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 Abstract: Model that prescribes the optimal appointment date for a patient at the moment this patient makes his 
request at the outpatient clinic is developed. We categorized patients into two. The first category is concerned with 
patients with a maximum recommended waiting time. For these types of patient, the sooner these patients are 
scheduled the better and when the maximum recommended waiting time is exceeded, extra costs are incurred. The 
other category is characterized by a specific appointment time. The closer the scheduled appointment time is to the 
specific appointment time, the lower the costs. The objective is to minimize the long-run expected average cost. We 
modelled the scheduling process as a Markov Decision Process (MDP). we then apply the Bellman Error Minimization 
(BEM) method as an Approximate Dynamic Programming technique in order to derive an estimate of the optimal 
value function of our MDP of which the optimal policy (appointment date) can be derived. To determine the set of 
representative states, which is an element of the BEM method, we use the k-means algorithm. We test several 
approximation functions and find an approximation function that outperforms all other functions in the scheduling 
process over four, six, and eight working days. The Approximation Function B gives the near optimal appointment 
date for patients when appointments are requested. In general, it holds that the higher the arrival rate of patients at the 
outpatient clinic, the better our BEM method performs. But if the arrival rate reaches a certain value the load of the 
system becomes that high that it does not matter what policy is applied, since many patients have to be rejected.  
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1.0  Introduction  

Long waiting line is a major challenge in the 
health care system. Appointment scheduling systems are 
faced with the challenge of ensuring efficiency of health 
care services as well as timely access to health care 
services (Gupta and Denton, 2008). Being able to access 
services on time plays a major role in realizing good 
medical outcomes. Difficulty in accessing health care 
services e.g. being in the waiting line for a long time can 
lead to complications medically. For instance, a certain 
health condition may be in its early stage and could be 
treated easily if the patient gets access to the necessary 
health care service on time, failure to get such service on 
time would lead to the patient having to wait much 
longer which may result in an aggravation of the patient 
medical condition. More critically is that situations like 
this could eventually result to the death of the patient. 
Customer’s satisfaction is also an important point to 
note, as no one enjoys having to wait for a long time in 
order to get a particular service. A better organization of 

the health care system would therefore yield more 
customer satisfaction. Optimizing appointment system 
in the health are facility would reduce waiting lines 
(direct and indirect) in the system.  

In optimizing appointment system, we would 
relatively help to reduce idleness and overtime with 
specialist. The effect of overtime for specialist could be 
more substantial as it could lead to inefficient rendering 
of services to patient which is so undesirable in a 
delicate field like medicine. A good appointment system 
is also a good tool for eliminating tardiness (laziness) 
amongst specialist. The overall goal of a well-designed 
appointment system is to facilitate efficiency and 
effectiveness in the delivery of health services for all 
patients in the health care facility. It facilitates smooth 
work flow, eliminates long waiting lines and allows 
patient’s preference when requested. The global 
pandemic has had a lot of impact on the need for a good 
appointment system. To lower its spread, protocols has 
been set in place such as social distancing. Social 
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distancing cannot be underemphasized in the health 
sector. It is the environment that needs the most of its 
implementation. An appointment system presents a way 
to ensure this. Appointment systems can be used to 
ensure a maximum number of patients are in the health 
facility at the same time. The need for a less crowded 
health facility has always been a pressing issue-though 
ignored. Appointment system plays a vital role in 
decongesting clinics and hospitals, as they ensure short 
wait time and an optimized use of health facilities. 
Covid19 has affected a lot of things which include the 
regular operation of many healthcare service providers. 
Many services have been halted while some have been 
shifted, leaving patient in wait for a new appointment 
date (Charlton, 2020; COVIDSurg Collaborative, 2020).  
In other to evaluate the optimization in the health 
facility, researchers make use of various performance 
measure. Cost-based measures are the performance 
measure many literatures adopted.  

