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Abstract

Typical blur from camera shake often deviates from the standard uniform convo-
lutional assumption, in part because of problematic rotations which create greater
blurring away from some unknown center point. Consequently, successful blind
deconvolution for removing shake artifacts requires the estimation of a spatially-
varying or non-uniform blur operator. Using ideas from Bayesian inference and
convex analysis, this paper derives a simple non-uniform blind deblurring algo-
rithm with a spatially-adaptive image penalty. Through an implicit normalization
process, this penalty automatically adjust its shape based on the estimated degree
of local blur and image structure such that regions with large blur or few promi-
nent edges are discounted. Remaining regions with modest blur and revealing
edges therefore dominate on average without explicitly incorporating structure-
selection heuristics. The algorithm can be implemented using an optimization
strategy that is virtually tuning-parameter free and simpler than existing methods,
and likely can be applied in other settings such as dictionary learning. Detailed
theoretical analysis and empirical comparisons on real images serve as validation.

1 Introduction

Image blur is an undesirable degradation that often accompanies the image formation process and
may arise, for example, because of camera shake during acquisition. Blind image deblurring strate-
gies aim to recover a sharp image from only a blurry, compromised observation. Extensive efforts
have been devoted to the uniform blur (shift-invariant) case, which can be described with the con-
volutional model y = k ∗ x + n, where x is the unknown sharp image, y is the observed blurry
image, k is the unknown blur kernel (or point spread function), and n is a zero-mean Gaussian noise
term [6, 21, 17, 5, 28, 14, 1, 27, 29]. Unfortunately, many real-world photographs contain blur ef-
fects that vary across the image plane, such as when unknown rotations are introduced by camera
shake [17].

More recently, algorithms have been generalized to explicitly handle some degree of non-uniform
blur using the more general observation model y = Hx+n, where each column of the blur operator
H contains the spatially-varying effective blur kernel at the corresponding pixel site [25, 7, 8, 9,
11, 4, 22, 12]. Note that the original uniform blur model can be achieved equivalently when H is
forced to adopt certain structure (e.g., block-toeplitz structure with toeplitz-blocks). In general, non-
uniform blur may arise under several different contexts. This paper will focus on the blind removal
of non-uniform blur caused by general camera shake (as opposed to blur from object motion) using
only a single image, with no additional hardware assistance.

While existing algorithms for addressing non-uniform camera shake have displayed a measure of
success, several important limitations remain. First, some methods require either additional spe-
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cialized hardware such as high-speed video capture [23] or inertial measurement sensors [13] for
estimating motion, or else multiple images of the same scene [4]. Secondly, even the algorithms that
operate given only data from a single image typically rely on carefully engineered initializations,
heuristics, and trade-off parameters for selecting salient image structure or edges, in part to avoid
undesirable degenerate, no-blur solutions [7, 8, 9, 11]. Consequently, enhancements and rigorous
analysis may be problematic. To address these shortcomings, we present an alternative blind deblur-
ring algorithm built upon a simple, closed-form cost function that automatically discounts regions of
the image that contain little information about the blur operator without introducing any additional
salient structure selection steps. This transparency leads to a nearly tuning-parameter free algorithm
based upon a sparsity penalty whose shape adapts to the estimated degree of local blur, and provides
theoretical arguments regarding how to robustly handle non-uniform degradations.

The rest of the paper is structured as follows. Section 2 briefly describes relevant existing work on
non-uniform blind deblurring operators and implementation techniques. Section 3 then introduces
the proposed non-uniform blind deblurring model, while further theoretical justification and analyses
are provided in Section 4. Experimental comparisons with state-of-the-art methods are carried out
in Section 5 followed by conclusions in Section 6.

