## Calculus 3 - Greens Theorem

Last class we ended with the problem of trying to evaluate

$$
\begin{equation*}
\oint_{C} 2 y d x+x d y \tag{1}
\end{equation*}
$$

where $C$ is along circle $x^{2}+y^{2}=4$ in the CCW direction. We said the vector field is not conservative since

$$
\begin{equation*}
P=2 y, \quad Q=x \text { and } \quad Q_{x}=1 \neq P_{y}=2 \tag{2}
\end{equation*}
$$

However, there is a nice theorem which relates the line integral over a vector field for closed curve to the region of the closed curve itself.

## Green's Theorem

Let $R$ be be simply connected region with a piecewise smooth boundary $C$, oriented counterclockwise. Let $P$ and $Q$ have continuous first partial derivatives in an open region containing $R$, then

$$
\begin{equation*}
\int_{C} P d x+Q d y=\iint_{R}\left(Q_{x}-P_{y}\right) d A \tag{3}
\end{equation*}
$$

Example 1. Evaluate

$$
\begin{equation*}
\oint_{C} 2 y d x+x d y \tag{4}
\end{equation*}
$$

where $C$ is along circle $x^{2}+y^{2}=4$ in the CCW direction.

Soln.
Since we saw that

$$
\begin{equation*}
Q_{x}=1, \quad P_{y}=2 \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\oint_{C} 2 y d x+x d y=\iint_{R}(1-2) d A=-\iint_{R} d A \tag{6}
\end{equation*}
$$

Since the integrand is equal to 1 , then the double integral is just the area

of the region which is $4 \pi$ so

$$
\begin{equation*}
\oint_{C} 2 y d x+x d y=-4 \pi \tag{7}
\end{equation*}
$$

Example 2. Verify Green's theorem for

$$
\begin{equation*}
\oint_{C} x^{4} d x+x y d y \tag{8}
\end{equation*}
$$

where $R$ is the region bound by $y=0, x=0$, and $y=1-x$.


Soln.
We first do the line integral part. Here there are three curves so we do each one separately.
$C_{1}: \quad y=0:$
Since $y=0$, then $d y=0$ and our line integral becomes

$$
\begin{equation*}
\int_{0}^{1} x^{4} d x=\left.\frac{1}{5} x^{5}\right|_{0} ^{1}=\frac{1}{5} \tag{9}
\end{equation*}
$$

$C_{2}: y=1-x:$
Since $y=1-x$, then $d y=-d x$ and our line integral becomes

$$
\begin{equation*}
\int_{1}^{0} x^{4} d x-x(1-x) d x=\left.\left(\frac{1}{5} x^{5}-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}\right)\right|_{1} ^{0}=-\frac{1}{30} . \tag{10}
\end{equation*}
$$

$C_{3}: x=0:$ Along $x=0$, then $d x=0$ so the line integral is zero. Thus,

$$
\begin{equation*}
\oint_{C} x^{4} d x+x y d y=\frac{1}{5}-\frac{1}{30}=\frac{1}{6} . \tag{11}
\end{equation*}
$$

For the second part, we identify that $P=x^{4}$ and $Q=x y$ so

$$
\begin{equation*}
Q_{x}-P_{y}=y \tag{12}
\end{equation*}
$$

so

$$
\begin{align*}
\int_{0}^{1} \int_{0}^{1-x} y d y d x & =\left.\int_{0}^{1} \frac{1}{2} y^{2}\right|_{0} ^{1-x} d x=\int_{0}^{1} \frac{1}{2}(1-x)^{2} d x  \tag{13}\\
& =-\left.\frac{1}{6}(1-x)^{3}\right|_{0} ^{1}=\frac{1}{6}
\end{align*}
$$

the same.