Liu et al. (2010) proposed dynamic policies for 
appointment system considering no-shows and 
cancellations and discovered that the heuristic policies 
performed better than other policies. Feldman et al. 
(2014) advanced Liu et al. (2010) and developed a 
model that considers that a patient may have preference, 
thereby choosing one of the days offered to them by the 
clinic or leaving without an appointment. Feldman et al. 
(2014) also paid attention to cancellations and noshows 
with an objective to maximize the net profit per day. 
Trung (2015) considered a canonical model of dynamic 
scheduling without considering patients’ preference for 
a specialist and derived an algorithm which assures 
efficient computation of the policy. Wang et al. (2020) 
developed an optimization model to optimize the 
appointment system while paying attention to potential 
walk-ins. The study reveals that we cannot consider 
walk-ins as a reward for no-shows from patients. 
Diamant et al. (2018) looked into how health care 
schedule patients for multi stage programs such as 
elective surgery. It was observed that high rates of no 
shows has an effect on the system such as treatment 
delays. The problem was formulated as a Markov 
decision process and solved using approximate dynamic 
programming techniques. Patrick et al. (2008) were 
interested in a scheduling multi-priority patient 
dynamically. They formulated the problem as a Markov 
Decision Process (MDP) and transformed to a linear 
program in order to solve. However, it wasn’t solvable 
due to a large state space. Approximate Dynamic 
Programming (ADP) was then used to derive an 
approximate linear program which was then solvable. 
Erdelyi and Topaloglu (2010) also made use of 
Approximate Dynamic Programming to solve an 
allocation problem.   
 
 

2.0 Methodology 
 
2.1 Appointment process as a Markov Decision 
Process 
 We consider two categories of patient. The first 
category is characterized by waiting time limit. For 
example, a patient that requests for an appointment and 
wants it scheduled latest five days ahead. The second 
category is characterized by appointment request for a 
specific date e.g. a patient that needs an appointment 
with the specialist on Saturday. Emergency patient is a 
type that would fall under the first category while usual 
patient (that sees the specialist regularly) falls under the 
second category.  
Mathematically, we take patient to be of type (�, �); � ∈ 
{1, 2}, � ∈ {1, … , ��}; � denote the category while  

denote the type under each category.  
We define several variable for our MDP model  
���: probability that a patient of type (�, �) will enter 
the system during a time interval, ��� > 0  
���: when x = 1, i.e �1�, this denote the waiting time 
limit for a patient of type y and when x = 2, i.e �2�, it 
would denote the specific time for a patient of type y. we 
express ���in working days, so ��� ∈ {1,2, … }  
���: service time required during scheduling for a patient 
of type (x, y); ��� is expressed in sections(blocks), e.g. if 
we have appointment time for a day for two(2) 
hours(e.g. 10 a.m to 12 a.m); we divide the whole time 
into sections. For instance, a section can be of 5 minutes; 
this means the whole appointment time would be 
divided into 24 sections. A patient that requires 10 
minutes would require two (2) sections.  
���: extra cost for not scheduling a patient of type (1, y) 
within the requested limit. �1� > 0.  
���: rejection cost for a patient of type (x, y), ��� > 0.  
The penalty cost of rejecting a patient of type (x, y) 
reflects when a patient is not scheduled in the n-days 
appointment system, but instead appointed to N+1 days, 
which is not on the present schedule. We would make 
��� high enough to ensure that the planner would not 
consider pushing patients to a new appointment 
schedule for certain reasons such as maybe the patient 
require a long service time. Patient should only be 
rejected when there is no opportunity on the present 
schedule.  
2.2 Formulation of the components of our MDP  
State space  
A good appointment system should have a stipulated 
time horizon it would span for. We define that time 
horizon as N which is expressed in working days. n = 1 
represent the next working day, n = 2 as the next two 
working days and so on. In our model, we are interested 
in scheduling patients on days of appointment and not 
the time in that particular day.   
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For every day, we have a fixed amount of capacity 
available denoted as B. B is expressed in the number of 
available sections. Service time is expressed in this 
regard.  
To absorb arrival into the system, we divide the day into 
intervals, these intervals allow only one event to occur 
in them, which is either a patient comes in or not. We 
determine the number of intervals mathematically.  
Since we know that arrival during one day follows a 
Poisson process with parameter . Dividing the day into 
D interval, that means we say arrival in each of the 
interval,  occur according to a poisson process with 