2 Non-Uniform Deblurring Operators

Perhaps the most direct way of handling non-uniform blur is to simply partition the image into differ-
ent regions and then learn a separate, uniform blur kernel for each region, possibly with an additional
weighting function for smoothing the boundaries between two adjacent kernels. The resulting al-
gorithm has been adopted extensively [18, 8, 22, 12] and admits an efficient implementation called
efficient filter flow (EFF) [10]. The downside with this type of model is that geometric relationships
between the blur kernels of different regions derived from the the physical motion path of the camera
are ignored.

In contrast, to explicitly account for camera motion, the projective motion path (PMP) model [23]
treats a blurry image as the weighted summation of projectively transformed sharp images, leading
to the revised observation model

y =
∑

j

wjPjx + n, (1)

where Pj is the j-th projection or homography operator (a combination of rotations and translations)
andwj is the corresponding combination weight representing the proportion of time spent at that par-
ticular camera pose during exposure. The uniform convolutional model can be obtained by restrict-
ing the general projection operators {Pj} to be translations. In this regard, (1) represents a more
general model that has been used in many recent non-uniform deblurring efforts [23, 25, 7, 11, 4].
PMP also retains the bilinear property of uniform convolution, meaning that

y = Hx + n = Dw + n, (2)

where H =
∑

j wjPj and D = [P1x,P2x, · · · ,Pjx, · · · ] is a matrix of transformed sharp images.

The disadvantage of PMP is that it typically leads to inefficient algorithms because the evaluation
of the matrix-vector product Hx = Dw requires generating many expensive intermediate trans-
formed images. However, EFF can be combined with the PMP model by introducing a set of basis
images efficiently generated by transforming a grid of delta peak images [9]. The computational
cost can be further reduced by using an active set for pruning out the projection operators with small
responses [11].

3 A New Non-Uniform Blind Deblurring Model

Following previous work [6, 16], we will work in the derivative domain of images for ease of mod-
eling and better performance, meaning that x ∈ R

m and y ∈ R
n will denote the lexicographically

ordered sharp and blurry image derivatives respectively. 1

1The derivative filters used in this work are {[−1, 1], [−1, 1]T }. Other choices are also possible.
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The observation model (1) is equivalent to the likelihood function

p(y|x,w) ∝ exp
[
− 1

2λ
‖y − Hx‖2

2

]
, (3)

where λ denotes the noise variance. Maximum likelihood estimation of x and w using (3) is clearly
ill-posed and so further regularization is required to constrain the solution space. For this purpose
we adopt the Gaussian prior p(x) ∼ N (x;0,Γ), where Γ � diag[γ] with γ = [γ1, . . . , γm]T a
vector ofm hyperparameter variances, one for each element of x = [x 1, . . . , xm]T . While presently
γ is unknown, if we first marginalize over the unknown x, we can estimate it jointly along with the
blur parameters w and the unknown noise variance λ. This type II maximum likelihood procedure
has been advocated in the context of sparse estimation, where the goal is to learn vectors with mostly
zero-valued coefficients [24, 26]. The final sharp image can then be recovered using the estimated
kernel and noise level along with standard non-blind deblurring algorithms (e.g., [15]).

Mathematically, the proposed estimation scheme requires that we solve

max
γ,w,λ≥0

∫
p(y|x,w)p(x)dx ≡ min

γ,w,λ≥0
yT

(
HΓHT + λI

)−1
y + log

∣∣HΓHT + λI
∣∣ , (4)

where a − log transformation has been included for convenience. Clearly (4) does not resemble the
traditional blind non-uniform deblurring script, where estimation proceeds using the more transpar-
ent penalized regression model [4, 7, 9]

min
x;w≥0

‖y − Hx‖2
2 + α

∑
i

g(xi) + β
∑

j

h(wj) (5)

and α and β are user-defined trade-off parameters, g is an image penalty which typically favors
sparsity, and h is usually assumed to be quadratic. Despite the differing appearances however,
(4) has some advantageous properties with respect to deconvolution problems. In particular, it is
devoid of tuning parameters and it possesses more favorable minimization conditions. For example,
consider the simplified non-uniform deblurring situation where the true x has a single non-zero
element and H is defined such that each column indexed by i is independently parameterized with
finite support symmetric around pixel i. Moreover, assume this support matches the true support of
the unknown blur operator. Then we have the following:

