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CAP 5993/CAP 4993

Game Theory

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Announcements

• HW 1 due today

• HW 2 out this week (2/2), due 2/14



3

• Definition: A two-player game is a zero-sum game if 

for each pair of strategies (s1, s2) one has u1(s1, s2) + 

u2(s1, s2) = 0.

• In other words, a two-player game is a zero-sum game 

if it is a closed system from the perspective of the 

payoffs: each player gains what the other player loses. 

It is clear that in such a game the two players have 

diametrically opposed interests.
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• v_1 = maxs1 mins2 u(s1,s2)

• v_2 = maxs2 mins1 (-u(s1,s2)) = -mins2 maxs1 u(s1,s2)

• Denote v_ =  maxs1 mins2 u(s1,s2)

• Denote v^ = mins2 maxs1 u(s1,s2)

• The value v_ is called the maxmin value of the game, 

and v^ is called the minmax value. Player 1 can 

guarantee that he will get at least v_, and player 2 can 

guarantee that he will pay no more than v^.  
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• v_ = 1 and v^ = 1. Player 1 can guarantee that he will 

get a payoff of a least 1 (using the maxmin strategy M), 

while player 2 can guarantee that he will pay at most 1 

(by way of minmax strategy R).

L C R

T 3, -3 -5, 5 -2, 2

M 1, -1 4, -4 1, -1

B 6, -6 -3, 3 -5, 5
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• v_ = 0 but v^ = 3. Player 1 cannot guarantee that he 

will get a payoff higher than 0 (which he can 

guarantee by using his maxmin strategy B) and 

player 2 cannot guarantee that he will pay less than 

3 (which he can guarantee using his minmax

strategy L).

L R

T -2 5

B 3 0
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Matching pennies

• v_ = -1 and v^ = 1. Neither player can 

guarantee a result that is better than the 

loss of one dollar.

H T

H 1 -1

T -1 1
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• These examples show that v_ and v^ can be unequal, 

but it is always the case that v_ <= v^.

– Player 1 can guarantee that he will get at least v_, while 

player 2 can guarantee that he will not pay more than v^. As 

the game is a zero-sum game, the inequality v_ <= v^ must 

hold (formal proof as exercise).

• A two-player game has a value if v_ = v^. The quantity 

v = v_= v^ is then called the value of the game. Any 

maxmin and minmax strategies of player 1 and player 

2 respectively are then called optimal strategies.
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Mixed strategies

• Let G = (N, (Si) i in N, (ui) i in N) be a game in 

strategic form in which the strategies Si of each 

player is finite. A mixed strategy of player i is 

a probability distribution over his set of 

strategies Si.

• Probability distribution: function that assigns 

each value in [0,1] to each element of Si, and the 

sum of the probabilities equals 1.

• Pure strategy is special case where all 

probabilities are 0 or 1.
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Mixed extension of a strategic-form game

• Need to define utilities of mixed strategies.

• If Player 1 plays 0.2 R, 0.3 P, 0.5 S vs. Player 2 

who plays P, (expected) utility is 

0.2*u(R,P) + 0.3 * u(P,P) + 0.5*u(S,P)

= 0.2*(-1) + 0.3*(0) + 0.5*1 = 0.3.

• If Player 1 plays this strategy against Player 2 

who plays 0.1 R, 0.7 P, 0.2 S, then it is:

• 0.2*0.1*u(R,R) + 0.2*0.7*u(R,P) + ….
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• Note that the mixed strategies of the players are 

statistically independent – they are doing their 

own randomization independently. That is, 

player 1 is picking a random number to select 

his play and player 2 is picking a separate 

random number for his.

• Concepts of dominant strategy, security level, 

and equilibrium are also defined for the mixed 

extension of a game.
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• Theorem [Nash 1950]: Every game in strategic form G, 

with a finite number of players and in which every 

player has a finite number of pure strategies, has an 

equilibrium in mixed strategies.
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• “That’s just a fixed point theorem.”

• Theorem [von Neumann’s Minmax Theorem 

1928]: Every two-player zero-sum game in 

which every player has a finite number of pure 

strategies has a value in mixed strategies.
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• Theorem: Every finite two-player zero-sum extensive-

form game with perfect information has a value.

• Theorem: If a two-player zero-sum game has a value v, 

and if s*1 and s*2 are optimal strategies of the two 

players, then s* = (s*1, s*2) is an equilibrium with 

payoff (v, -v).

• Theorem: If s* = (s*1, s*2) is an equilibrium of a two-

player zero-sum game, then the game has a value v = 

u(s*1, s*2), and the strategies s*1 and s*2 are optimal 

strategies.
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• No equilibrium in pure strategies.