parameter   

The probability that more than one arrival would happen 
in an interval is as small as less than  
0.05 ≡ 5%. mathematically,  
(������� > 1) < 0.05  
1 – ((������� = 0) + (������� = 1)) < 0.05  

  

  

  

                                (1)    

Therefore to determine D, we solve equation (1) using 
an arrival rate,   
  
Action space  
The scheduler accepts or rejects a patient. By rejecting a 
patient, he/she can assign the patient to a date outside the 
N-day schedule. i.e N + 1  
��⃗, = (�⃗) = (�1, �2, … , ��; ��+1)  
�� is the action of rejecting or accepting the patient n 
working days ahead; �� ∈ (0,1), � ∈ �  
��+1 is the action of accepting the patient in a new plan 
or totally reject the patient from the system ��+1 ∈ (0,1)  
For this model, to ensure we do not go above the 
available capacity on a particular day  
�� + ����� ≤ �, � ∈ �  
And also (patient can only be scheduled 

on at most one day)  

Cost function  
The cost function would be formulated based on the two 
category of patient. For the first category, we defined 
already �1� as the waiting time limit for a patient of type 
y, �1� as the penalty cost for not scheduling such patient 
within the requested limit and �1� as the rejection cost. 
Cost function is written as  

 

   (2) 
For the second category, we define �2� as the specific 
time request by the patient of type y and �2� as the 
rejection cost  

  

     
 (3) 
2.3 Transition probabilities  
Transition occurs in the system in time. The system 
shifts from one state to another in time depending on  
(time interval). After an event occur(which could either 
be an arrival or no arrival),  moves to the next time 
interval. If � < �, it moves to the next, however if � = 
�, this means it is the end of the day. A new day comes 
in and the previous day disappears from the plan. This 
continues till the end of N-time horizon planned for the 
appointment system. The planner then makes a new N-
day plan and starts the same process  
When � < � and we have an arrival, the transition is 
from  
(�1, �2, … , ��; �) →  (�1 + ����1, … , �� + �����; � + 1)  

If no arrival occurs  
(�1, �2, … , ��; �) →  (�1, �2, … , ��; � + 1)  

whereas if � = � which signals the end of the day, If 
there is an arrival, it can only be put in the next day   

(�1, �2, … , ��; �) →  (�2 + ����2, … , �� + �����, 0; 1)  
For no arrival  

(�1, �2, … , ��; �) →  (�2, �3, … , ��, 0; 1)  
  
Having stated the basics of our model, we formulate our 
optimality equation  

V(�⃗, �) + g =  

{�<�} [� ∑ ��� min {�(�⃗) + �(�0 + ����0, … , �� + �����; 
� + 1)} 

�⃗⃗ ∈ ��⃗,� 
�,� 

+ � (1 − ∑ ���) (�⃗, � + 1) + (1 − �)(�⃗, �)]  
�,� 
+{�=�} [� ∑ ��� min {���(�⃗) + �(�1 + ����1, … , �� + 
�����; 0; 1)} 
�⃗⃗ ∈ ��⃗,� 
�,� 
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+ � (1 − ∑ ���) (�1, �2, �3, … , ��; 0; 1) + (1 − �)�(�⃗, �)] 
  (4) 
�,� 
                                                        
            
 Applying BEM to the appointment process  
From equation (2), we have our Bellman error given as  

  