Lemma 1 Given the idealized non-uniform deblurring problem described above, the cost function
(4) will be characterized by a unique minimizing solution that correctly locates the nonzero element
in x and the corresponding true blur kernel at this location. No possible problem in the form of
(5), with g(x) = |x|p, h(w) = wq , and {p, q} arbitrary non-negative scalars, can achieve a similar
result (there will always exist either multiple different minimizing solutions or an global minima that
does not produce the correct solution).

This result, which can be generalized with additional effort, can be shown by expanding on some
of the derivations in [26]. Although obviously the conditions upon which Lemma 1 is based are
extremely idealized, it is nonetheless emblematic of the potential of the underlying cost function to
avoid local minima, etc., and [26] contains complementary results in the case where H is fixed.

While optimizing (4) is possible using various general techniques such as the EM algorithm, it
is computationally expensive in part because of the high-dimensional determinants involved with
realistic-sized images. Consequently we are presently considering various specially-tailored opti-
mization schemes for future work. But for the present purposes, we instead minimize a convenient
upper bound allowing us to circumvent such computational issues. Specifically, using Hadamard’s
inequality we have

log
∣∣HΓHT + λI

∣∣ = n logλ+ log |Γ| + log
∣∣λ−1HTH + Γ−1

∣∣
≤ n logλ+ log |Γ| + log

∣∣λ−1diag
[
HTH

]
+ Γ−1

∣∣
=

∑
i

log
(
λ+ γi‖w̄i‖2

2

)
+ (n−m) logλ, (6)

where w̄i denotes the i-th column of H. Note that Hadamard’s inequality is applied by using
λ−1HTH + Γ−1 = VT V for some matrix V = [v1, . . . ,vm]. We then have log |λ−1HTH +
Γ−1| = 2 log |V| ≤ 2 log (

∏
i ‖vi‖2) = log

∣∣diag
[
λ−1HTH + Γ−1

]∣∣, leading to the stated result.

3



Also, the quantity ‖w̄i‖2 which appears in (6) can be viewed as a measure of the degree of local
blur at location i. Given the feasible region w ≥ 0 and without loss of generality the constraint∑

iwi = 1 for normalization purposes, it can easily be shown that 1/L ≤ ‖w̄i‖2
2 ≤ 1, where

L is the maximum number of elements in any local blur kernel w̄i or column of H. The upper
bound is achieved when the local kernel is a delta solution, meaning only one nonzero element
and therefore minimal blur. In contrast, the lower bound on ‖ w̄i‖2

2 occurs when every element of
w̄i has an equal value, constituting the maximal possible blur. This metric, which will influence
our analysis in the next section, can be computing using ‖ w̄i‖2

2 = wT (BT
i Bi)w, where Bi �

[P1ei,P2ei, · · · ,Pjei, · · · ] and ei denotes an all-zero image with a one at site i. In the uniform
deblurring case, BT

i Bi = I ignoring edge effects, and therefore ‖w̄i‖2 = ‖w‖2 for all i.

While optimizing (4) using the upper bound from (6) can be justified in part using Bayesian-inspired
arguments and the lack of trade-off parameters, the augmented cost function unfortunately no longer
satisfies Lemma 1. However, it is still well-equipped for estimating sparse image gradients and
avoiding degenerate no-blur solutions. For example, consider the case of an asymptotically large
image with iid distributed sparse image gradients, with some constant fraction exactly equal to zero
and the remaining nonzero elements drawn from any continuous distribution. Now suppose that
this image is corrupted with a non-uniform blur operator of the form H =

∑
j wjPj , where the

cardinality of the summation is finite and H satisfies minimal regularity conditions. Then it can be
shown that any global minimum of (4), with or without the bound from (6), will produce the true
blur operator. Related intuition applies when noise is present or when the image gradients are not
exactly sparse (we will defer more detailed analysis to a future publication).