• Is there an equilibrium in mixed strategies?

L R

T 1, -1 0, 2

B 0, 1 2, 0



16

Choosing the largest number

• Two players simultaneously and independently 

choose a positive integer. The player who 

chooses the smaller number pays a dollar to the 

person who chooses the largest number. If the 

two players choose the same integer, no 

exchange of money occurs.

• Maxmin value? Minmax value?



17
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WL/12 CC CF FC FF

00 0 0 0 0

01 -0.5 -0.5 1 1

02 -1 1 -1 1

10

11

12

20

21

22
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Extensive-form game

• A game in extensive form is given by a game tree, which 

consists of a directed graph in which the set of vertices 

represents positions in the game, and a distinguished vertex, 

called the root, represents the starting position of the game. A 

vertex with no outgoing edges represents a terminal position in 

which play ends. To each terminal vertex corresponds an 

outcome that is realized when the play terminates at that vertex. 

Any nonterminal vertex represents either a chance move (e.g., a 

toss of a die or a shuffle of a deck of cards) or a move of one of 

the players. To any chance-move vertex corresponds a 

probability distribution over edges emanating from that vertex, 

which correspond to the possible outcomes of the chance move.
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Perfect vs. imperfect information

• To describe games with imperfect information, in 

which players do not necessarily know the full board 

position (like poker), we introduce the notion of 

information sets. An information set of a player is a set 

of decision vertices of the player that are 

indistinguishable by him given his information at that 

stage of the game. A game of perfect information is a 

game in which all information sets consist of a single 

vertex. In such a game whenever a player is called to 

take an action, he knows the exact history of actions 

and chance moves that led to that position.
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• A strategy of a player is a function that assigns to each 

of his information sets an action available to him at that 

information set.  A path from the root to a terminal 

vertex is called a play of the game. When the game has 

no chance moves, any vector of strategies (one for each 

player) determines the play of the game, and hence the 

outcome. In a game with chance moves, any vector of 

strategies determines a probability distribution over the 

possible outcomes of the game.
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• Every description of a game must include:

– Set of players

– The possible actions available to each player

– Rules determining the order in which players make 

their moves.

– A rule determining when the game ends.

– A rule determining the outcome of every possible 

game ending.
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• A (finite) directed graph is a pair G = (V,E) 

where:

– V is a finite set, whose elements are called vertices.

– E subset of V x V is a finite set of pairs of vertices, 

whose elements are called edges. Each directed edge 

is composed of two vertices: the two ends of the 

edge (it is possible for both ends of a single edge to 

be the same vertex).
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Game trees

• A tree is a triple G = (V, E, x0) where (V,E) is a directed graph, 

x0 in V is a vertex called the root of the tree, and for every 

vertex x in V there is a unique path in the graph from x0 to x.

• Various games can be represented as trees. When a tree 

represents a game, the root of the tree corresponds to the initial 

position of the game, and every game position is represented by 

a vertex of the tree. The children of each vertex v are the 

vertices corresponding to the game positions that can be arrived 

at from v via one action. In other words, the number of children 

of a vertex is equal to the number of possible actions in the 

game position corresponding to that vertex.

– For every vertex that is not a leaf, we need to specify the player who is to 

take an action at that vertex

– At each leaf, we need to describe the outcome of the game.
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• A game in extensive form (or extensive-form game) is 

an ordered vector Γ = (N, V, E, x0, (Vi) i in N, O, u)

– N is finite set of players

– (V, E, x0) is a tree called the game tree

– (Vi) i in N is a partition of the set of vertices that are not 

leaves.

– O is the set of possible game outcomes.

– u is a utility function associating every leaf of the tree with a 

game outcome in the set O.

• Let B be a nonempty set. A partition of B is a 

collection B1, B2, …, BK of pairwise disjoint and 

nonempty subsets of B whose union is B.
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• By “possible outcome” we mean a detailed description 

of what happens as a result of the actions undertaken 

by the players. Some examples of outcomes include:

– Player 1 is declared the winner of the game, and Player 2 the 

loser.

– Player 1 receives $2, player 2 receives $3, player 3 receives 

$5.

– Player 1 gets to go out to the cinema with player 2, while 

player 3 is left at home.
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• The requirement that (Vi) i in N be a partition of the set of 

vertices that are not leaves stems from the fact that at each game 

situation there is one and only one player who is called upon to 

take an action. For each vertex x that is not a leaf, there is a 

single player i in N for whom x in V. The player is called the 

decision maker at vertex x, and denoted by J(x).

• Denote by C(x) the set of all children of non-leaf vertex x. 