+{�<�} [� ∑ ��� min {���(�⃗) + ℧(�0 + ����0, … , �� + 
�����; � + 1; �⃗)} 

�⃗⃗ ∈ ��⃗,� 
�,� 
+ � (1 − ∑ ���) ℧(�⃗, � + 1, �⃗) + (1 − �)℧(�⃗, �, �⃗)]  
�,� 
+{�=�} [� ∑ ��� min {���(�⃗) + ℧(�1 + ����1, … , �� + 
�����; 0; 1; �⃗)} 
             + � (1 − ∑ ���) ℧(�1, �2, �3, … , ��; 0; 1; �⃗) + (1 
− �)℧(�⃗, �, �⃗)]     
                                                        
     
In order to apply this method, we need to determine all 
the components needed to for its application, which are  

1. An initial policy;  

2. The long-run expected average cost for the 
initial policy, g;    

3. The set of representative states, Ì ⊂ �  

4. The weights, �(�), � ∈ Ì     

5.  
  Initial policy for the BEM method  
We choose a greedy policy which allows patients of type 
� = 1 to be scheduled as soon as possible while patients 
of type � = 2 would be given appointments as closely as 
possible to their requested date. Rejection under this 
policy would only happen when the capacity is 
exhausted for any particular day.  
2.4  Simulation 
 Long run expected average cost   
We use simulation to determine the long-run expected 
average cost, g, belonging to a certain policy. The 
simulation is performed as follows: starting with the first 
day, this day is cut into D intervals. In each interval d ∈ 
{1, … , D} there is one patient arrival of type (�, �) with 
probability ��� or no patient arrival with probability 1 − 
∑�,� ��� If d ≠ D and there is a patient arrival, this patient 
is scheduled according to  

 

and the corresponding costs, ���(�⃗),  
are incurred. After the patient is scheduled we move to 
the next interval. If no arrival occurs, we move directly 

to the next interval. If d = D and there is a patient arrival, 
this patient is scheduled according to  

 

and the corresponding costs, ���(�⃗),  
are incurred. After the patient is scheduled we move to 
the next day and shift the schedule. The first day 
disappears from the schedule, the second day becomes 
the first day, the third day becomes the second day and 
so on, and finally a new empty day enters the schedule 
and we start with d = 1. If no arrival occurs, we move 
directly to the new day and shift the schedule. We let the 
simulation run over   days. At the end of the simulation 
we can obtain g by dividing the total costs incurred by 
the length of the simulation, � ∗ D. Note that the initial 
policy can be achieved by setting the parameter vector 

�⃗ to zero. In this case  equals zero,  

and hence, the actions to choose only depends on the 
cost function. To make sure we only reject patients if 
there is no sufficient capacity available in any day, the 
rejection costs must be chosen higher than the highest 
costs that can be obtained when patients are scheduled.  

Set of representative states and the corresponding 
weight vector  
The set  should contain the most important states in 
the state space, while  should represent the 
importance of the states in . The choice of the set of 
representative states could be to include only the states 
that have a high probability of being visited.   
Step 1 we get a list of sampled state S.  
Step 2 K-means clustering  
From this list, we want to cluster these states into K 
clusters. As clustering technique, we use Elkan 
algorithm. The algorithm returns the clusters and the 
cluster centre.  
Step 3 Determine the set of representative states and 
the corresponding weight vector For each cluster centre 
we want to find the state with the shortest Euclidean 
distance as the most representative state of this cluster. 
Hence, after this step, we have a set of K representative 
states, which will be our  and the number of states in 
each cluster will determine our weight vector .  
Besides the patient-specific parameters, our model has 
a few other parameters that need to be determined. 
These parameters are: N, the number of working days 
which covers the scheduling process; B, the fixed 
amount of capacity available on any day; λ, the rate for 
patient arrivals and from which parameter D can be 
determined, and  needed for the data transformation to 
overcome the problem of aperiodicity. We set B to 20 
blocks and  to 0.9.  
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Table 1: Values for different parameters  
Parameters  Values  