Regardless, the simplified γ-dependent cost function is still far less intuitive than the penalized
regression models dependent on x such as (5) that are typically employed for non-uniform blind
deblurring. However, using the framework from [26], it can be shown that the kernel estimate
obtained by this process is formally equivalent to the one obtained via

min
x;w≥0,λ≥0

1
λ
‖y − Hx‖2

2 +
∑

i

ψ(|xi|‖w̄i‖2, λ) + (n−m) logλ, with (7)

ψ(u, λ) � 2u
u+

√
4λ+ u2

+ log
(
2λ+ u2 + u

√
4λ+ u2

)
u ≥ 0.

The optimization from (7) closely resembles a standard penalized regression (or equivalently MAP)
problem used for blind deblurring. The primary distinction is the penalty term ψ, which jointly reg-
ularizes x, w, and λ as discussed Section 4. The supplementary file derives a simple majorization-
minimization algorithm for solving (7) along with additional implementational details. The under-
lying procedure is related to variational Bayesian (VB) models from [1, 16, 20]; however, these
models are based on a completely different mean-field approximation and a uniform blur assump-
tion, and they do not learn the noise parameter. Additionally, the analysis provided with these VB
models is limited by relatively less transparent underlying cost functions.

4 Model Properties
The proposed blind deblurring strategy involves simply minimizing (7); no additional steps for trade-
off parameter selection or structure/salient-edge detection are required unlike other state-of-the-art
approaches. This section will examine theoretical properties of (7) that ultimately allow such a sim-
ple algorithm to succeed. First, we will demonstrate a form of intrinsic column normalization that
facilitates the balanced sparse estimation of the unknown latent image and implicitly de-emphasizes
regions with large blur and few dominate edges. Later we describe an appealing form of noise-
dependent shape adaptation that helps in avoiding local minima. While there are multiple, comple-
mentary perspectives for interpreting the behavior of this algorithm, more detailed analyses, as well
as extensions to other types of underdetermined inverse problems such as dictionary learning, will
be deferred to a later publication.

4.1 Column-Normalized Sparse Estimation

Using the simple reparameterization zi � xi‖w̄i‖2 it follows that (7) is exactly equivalent to solving

min
z;w≥0,λ≥0

1
λ
‖y − H̃z‖2

2 +
∑

i

ψ(|zi|, λ) + (n−m) logλ, (8)
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where z = [z1, . . . , zm]T and H̃ is simply the �2-column-normalized version of H. Moreover,
it can be shown that this ψ is a concave, non-decreasing function of |z|, and hence represents a
canonical sparsity-promoting penalty function with respect to z [26]. Consequently, noise and ker-
nel dependencies notwithstanding, this reparameterization places the proposed cost function in a
form exactly consistent with nearly all prototypical sparse regression problems, where � 2 column
normalization is ubiquitous, at least in part, to avoid favoring one column over another during the
estimation process (which can potentially bias the solution). To understand the latter point, note
that ‖y − H̃z‖2

2 ≡ zT H̃T H̃z − 2yT H̃z. Among other things, because of the normalization, the
quadratic factor H̃T H̃ now has a unit diagonal, and likewise the inner products yT H̃ are scaled
by the consistent induced �2 norms, which collectively avoids the premature favoring of any one
element of z over another. Moreover, no additional heuristic kernel penalty terms such as in (5)
are required since H̃ is in some sense self-regularized by the normalization. Additional ancillary
benefits of (8) will be described in Section 4.2.