• Every edge that leads from x to one of its children is called a 

possible action at x. We will associate every action with the 

child to which it is connected, and denote by A(x) the set of all 

actions that are possible at the vertex x. 
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• An extensive-form game proceeds in the following 

manner:

– Player J(x0) initiates the game by choosing a possible action 

in A(x0). Equivalently, he chooses an element x1 in the set 

C(x0).

– If x1 is not a leaf, player J(x1) chooses a possible action in 

A(x1) (equivalently, an element x2 in C(x1)). 

– The game continues in this manner, until a leaf vertex x is 

reached, and then the game ends with outcome u(x).
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• By definition, the collection of the vertices of the graph 

is a finite set, so that the game necessarily ends at a 

leaf, yielding a sequence of vertices (x0, x1,…xk), 

where x0 is the root of the tree, xk is a leaf, and xi+1 in 

C(xi) for l = 0,1,…,k-1. This sequence is called a play. 

Every play ends at a particular leaf xk with outcome 

u(xk). Similarly, every leaf xk determines a unique play, 

which corresponds to the unique path connecting the 

root x0 with xk.
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• It follows from the above description that every 

player who is to take an action knows the 

current state of the game, meaning that he 

knows all the actions in the game that led to the 

current point in the play. This implicit 

assumption is called perfect information.
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• A strategy for a player i is a function si mapping each 

vertex x in Vi to an element in A(x) (equivalently, to an 

element in C(x)).

• According to this definition, a strategy includes 

instructions on how to behave at each vertex in the 

game tree, including vertices that previous actions by 

the player preclude from being reached. For example, 

in the game of chess, even if White’s strategy calls for 

opening by moving a pawn from c2 to c3, the strategy 

must include instructions on how White should play his 

second move if in his first move he instead moved a 

pawn from c2 to c4, and Black then took his action.
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• A strategy vector is a list of strategies s = (si) i in N, 

one for each player. Player i’s set of strategies is 

denoted by Si, and the set of all strategy vectors is 

denoted S = S1x S2 x…x Sn. Every strategy vector 

determines a unique play from the root to a leaf.

• Let Γ = (N, V, E, x0, (Vi) i in N, O, u) be an extensive-

form game (with perfect information), and let x in V be 

a vertex in the game tree. The subgame starting at x, 

denoted by Γ(x), is the extensive-form game Γ(x) = (N, 

V(x), E(x), x, (Vi(x)) i in N, O, u).

– V(x) includes x and all vertices that are descendants of x.
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• Theorem (von Neumann [1928]) In every two-

player game (with perfect information) in which 

the set of outcomes is O = {Player 1 wins, 

Player 2 wins, Draw}, one and only one of the 

following three alternatives holds:

1. Player 1 has a winning strategy.

2. Player 2 has a winning strategy.

3. Each of the two players has a strategy 

guaranteeing at least a draw.
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Chance moves

• In the games we have seen so far, the transition from one state to another is 

always accomplished by actions undertaken by the players. Such a model is 

appropriate for games such as chess and checkers, but not for card games or 

dice games (such as poker or backgammon) in which the transition from one 

state to another may depend on a chance process: in card games, the shuffle 

of the deck, and in backgammon, the toss of the dice. It is possible to come 

up with situations in which transitions from state to state depend on other 

chance factors, such as the weather, earthquakes, or the stock market. These 

sorts of state transitions are called chance moves. To accommodate this 

feature, our model is expanded by labeling some of the vertices in the game 

tree (V, E, x0) as chance moves. The edges emanating from vertices 

corresponding to chance moves represent the possible outcomes of a lottery, 

and next to each such edge is listed the probability that the outcome it 

represents will be the result of the lottery.
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• Formally, the addition of chance moves to the model 

proceeds as follows. We add a new player, who is 

called “Nature,” and denoted by 0. The set of players is 

thus expanded to N U {0}. For every vertex x at which 

a chance move is implemented, we denote by px the 

probability vector over the possible outcomes of a 

lottery that is implemented at vertex x. This leads to 

the following definition of a game in extensive form.
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• A game in extensive form (with perfect information 

and chance moves) is a vector Γ = (N, V, E, x0, (Vi) i

in (N U {0}), (px) x in V0, O, u)

– We have added the set V0 to the partition, where V0, 

is the set of vertices at which a chance move is 

implemented.