D  { 31, 33, 36, 38, 40}  

S  {1000000, 2000000, 3000000}  

K  {50, 100, 150}  

  
                Table 2: Different types of basis functions  

Number  Basic function  

0  3 � 
� + ∑ ∑ ���  
�=1 �=1 

1  �−1 
∑ �� ∗ ��+1  

�=1 
2  �−2 

∑ �� ∗ ��+1 ∗ ��+2  

�=1 
3  �2  

4  � 
∑ �� ∗ �  

�=1 
5  � 

∑ ��2 ∗ �  

�=1 
6  �−1 

∑ �� ∗ ��+1 ∗ �  

�=1 
7  �−2 

∑ �� ∗ ��+1 ∗ ��+2 ∗ �  

�=1 
  

Each approximation function we use contains basis 
function 0 (Roubos, 2010). The other basis functions 
contain several cross terms between different parts of the 
state space. If we refer to approximation function 046, 
then this approximation function consist of the basis 
functions: 0, 4 and 6. for example If N = 3 and we refer 
to approximation function 046, then  
℧(�⃗, �, �⃗) = ��1 + �1�2 + �2�3 + �3�4 + �12�5 + � 2�6 + 
�32�7 + �13�8 + �23�9 + �33�10 + �1��11 + �2��12 + 
�3��13 + �1�2��14 + �2�3��15   
Bottom-up Approach  
We start with the following approximation functions: 
{0, 01, 02, 03, 04, 05, 06, 07}. From here we use a so-
called bottom up approach. We take the functions that 
show the best improvements overall and then add the 
other remaining functions one at a time. For instance, if 
function 05 performs best, then we make the following 
new combinations: {051, 052, 053, 054, 056, 057}. This 
is repeated until no further improvement occurs. At the 
end we have a set of approximation functions which 

shows in general the best improvements for a 
scheduling process over four working days. To test if 
these set of approximation functions also perform well 
for a larger scheduling process we expand our model to 
N = 6 and 8. The parameters S and K are set to the value 
that in general performs best in the model with N = 4.  
3.0 Data Analysis  
3.1 Analysis on Four, Six and Eight working 
days  
Four working days  
For each combination of the parameters in Table 3 we 
apply the BEM method. We can make 5∗3∗3 = 45 
combinations, for each combination we apply the BEM 
method with 8 different approximation functions. Each 
time we apply the BEM method, we compare  

obtained from our initial policy with  obtained after the 
one-step policy improvement and compute the 
improvement that is made. We refer to this as the 
improvement of the BEM method. 
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Table 3: Median and average of the improvement for each approximation function. 
Function Mean (%) Median (%) 

0 7.26 6.37 

01 -3.51 -2.60 

02 -3.80 -2.69 

03 6.70 5.74 

04 7.00 5.70 

05 6.41 5.26 

06 6.57 5.30 

07 7.16 5.75 

 
We remove the value of  = 11, 12. It seems plausible 
logically that a low  would mean a low load on the 
system, thereby making the initial policy a good policy. 
We use the BEM method for a reduced number of D. we 
have 3 3 3 = 27 combinations remaining. Table 4 shows 
for the remaining approximation functions the average 

and median of the improvement of the BEM method 
over 27 combinations. As can be seen functions 07 give 
the best results with an average improvement of 7.16%. 
we start with our bottom up approach with all of the 
functions over the 27 combinations.  

 
Table 4: Median and average of the improvement for each approximation function for a reduced number of D.  