Of course we can always apply the same reparameterization to existing algorithms in the form of
(5). While this will indeed result in normalized columns and a properly balanced data-fit term, these
raw norms will now appear in the penalty function g, giving the equivalent objective

min
z;w≥0

‖y − H̃z‖2
2 + α

∑
i

g
(
zi‖w̄i‖−1

2

)
+ β

∑
j

h(wj). (9)

However, the presence of these norms now embedded in g may have undesirable consequences.
Simply put, the problem (9) will favor solutions where the ratio z i/‖w̄i‖2 is sparse or nearly so,
which can be achieved by either making many z i zero or many ‖w̄i‖2 big. If some zi is estimated
to be zero (and many zi will provably be exactly zero at any local minima if g(x) is a concave,
non-decreasing function of |x|), then the corresponding ‖ w̄i‖2 will be unconstrained. In contrast,
if a given zi is non-zero, there will be a stronger push for the associated ‖ w̄i‖2 to be large, i.e.,
more like the delta kernel which maximizes the �2 norm. Thus, the relative penalization of the
kernel norms will depend on the estimated local image gradients, and no-blur delta solutions may
be arbitrarily favored in parts of the image plane dominated by edges, the very place where blur
estimation information is paramount.

In reality, the local kernel norms ‖w̄i‖2, which quantify the degree of local blur as mentioned previ-
ously, should be completely independent of the sparsity of the image gradients in the same location.
This is of course because the different blurring effects from camera shake are independent of the
locations of strong edges in a given scene, since the blur operator is only a function of camera mo-
tion (at least to first order approximation). One way to compensate for this independence would be
to simply optimize (9) with ‖w̄i‖2 removed from g. While this is possible in principle, enforcing
the non-convex, and coupled constraints required to maintain normalized columns is extremely dif-
ficult. Another option would be to carefully choose β and h to somehow compensate. In contrast,
our algorithm handles these complications seamlessly without any additional penalty terms.

4.2 Noise-Dependent, Parameter-Free Homotopy Continuation

Column normalization can be viewed as a principled first step towards solving challenging sparse
estimation problems. However, when non-convex sparse regularizers are used for the image penalty,
e.g., �p norms with p < 1, then local minima can be a significant problem. The rationalization for
using such potentially problematic non-convexity is as follows; more details can be found in [17, 27].
When applied to a sharp image, any blur operator will necessarily contribute two opposing effects:
(i) It reduces a measure of the image sparsity, which normally increases the penalty

∑
i |yi|p, and

(ii) It broadly reduces the overall image variance, which actually reduces
∑

i |yi|p. Additionally,
the greater the degree of blur, the more effect (ii) will begin to overshadow (i). Note that we can
always apply greater and greater blur to any sharp image x such that the variance of the resulting
blurry y is arbitrarily small. This then produces an arbitrarily small � p norm, which implies that∑

i |yi|p <
∑

i |xi|p, meaning that the penalty actually favors the blurry image over the sharp one.

In a practical sense though, the amount of blur that can be tolerated before this undesirable prefer-
ence for y over x occurs is much larger as p approaches zero. This is because the more concave
the image penalty becomes (as a function of coefficient magnitudes), the less sensitive it is to image
variance and the more sensitive it is to image sparsity. In fact the scale-invariant special case where
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p→ 0 depends only on sparsity, or the number of elements that are exactly equal to zero. 2 We may
therefore expect such a highly concave, sparsity promoting penalty to favor the sharp image over the
blurry one in a broader range of blur conditions. Even with other families of penalty functions the
same basic notion holds: greater concavity means greater sparsity preference and less sensitivity to
variance changes that favor no-blur degenerate solutions.

From an implementational standpoint, homotopy continuation methods provide one attractive means
of dealing with difficult non-convex penalty functions and the associated constellation of local
minima [3]. The basic idea is to use a parameterized family of sparsity-promoting functions
g(x; θ), where different values of θ determine the relative degree of concavity allowing a transi-
tion from something convex such as the �1 norm (with θ large) to something concave such as the
�0 norm (with θ small). Moreover, to ensure cost function descent (see below), we also require that
g(x; θ2) ≥ g(x; θ1) whenever θ2 ≥ θ1, noting that this rules out simply setting θ = p and using
the family of �p norms. We then begin optimization with a large θ value; later as the estimation
progresses and hopefully we are near a reasonably good basin of attraction, θ is reduced introducing
greater concavity, a process which is repeated until convergence, all the while guaranteeing cost
function descent. While potentially effective in practice, homotopy continuation methods require
both a trade-off parameter for g(x; θ) and a pre-defined schedule or heuristic for adjusting θ, both
of which could potentially be image dependent.

