
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 164 | P a g e

IMPLEMENTATION OF LOSSLESS DATA

COMPRESSION AND DECOMPRESSION TECHNIQUE

USING VERILOG
B. Anil kumar1, G. Niharika 2, R. Yamini Krishna 3, M. Sravan 4

1 Assistant Professor, Dept of ECE, Malla Reddy Institute Of Engineering And Technology, Hyd., TS, India.
2B.Tech Student, Dept of ECE, Malla Reddy Institute Of Engineering And Technology, Hyd., TS, India
 3B.Tech Student, Dept of ECE, Malla Reddy Institute Of Engineering And Technology, Hyd., TS, India
4B.Tech Student, Dept of ECE, Malla Reddy Institute Of Engineering And Technology, Hyd., TS, India

Abstract-Data compression is the reduction or elimination of
redundancy in data representation in order to achieve savings

in storage and communication costs. Data compression

techniques can be broadly classified into two categories:

Lossless, Lossy schemes. Here in our project we use Xilinx

tool. Xilinx ISE (Integrated Synthesis Environment) is a

software tool used for synthesis and analysis of HDL designs,

enabling the developer to synthesize their designs, perform

timing analysis, examine RTL diagrams, simulate a design's

reaction to different stimuli. In this project our proposal is that

implementing the Lossless data compression technique using

a new kind of compression coding i.e., ARITHMETIC coding.

Arithmetic coding yields better compression because it
encodes a message as a whole new symbol instead of

separable symbols. By combining an adaptive binary

arithmetic coding technique with context modeling, a high

degree of adaptation and redundancy reduction is achieved.

The most important advantage of this Arithmetic coding are :

1)Key lengths are flexible 2)Compressing the data by certain

code word 3)Interval used by encoder is [0,1]. After data

compression the output is a code word, which is a lowest limit

value in entire range.

Keywords—Data Encoding ; Data Decoding ;Xilinx; Verilog.

I. INTRODUCTION

Data compression is a method of encoding rules that allows

reduction in the total number of bits to store or transmit a file.

Currently, two basic of classes of data compression are
applied in different areas one of these is lossy data

compression, which is used to compress image data files for

communication. The other one is lossless data compression

that is used to transmit or archive text or binary files to keep

their information intact at any time. Data compression

techniques are mainly used to decrease memory size

requirement for the image. In lossless, the original data is

exactly reconstructed after the decompression whereas, lossy
may lose some information from the image data.

II. LITERATURE SURVEY

Comparison between Lossy & Lossless Data compression

2.1.Lossy Compression

Lossy compression method provides superior compression

ratio than lossless compression. The compression ratio is high

in this method. The decompressed data is not accurately same

to the original data, but close to it. Different types of lossy
compression techniques are used, it is characterized by the

quality of the reconstructed data and its adequacy for

application.

2.2.Lossless Compression

In Lossless compression scheme the reconstructed data, after

compression, is numerically identical to the original image.

Most lossless compression programs do two things in

sequence: the first step generates a statistical model for the

input, and the second step is to map input data to bit

sequences.

III. BLOCK DIAGRAM

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 165 | P a g e

Fig.3.1: Encoding Architecture

A. ENCODING ARCHITECTURE:

 Encoding architecture is shown in figure 3.1, where

initially symbol low , symbol high, code_old_low,

code_old_high and code_old _range are given as inputs to

form code_old_new and code_high_new, these are connected

to the registers where the data is temperarly stored untill the

clk=1, these process is repeated for 10 times to complete

the whole data. After receiving the first data the outputs
of registers are given as inputs to multiplexer i.e.

code_low_new_buffer and code_high_new_buffer and given

as inputs to the substracter, where the code_low is

substracted from code_high and gives a code_range. This

process is repeated for 10 symbols of data.

B. DECODING ARCHITECTURE-Decoding

architecture is shown in figure 3.2. In this

multiplication, substraction, inv_range_sym, state

machine (S0 to S10) are done.

IV. DESCRIPTION

Text message of 10 symbols [including space character (-)]
(i) SWISS MISS = 10 symbols

Symbol

No.Of

Times

Frequently

Used

Symbol

Probability

Code

S 5 5/10 = 0.5 [0.5 , 1.0]

W 1 1/10 = 0.1 [0.4 , 0.5]

I 2 2/10 = 0.2 [0.2 , 0.4]

M 1 1/10 = 0.1 [0.1 , 0.2]

- 1 1/10 = 0.1 [0.0 , 0.1]

Table.1:

The overall interval for the above example is – [0.0, 1.0].