Function  Mean (%)  Median (%)  

0  6.06  6.25  

01  6.17  4.62  

02  6.28  5.85  

03  6.45  6.01  

04  5.25  4.95  

05  5.94  4.67  

06  5.47  3.91  

07  7.16  5.36  

  
Table 5 shows the results from the first step of the 
bottom up approach. For each approximation function 
the average and median of the improvement of the BEM 
method are given. For function 04 it holds that the mean 
increases slightly from 5.25% to 6.20% when function 1 

is added. Adding one of the other functions does not 
improve the average or median. For function 05, an 
improvement is made when function 3 is added. We also 
have an improvement made with function 06 when 
function 1 or 3 is added.  Therefore, in our second step 
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of the bottom up approach we start with 041, 053, 061 
and 063.  

 
Table 5: Median and average of the improvement for each approximation function after one step. 

 (a) Function 01                            (b) Function 02 
 

    
          (c) Function 03                            (d) Function 04  

 
  

                                                                                              
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(e) Function 05                            (f) Function 06  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Function Mean (%) Median (%) 

021 4.85 4.04 

023 5.12 3.68 

024 5.08 3.95 

025 4.85 4.02 

026 4.78 3.88 

027 5.44 4.07 

Function  Mean (%)  Median (%)  

012  4.66  3.56  

013  4.99  3.26  

014  4.24  3.24  

015  5.22  3.07  

016  4.94  3.20  

017  4.30  2.95  

Function Mean (%) Median (%) 

041 6.20 6.11 

042 4.89 3.75 

043 2.37 1.55 

045 4.59 3.75 

046 5.14 4.16 

047 4.72 3.84 

Function  Mean (%)  Median (%)  

           031         5.06  4.12  

032  5.17  4.00  

034  4.66  3.71  

035  5.53  3.76  

036  5.19  4.12  

037  5.19  4.24  

Function  Mean (%)  Median (%)  

051         4.95  4.12  

052  5.32  4.13  

053  8.29  6.48  

054  5.49  3.77  

056  -4.89  -3.79  

057  4.66  3.68  

Function  Mean (%)  Median (%)  

061         5.67  4.04  

062  5.32  4.22  

063  9.21  5.74  

064  5.21  4.16  

065  5.24  3.58  

067  4.86  3.91  
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(g) Function 07  

Function  Mean (%)  Median (%)  

071  5.00 3.87  

072  5.04  3.67  

073  1.03  0.95  

074  5.09  3.86  

075  5.10  4.04  

076  5.02  3.54  

 
 
Table 6 shows the results of the second step of the bottom up approach. As can be seen, no further improvement is 
obtained.   
Table 6: Median and average of the improvement for the different functions after two steps.  
 (a) Function 041            (b) Function 053  

  

 
(c) Function 061                       (d) Function 063   

 
 
 
 
Function 041, 053, 061 and 063 are the function that 
gives the best improvements during the one step policy 

improvement, based on the median and average for the 
scheduling process over four working days. Therefore, 

Function  Mean (%)  Median (%)  

0412 5.37 3.84 

0413 5.16 3.73 

0415 5.77 4.03 

0416 5.34 3.87 

0417 5.05 3.76 

Function  Mean (%)  Median (%)  

0531 7.80 5.79 

0532 4.63 3.42 

0534 1.45 1.43 

0536 0.78 1.00 

0537 5.09 3.77 

Function  Mean (%)  Median (%)  

0631 5.09 3.95 

0632 4.77 3.79 

0634 5.34 3.26 

0635 5.05 3.78 

0637 5.55 4.18 

Function Mean (%) Median (%) 

0612 1.00 1.00 

0613 -4.04 -2.13 

0614 1.00 1.00 

0615 1.00 1.00 

0617 1.00 1.00 
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we apply these functions to the scheduling process over 
six, and eight working days. Since function 07 also 
performs very good for the scheduling process over four 
working days, we also apply these functions to the 
scheduling process over six, and eight working days. To 

simplify the figures in the following sections, we create 
a translation table, see Table 7.  
From here, if we write about function A, we actually 
mean function 07.   

 
 

Table 7: Translation table for the different functions.  