The proposed deblurring algorithm automatically implements a form of noise-dependent, parameter-
free homotopy continuation with several attractive auxiliary properties [26]. To make this claim
precise and facilitate subsequent analysis, we first introduce the definition of relative concavity [19]:

Definition 1 Let u be a strictly increasing function on [a, b]. The function ν is concave relative to

u on the interval [a, b] if and only if ν(y) ≤ ν(x) + ν′(x)
u′(x) [u(y) − u(x)] holds ∀x, y ∈ [a, b].

We will use ν ≺ u to denote that ν is concave relative to u on [0,∞). This can be understood
as a natural generalization of the traditional notion of a concavity, in that a concave function is
equivalently concave relative to a linear function per Definition 1. In general, if ν ≺ u, then when ν
and u are set to have the same functional value and the same slope at any given point (i.e., by an affine
transformation of u), then ν lies completely under u. In the context of homotopy continuation, an
ideal candidate penalty would be one for which g(x; θ1) ≺ g(x; θ2) whenever θ1 ≤ θ2. This would
ensure that greater sparsity-inducing concavity is introduced as θ is reduced. We now demonstrate
that ψ(|z|, λ) is such a function, with λ occupying the role of θ. This dependency on the noise
parameter is unlike other continuation methods and ultimately leads to several attractive attributes.

Theorem 1 If λ1 < λ2, then ψ(u, λ1) ≺ ψ(u, λ2) for u ≥ 0. Additionally, in the limit as λ → 0,
then

∑
i ψ(|zi|, λ) converges to the �0 norm (up to an inconsequential scaling and translation).

Conversely, as λ becomes large,
∑

i ψ(|zi|, λ) converges to 2‖z‖1/
√
λ.

The proof has been deferred to the supplementary file. The relevance of this result can be understood
as follows. First, at the beginning of the optimization process λ will be large both because of
initialization and because we have not yet found a relatively sparse z and associated w such that y
can be well-approximated; hence the estimated λ should not be small. Based on Theorem 1, in this
regime (8) approaches

min
z

‖y − H̃z‖2
2 + 2

√
λ‖z‖1 (10)

assuming w and λ are fixed. Note incidentally that this square-root dependency on λ, which
arises naturally from our model, is frequently advocated when performing regular � 1-norm penal-
ized sparse regression given that the true noise variance is λ [2]. Additionally, because λ must be
relatively large to arrive at this �1 approximation, the estimation need only focus on reproducing
the largest elements in z since the sparse penalty will dominate the data fit term. Furthermore,
these larger elements are on average more likely to be in regions of relatively lower blurring or high
‖w̄i‖2 value by virtue of the reparameterization z i = xi‖w̄i‖2. Consequently, the less concave
initial estimation can proceed successfully by de-emphasizing regions with high blur or low ‖ w̄i‖2,
and focusing on coarsely approximating regions with relatively less blur.

2Note that even if the true sharp image is not exactly sparse, as long as it can be reasonably well-
approximated by some exactly sparse image in an �2 norm sense, then the analysis here still holds [27].
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Figure 1: Effectiveness of spatially-adaptive sparsity. From left to right: the blurry image, the
deblurred image and estimated local kernels without spatially-adaptive column normalization, the
analogous results with this normalization and its spatially-varying impact on image estimation, and
the associated map of ‖w̄i‖−1

2 , which reflects the degree of estimated local blurring.