Ranges for particular symbol formed showed in below
P(-)

=0.1

P(M)=0.1

P(I)=0.2

P(W)=0.1

P(S)=0.5

0 0.1 0.2 0.4 0.5 1.0

Table.2:

 Arithmetic coding encodes the entire message into a single

number that is a fraction n where (0.0 < n< 1.0). The system
utilizes an arithmetic coder in which the overall length

within the range [0,1] allocated to each symbol.

A. 4.1Encoding process:

 Based on the equations encoding is done. For starting

symbol low value will be initial value i.e. ‘0’ , and range

will be [1.0 - 0 = 1.0]. Therefore range is ‘1’.

EQUATIONS:

NEW HIGH =

OLD LOW + RANGE * HIGH RANGE(X) ------ [1.1]

NEW LOW =

OLD LOW + RANGE * LOW RANGE(X) ----- [1.2]

B. 4.2 (B) Decoding Process:

 Decoder gets only low value of the encoder 10th position
value i.e. last symbol of ‘S’. Therefore low new value will be

= “ 0.71753375 ”.

Equation:

LOW RANGE (X) =

(NEWLOW-OLDLOW)*INVERSE RANGE …..[1.3]

When the ‘0’ is obtained at the final symbol then the

decoding process is completed. And the given text message

is correct when the ‘0’ is not obtained at the last symbol

of decoding process then the given text message will be a

wrong message.

4.3 Compression Technique:

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 166 | P a g e

 Arithmetic coding:

 Arithmetic coding completely bypasses the idea of

replacing an input symbol with a specific code. Instead, it

takes a stream of input symbols and replaces it with a

single floating point output number. The longer (and more

complex) the message, the more bits are needed in the

output number It was not until recently that practical

methods were found to implement this on computers with

fixed sized registers. The output from an arithmetic coding
process is a single number less than 1 and greater than or

equal to 0. This single number can be uniquely decoded to

create the exact stream of symbols that went into its

construction. In order to construct the output number, the

symbols being encoded have to have a set probabilities

assigned to them. For example, if I was going to

encode the random message "SWISS MISS", It would have

a probability distribution that looks like this:

Character Probability

---------------- -----------------

 SPACE 1/10

 I 2/10
 M 1/10

 S 5/10

 W 1/10

Once the character probabilities are known, the individual

symbols need to be assigned to a range along the "probability

line", which is nominally 0 to 1.

 It doesn't matter which characters are assigned which

segment of the range, as long as it is done in the same

manner by both the encoder and the decoder. The nine

character symbol set use here would look like this:

Character Probability Range
 ------------------ ------------------ ------------

 S 0.5 0.5 - 1.0

 W 0.1 0.4 - 0.5

 I 0.2 0.2 - 0.4

 M 0.1 0.1 - 0.2

 SPACE 0.1 0.0 - 0.1

 Each character is assigned the portion of the 0-1 range that

corresponds to its probability of appearance. Note also that the

character "owns" everything up to, but not including the

higher number. The most significant portion of an

arithmetic coded message belongs to the first symbol to be

encoded. When encoding the message "SWISS MISS", the
first symbol is "S". In order for the first character to be

decoded properly, the final coded message has to be a

number greater than or equal to 0.5 and less than 1.0. What

we do to encode this number is keep track of the range

that this number could fall in. So after the first character is

encoded, the low end for this range is 0.5 and the high end of

the range is 1.0.

After the first character is encoded, we know that our

range for our output number is now bounded by the low

number and the high number. What happens during the

rest of the encoding process is that each new symbol to

be encoded will further restrict the possible range of the

output number. The next character to be encoded, 'W',

owns the range 0.40 through 0.50. If it was the first

number in our message, we would set our low and high

range values directly to those values. But 'W' is the second

character. So what we do instead is say that 'W' owns the

range that corresponds to 0.40-0.50 in the new sub range of
0.5 – 1.0. This means that the new encoded number will

have to fall some where in the 50th to 60th percentile of

the currently established range. Applying this logic will

further restrict our number to the range 0.7 to 0.75.

The algorithm to accomplish this for a message of any length

is shown below :

Set low to 0.0

Set high to 1.0

While there are still input symbols do

 get an input symbol

 code_range = high - low.

 high = low + range*high_range(symbol)
 low = low + range*low_range(symbol)

End of While

Output low

Following this process through to its natural conclusion with

our chosen message looks like this: TABLE.3:
New Character Low value High Value

 0.0 1.0

S 0.5 1.0

W 0.7 0.75

I 0.71 0.72

S 0.715 0.72

S 0.7175 0.72

SPACE 0.7175 0.71775

 M 0.717525 0.71755

 I 0.717530 0.717535

 S 0.7175325 0.717535

 S 0.71753375 0.717535

 So the final low value, 0.71753375 will uniquely encode the

message "SWISS MISS" using our present encoding scheme.