– For each vertex x in V0, a vector px, which is a 

probability distribution over the edges emanating 

from x, has been added to the model.
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• One of the distinguishing properties of the games we 

have seen so far is that at every stage of the game each 

of the players has perfect knowledge of all of the 

developments in the game prior to that stage: he knows 

exactly which actions were taken by all the other 

players, and if there were chance moves, he knows 

what the results of the chance moves were. In other 

words, every player, when it is his turn to take an 

action, knows precisely at which vertex in the game 

tree the game is currently at. A game satisfying this 

condition is called a game with perfect information.
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• The assumption of perfect information is clearly a very 

restrictive assumption, limiting the potential scope of 

analysis. Players often do not know all the actions 

taken by the other players and/or the results of chance 

moves (for example, in many card games the hand of 

cards each player holds is not known to the other 

players). 

• In general, a player’s information set consists of a set 

of vertices that satisfy the property that when play 

reaches one of these vertices, the player knows that 

play has reached one of these vertices, but he does not 

know which vertex has been reached.
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Imperfect information

• Let Γ = (N, V, E, x0, (Vi) i in (N U {0}), (px) x in V0, 

O, u) be a game in extensive form. An information set

of player i is a pair (Ui, A(Ui)) such that 

– Ui = {x1
i, x

2
i,…, xj

i} is a subset of Vi that satisfies the 

property that at each vertex in Ui player i has the same 

number of actions li = li(Ui), i.e., |A(xj
i)| = li for all j = 

1,2,…,m.

– A(Ui) is a partition of the mli edges Union of A(xj
i) to li 

disjoint sets, each of which contains one element from the 

sets A(xj
i). We denote the elements of the partition by a1

i, 

a2
i,…, aj

i. The partition A(Ui) is called the action set of 

player I in the information set Ui. 
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Rock-paper-scissors

0,0 -1,1 0,0 0,0-1,1 -1,11,-1 1,-1 1,-1
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• When the play of the game arrives at vertex x in information set 

Ui, all that player i knows is that the play has arrived at one of 

the vertices in this information set. The player therefore cannot 

choose a particular edge emanating from x. Each element of the 

partition al
i contains m edges, one edge for each vertex in the 

information set. The partition a1
i, a

2
i,…, ali

i are the “actions” 

from which the player can choose; if player i chooses one of the 

elements from the partition al
i, the play continues along the 

unique edge in the intersection of al
i and A(x). For this reason, 

when we depict games with information sets, we denote edges 

located in the same partition by the same letter.
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• A game in extensive form (with chance moves 

and with imperfect information) is a vector Γ = 

(N, V, E, x0, (Vi) i in (N U {0}), (px) x in V0, 

(Ui
j) i in N j = 1,…,ki, O, u), where:

– For each player i in N, (Ui
j), j = 1,…,ki is a partition 

of Vi.

– For each player i in N and every j in {1,2,… ki} the 

pair (Ui
j,A(Ui

j) is an information set of player i.
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• In a game with imperfect information, each player i, 

when choosing an action, does not know at which 

vertex x the play is located. He only knows the 

information set Ui
j that contains x, and he chooses an 

element a in A(UJ(x)
j).

• We can now describe many more games in extensive 

form: various card games such as poker and bridge, 

games of strategy such as Stratego, and many real-life 

situations, such as bargaining between two parties.
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• An extensive-form game is called a game with 

perfect information for player i if each 

information set of player i contains only one 

vertex. An extensive-form game is called a 

game with perfect information if it is a game 

with perfect information for all of the players.
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Strategies in imperfect-information games

• A strategy of player i is a function from each of 

his information sets to the set of actions 

available at that information set.

• Just as in games with chance moves and perfect 

information, a strategy vector determines a 

distribution over the outcomes of a game.



48

• Every extensive-form game can be converted to an equivalent 

strategic-form game, and therefore all the prior concepts and 

theoretical results (e.g., domination, security level, mixed 

strategies, Nash equilibrium, Minmax Theorem) will apply. 

However, this conversion produces a strategic-form game that 

has size that is exponential in the size of the original game tree, 

and is infeasible for large games. Therefore, we would like do 

develop algorithms that operate directly on extensive-form 

games and avoid the conversion to strategic form games.
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WL/12 CC CF FC FF

00 0 0 0 0

01 -0.5 -0.5 1 1

02 -1 1 -1 1

10

11

12

20

21

22
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• Theorem (Kuhn) Every finite game with perfect 

information has at least one pure strategy Nash 

equilibrium.

• Corollary of Nash’s Theorem: Every extensive-form 

game (of perfect or imperfect information) has an 

equilibrium in mixed strategies.
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Next time

• Algorithms for computing solution concepts in 

strategic-form and extensive-form games.
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Assignment

• HW 2 out this week (2/2), due 2/14

• No class Thursday

• Reading for next class: Chapter 5 from Shoham textbook 

http://www.masfoundations.org/mas.pdf