Later as the estimation proceeds and w and z are refined, λwill be reduced which in turn necessarily
increases the relative concavity of the penalty ψ per Theorem 1. However, the added concavity will
now be welcome for resolving increasingly fine details uncovered by a lower noise variance and the
concomitant boosted importance of the data fidelity term, especially since many of these uncovered
details may reside near increasingly blurry regions of the image and we need to avoid unwanted no-
blur solutions. Eventually the penalty can even approach the � 0 norm (although images are generally
not exactly sparse, and other noise factors and unmodeled artifacts are usually present such that λ
will never go all the way to zero). Importantly, all of this implicit, spatially-adaptive penalization
occurs without the need for trade-off parameters or additional structure selection measures, meaning
carefully engineered heuristics designed to locate prominent edges such that good global solutions
can be found without strongly concave image penalties [21, 5, 28, 8, 9]. Figure 1 displays results of
this procedure both with and without the spatially-varying column normalizations and the implicit
adaptive penalization that help compensate for locally varying image blur.

5 Experimental Results

This section compares the proposed method with several state-of-the-art algorithms for non-uniform
blind deblurring using real-world images from previously published papers (note that source code
is not available for conducting more widespread evaluations with most algorithms). The supple-
mentary file contains a number of additional comparisons, including assessments with a benchmark
uniform blind deblurring dataset where ground truth is available. Overall, our algorithm consis-
tently performs comparably or better on all of these respective images. Experimental specifics of
our implementation (e.g., regarding the non-blind deblurring step, projection operators, etc.) are
also contained in the supplementary file for space considerations.

Comparison with Harmeling et al. [8] and Hirsch et al. [9]: Results are based on three test
images provided in [8]. Figure 2 displays deblurring comparisons based on the Butchershop and
Vintage-car images. In both cases, the proposed algorithm reveals more fine details than the
other methods, despite its simplicity and lack of salient structure selection heuristics or trade-off
parameters. Note that with these images, ground truth blur kernels were independently estimated
using a special capturing process [8]. As shown in the supplementary file, the estimated blur kernel
patterns obtained from our algorithm better resemble the ground truth relative to the other methods,
a performance result that compensates for any differences in the non-blind step.

Comparison with Whyte et al. [25]: Results on the Pantheon test image from [25] are shown in
Figure 3 (top row), where we observe that the deblurred image from Whyte et al. has noticeable
ringing artifacts. In contrast, our result is considerably cleaner.

Comparison with Gupta et al. [7]: We next experiment using the test image Building from [7],
which contains large rotational blurring that can be challenging for blind deblurring algorithms.
Figure 3 (middle row) reveals that our algorithm contains less ringing and more fine details relative
to Gupta et al.

Comparison with Joshi et al. [13]: Joshi et al. presents a deblurring algorithm that relies upon
additional hardware for estimating camera motion [13]. However, even without this additional in-
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Figure 2: Non-uniform deblurring results. Comparison with Harmeling [8] and Hirsch [9] on
real-world images. (better viewed electronically with zooming)
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Figure 3: Non-uniform deblurring results. Comparison with Whyte [25], Gupta [7], and Joshi [13]
on real-world images. (better viewed electronically with zooming)

formation, our algorithm produces a better sharp estimate of the Sculpture image from [13], with
fewer ringing artifacts and higher resolution details. See Figure 3 (bottom row).

6 Conclusion
This paper presents a strikingly simple yet effective method for non-uniform camera shake re-
moval based upon a principled, transparent cost function that is open to analysis and further ex-
tensions/refinements. For example, it can be combined with the model from [29] to perform joint
multi-image alignment, denoising, and deblurring. Both theoretical and empirical evidence are
provided demonstrating the efficacy of the blur-dependent, spatially-adaptive sparse regularization
which emerges from our model. The framework also suggests exploring other related cost functions
that, while deviating from the original probabilistic script, nonetheless share similar properties. One
such simple example is a penalty of the form

∑
i log(

√
λ+ |xi|‖w̄i‖2); many others are possible.
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