 
 
Figure 1 shows for each  the average improvement of 
the BEM method by each of the approximation function. 
By improvement, we refer to the improvement made 
when we compare  obtained from our initial policy 
with  obtained after the one-step policy improvement. 
We see that if  ≤ 12, the average improvement for each 
function increases as  increases. When  > 12 the 
average improvement for each function seem to 
decrease as  decreases. The lower , the lower the load 

of the system which infer the better our initial policy 
performs and hence, less improvement is possible. 
Whereas on the other hand, the higher , the higher the 
load of the system which infer the worse our initial 
policy performs and hence, the more important our one-
step policy improvement.  But if  reaches a certain 
value, the load of the system becomes that high that it 
does not matter what policy is applied, since it will be 
imperative to reject many patients.   

 

 
Figure 1: Average improvement by  for different functions for the  scheduling 

process over four working days 
 

New Function Name   Old Function Name   

A   

B   

C   

D   

E   

07   

041   

053   

061   

063   
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Six, Eight working days   
We apply the BEM method over six and eight working 
days. The results of the approximation functions {A, B, 
C, D, E} of the scheduling process over six, eight days 
are given. The parameters S and K needed for the BEM 
method are fixed to 1000000 and 50 respectively. Figure 
2 shows for each  the average improvement of the 
BEM method by the different functions for the 

scheduling process over six working days. It shows 
more or less the same pattern as the results of the 
scheduling process over four working days. We see that 
if  ≤ 12, the average improvement for each function 
increases as  increases. When  > 12 the average 
improvement for each function seem to decrease as  
decreases.    

 
 

 
 Figure 2: Average improvement by  for different functions for   

                  the scheduling process over six working days   
  
 
 
Figure 3 shows for each  the average improvement of 
the BEM method by the different functions for the 
scheduling process over 8 working days. Function {A, 
B, E} shows the same pattern as the results for four and 
six working days. For function {A, B, E}, the threshold 
is at �=12. Function C shows a different pattern than 
have been seen before. It has its highest result at �=11 
and continues with a decline thereafter. At �=11 the 

average improvement gives 4.19% which apparently 
shows the importance of the one-step policy with this 
load of the system. Function D also shows a similar 
pattern to Function C. It has its highest result at �=11. 
The average improvement then decreases to 2.76%. 
After which the average improvement is increased at 
�=14.  
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Figure 3: Average improvement by  for different functions for             

the scheduling process over eight working days 
 

Table 8: Average of the improvement by functions for four, six and eight working days.  
 

Function           � = 4        � = 6           � = 8      
Avg (%)              Avg (%)           Avg 
(%)  

A 5.571572         3.601719    2.105545  

B 5.628243         3.889145    2.123410  

C 5.408628         3.225292    2.344520  

D 5.660669         3.529022    2.446660  

E 4.576536         3.183158    1.874466  
  
Table 8 shows for the scheduling process over four, six 
and eight working days for each function the average of 
the improvement of the BEM method relative to the 
initial policy. Overall, function B give the overall best 
improvement over four, six and eight working.  
 4.0  Conclusion  
With the goal to develop a model that prescribes the 
optimal appointment date for a patient at the moment 
this patient makes his request. From all combinations of 
the set of basis functions, the following combination 
outperforms all other combinations:  
  

  

The overall average improvement of the Approximation 
Function B compared to the initial policy over four, six 
and eight working days is 11.640798%. In general, it 

holds that the lower λ, the lower the load of the system, 
the better our initial policy performs and hence, less 
improvement is obtained. The higher the load of the 
system, the worse our initial policy performs and the 
more important is our one-step policy improvement. But 
if λ reaches a certain value the load of the system 
becomes that high that it does not matter what policy is 
applied, since many patients have to be rejected. we 
have been able to make use of Approximate Dynamic 
Programming to solve problems that arises in 
appointment system in the health care facility by 
developing a model that prescribes the optimal 
appointment date for a patient at the moment this patient 
makes his request.  
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