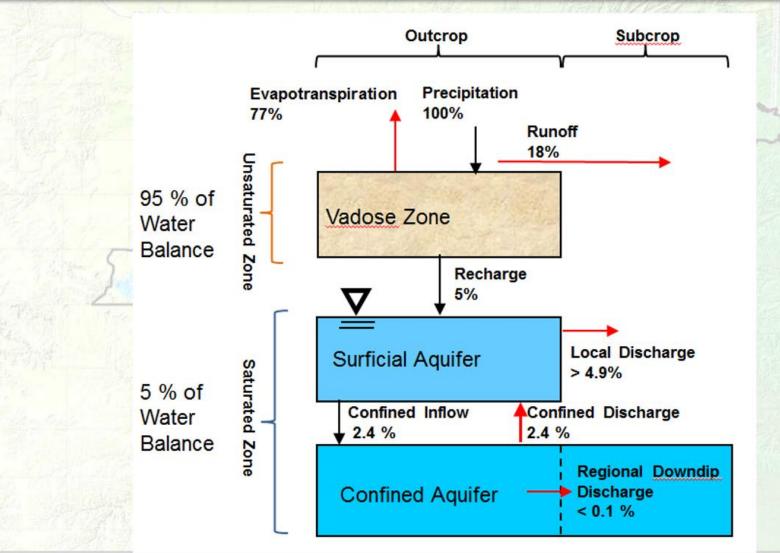
- Includes impacts to spring flow and to surface watergroundwater interaction.
- Water budgets from Run 10 in existing ER indicate reduced spring flows and baseflows where DFCs include drawdowns in aquifer outcrop areas.
- Examples of water budgets include:
 - Denton Woodbine because the water budget has ephemeral flows, perennial flows, and springs; and
 - Cooke Woodbine because the water budget has ephemeral flows.

Environmental Impacts: ER Run 10 Water Budget Examples

NTGCD Run 10 - Cooke County - Woodbine Aquifer								
Component	2010	2020	2030	2040	2050	2060	2070	
Lateral Flow	-1,193	-1,154	-1,124	-1,101	-1,082	-1,055	-1,047	
Leakage (Above)	0	0	0	0	0	0	0	
Leakage (Below)	-1,042	-1,022	-1,038	-1,053	-1,063	-1,069	-1,078	
Recharge	12,596	12,596	12,596	12,596	12,596	8,521	12,596	
Perennial	0	0	0	0	0	0	0	
Ephemeral	-10,536	-10,196	-9,941	-9,741	-9,583	-8,932	-9,167	
Evapotransipration	0	0	0	0	0	0	0	
Springs	-8	-7	-7	-7	-6	-5	-6	
Reservoir	-1,210	-1,169	-1,136	-1,109	-1,087	-1,060	-1,045	
Wells	-800	-800	-800	-800	-800	-800	-800	
Flowing	0	0	0	0	0	0	0	
Storage	2,198	1,757	1,456	1,219	1,031	4,406	552	
Total	6	6	5	5	5	5	5	

NTGCD Run 10 - Denton County - Woodbine Aquifer								
Component	2010	2020	2030	2040	2050	2060	2070	
Lateral Flow	-1,809	-2,102	-2,331	-2,486	-2,595	-2,645	-2,727	
Leakage (Above)	26	77	125	164	195	223	243	
Leakage (Below)	-3,005	-3,008	-3,089	-3,147	-3,187	-3,187	-3,214	
Recharge	18,915	18,915	18,915	18,915	18,915	10,699	18,915	
Perennial	-210	-202	-199	-197	-196	-174	-191	
Ephemeral	-11,924	-11,180	-10,649	-10,226	-9,878	-8,927	-9,084	
Evapotransipration	0	0	0	0	0	0	0	
Springs	-37	-36	-34	-33	-32	-30	-30	
Reservoir	-1,952	-1,939	-1,927	-1,916	-1,904	-1,874	-1,864	
Wells	-3,609	-3,609	-3,609	-3,609	-3,609	-3,609	-3,609	
Flowing	0	0	0	0	0	0	0	
Storage	3,607	3,086	2,801	2,536	2,292	9,524	1,562	
Total	0	0	0	0	0	0	0	

Thank you!


wsp.com

vsp

Conceptual Total Water Balance

BUREAU OF SINTERA

Subsidence: Using the Tool

- Tool requires a geophysical log, adequate water level data, water quality data, and the DFC
- The log is used to determine aquifer top, bottom, thickness, and clay thickness in the *aquifer*, not in the portion of the aquifer, and not from surface to TD
- Ideally, a predevelopment water level, a 2010 water level, and a current water level is available
- Current GCD or TWDB observation wells are the best candidates.

WSP Team Approach to Preparing the Explanatory Report (Texas Water Code Section 36.108(d-3))

♦ Use GMA 8 second round of DFC joint planning ER as starting point

Update ER discussion and appendices as needed

WSP Team presents and reviews 1st ER draft – August 2020

♦GMA 8 considers ER approval – November 2020

Key Factors Impacting Subsidence

- 1. Clay layer distribution, thickness, & compressibility
- 2. Amount and timing of water level changes
- 3. Lowest historical water level