Example 3. Verify Green's theorem for

$$
\begin{equation*}
\oint_{C} y^{3} d x-x^{3} d y \tag{14}
\end{equation*}
$$

where $R$ is the region bound by the circle $x^{2}+y^{2}=1$


Soln.
We first do the line integral part. Here we parameterize the circle with

$$
\begin{equation*}
x=\cos t, \quad y=\sin t \tag{15}
\end{equation*}
$$

so

$$
\begin{equation*}
d x=-\sin t d t, \quad d y=\cos t d t \tag{16}
\end{equation*}
$$

and the line integral becomes

$$
\begin{align*}
\oint_{C} y^{3} d x-x^{3} d y & =\int_{0}^{2 \pi} \sin ^{3} t \cdot(-\sin t d t)-\cos ^{3} t \cdot \cos t d t \\
& =-\int_{0}^{2 \pi} \frac{3+\cos 4 t}{4} d t=-\left.\left(\frac{3}{4} t+\frac{1}{16} \sin 4 t\right)\right|_{0} ^{2 \pi}=-\frac{3}{2} \pi \tag{17}
\end{align*}
$$

For the second part, we identify that $P=y^{3}$ and $Q=-x^{3}$ so

$$
\begin{equation*}
Q_{x}-P_{y}=-3 x^{2}-3 y^{2} \tag{18}
\end{equation*}
$$

so

$$
\begin{equation*}
-3 \iint_{R}\left(x^{2}+y^{2}\right) d A \tag{19}
\end{equation*}
$$

Since the region is a circle, we switch to polar so

$$
\begin{align*}
-3 \iint_{R}\left(x^{2}+y^{2}\right) d A & =-3 \int_{0}^{2 \pi} \int_{0}^{1} r^{2} \cdot r d r d \theta \\
& =-\left.3 \int_{0}^{2 \pi} \frac{1}{4} r^{4}\right|_{0} ^{1} d \theta  \tag{20}\\
& =-\frac{3}{4} \int_{0}^{2 \pi} d \theta=-\left.\frac{3}{4} \theta\right|_{0} ^{2 \pi}=-\frac{3}{2} \pi
\end{align*}
$$

the same.

## Area of Plane Regions

We can also use Green's theorem to find the area of a region in the $x y$ plane.
Suppose that

$$
\begin{equation*}
Q_{x}-P_{y}=1 \tag{21}
\end{equation*}
$$

Then Green's theorem says

$$
\begin{equation*}
\int_{C} P d x+Q d y=\iint_{R}\left(Q_{x}-P_{y}\right) d A=\iint_{R} 1 d A=A \tag{22}
\end{equation*}
$$

So as long as we choose $P$ and $Q$ so that it satisfies (21) then the line integral
will give the area of the region. Here are some possibilities

$$
\begin{equation*}
\int_{C} x d y, \quad \int_{C}-y d x, \quad \int_{C}-\frac{1}{2} y d x+\frac{1}{2} x d y \tag{23}
\end{equation*}
$$

Example 4. Use Green's theorem to find the area of the ellipse

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{24}
\end{equation*}
$$

Soln.


Here we use

$$
\begin{equation*}
\int_{C}-\frac{1}{2} y d x+\frac{1}{2} x d y \tag{25}
\end{equation*}
$$

We parameterize the ellipse by

$$
\begin{equation*}
x=a \cos t, \quad y=b \sin t \tag{26}
\end{equation*}
$$

so

$$
\begin{equation*}
d x=-a \sin t d t, \quad d y=b \cos t d t \tag{27}
\end{equation*}
$$

So (28) becomes

$$
\begin{align*}
\int_{0}^{2 \pi} & -\frac{1}{2}(b \sin t)(-a \sin t d t)+\frac{1}{2}(a \cos t)(b \cos t d t) \\
& =\frac{a b}{2} \int_{0}^{2 \pi}\left(\sin ^{2} t+\cos ^{2} t\right) d t  \tag{28}\\
& =\frac{a b}{2} \int_{0}^{2 \pi} d t=\pi a b
\end{align*}
$$

It $a=b=r$ then we get the area of a circle $\pi r^{2}$.