Given this encoding scheme, it is relatively easy to see how

the decoding process will operate. We find the first

symbol in the message by seeing which symbol owns the

code space that our encode message falls in. Since the

number 0.71753375 falls between 0.5 and 1.0, we know

that the first character must be "S". We then need to
remove the "S" from the encoded number. Since we know

the low and high ranges of S, we can remove their effects by

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 167 | P a g e

reversing the process that put them in. First, we subtract the

low value of S from the number, giving 0.4350675. Then

we divide by the range of S, which is 0.5. This gives a

value of 0.4350675. We can then calculate where that lands,

which is in the range of the next letter, "I".

The algorithm for decoding the incoming number looks like

this:

get encoded number Do

 find symbol whose range straddles the encoded number
 output the symbol

 range = symbol low value - symbol high value

 subtract symbol low value from encoded number

 multiplication encoded number by range

until no more symbols

 Note that I have conveniently ignored the problem of how

to decide when there are no more symbols left to decode.

This can be handled by either encoding a special EOF

symbol, or carrying the stream length along with the encoded

message.

The decoding algorithm for the "SWISS MISS" message will

proceed something like this:TABLE.4:
Encoded Number Output Symbol Low High Range

 0.4350675 S 0.5 1.0 0.5

 0.350675 W 0.4 0.5 0.1

 0.753375 I 0.2 0.4 0.2

 0.50675 S 0.5 1.0 0.5

 0.0135 S 0.5 1.0 0.5

 0.135 SPACE 0.0 0.1 0.1

 0.35 M 0.1 0.2 0.1

 0.75 I 0.2 0.4 0.2

 0.5 S 0.5 1.0 0.5

 0.0 S 0.5 1.0 0.5

 0.0

V. RESULT

So new interval [0.71753375 , 0.717535]

Conversion of encoding codeword in to bits(80 bits): The

codeword received is converted in to bits as follows:

CODE WORD = 0.71753375 = 80 BITS

0=INTEGER, 71753375 = FRACTIONAL PART

CODE WORD=0.71753375 MULTIPLYING WITH

2(Binary value)

Considering the integer values as 80 bits of data =

10110111 10110000 01001010 10110110 00000110

10110111 10101010 00100101 11011000 10110110.

Ac_n_bit_ver: Arithmetic Coding

Ad_n_bit_ver:Arithmetic decoding

VI. CONCLUSION AND FUTURE SCOPE

In this paper compression of data is done for 80 bits without

losing the input data accurate during the compression, in

future the compression of data can be increased and new

techniques of implementation can be possible so that more

accurate and fast compression can be done.

REFERENCES
[1]. Ben-Gal (2008). "On the Use of Data Compression

Measures to Analyze Robust Designs" (PDF). 54 (3). IEEE
Transactions on Reliability: 381–388.

[2]. IEEE Transactions on Reliability: 381–388.
[3]. McIntyre, D. R., and Pechura, M. A. 1985. Data

Compression Using Static Huffman Code-Decode Tables.

Commun. ACM 28, 6 (June), 612-616.
[4]. Reghbati, H. K. 1981. An Overview of Data Compression

Techniques. Computer 14, 4 (Apr.), 71-75.
[5]. Storer, J. A., and Szymanski, T. G. 1982. Data

Compression via Textual Substitution. J. ACM 29, 4 (Oct.),
928-951.

[6]. Tanaka, H. 1987. Data Structure of Huffman Codes and Its
Application to Efficient Encoding and Decoding. IEEE
Trans. Inform. Theory 33, 1 (Jan.), 154-156.

[7]. Welch, T. A. 1984. A Technique for High-Performance
Data Compression. Computer 17, 6 (June), 8-19.

[8]. Witten, I. H., Neal, R. M., and Cleary, J. G. 1987.
Arithmetic Coding for Data Compression. Commun. ACM
30, 6 (June), 520-540.

http://www.eng.tau.ac.il/~bengal/Journal%20Paper.pdf
http://www.eng.tau.ac.il/~bengal/Journal%20Paper.pdf
http://www.eng.tau.ac.il/~bengal/Journal%20Paper.pdf
http://www.eng.tau.ac.il/~bengal/Journal%20Paper.pdf

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 168 | P a g e

[9]. Cappellini, V., Ed. 1985. Data Compression and Error
Control Techniques with Applications. Academic Press,

London.
[10]. Faller, N. 1973. An Adaptive System for Data

Compression. Record of the 7th Asilomar Conf. on
Circuits,Systems and Computers (Pacific Grove, Ca.,
Nov.), 593-597.

[11]. Cormack, G. V. 1985. Data Compression on a Database
System. Commun. ACM 28, 12 (Dec.), 1336-1342.

