Shedding light on the obscure concepts seen in class

- Lemke-Howson algorithm

Daniel Ruiz Perez BioRG 04/18/2017

Motivation

- Extensive theory literature
- Lack of extensive examples
- Waste of time
- Thinking on following years

LCP formulation for NE

	Player 2		
Player 1		S ₂ ¹	S ₂ ²
	S ₁ ¹	0,1	6,0
	S ₁ ²	2,0	5,2
	S ₁ ³	3,4	3,3

	Player 2		
1		S ₂ ¹	S_2^2
Player	S ₁ ¹	0,1	6,0
	S ₁ ²	2,0	5,2
	S ₁ ³	3,4	3,3

•
$$u(a_1^1) = p \cdot 0 + (1-p) \cdot 6 = 6 - 6p$$

•
$$u(a_1^2) = p \cdot 2 + (1-p) \cdot 5 = 5 - 3p$$

•
$$u(a_1^3) = p \cdot 3 + (1-p) \cdot 3 = 3$$

•
$$u(a_1^1) = u(a_1^2) \rightarrow 6 - 6p = 5 - 3p \rightarrow p = 1/3$$

•
$$u(a_1^1) = u(a_1^3) \rightarrow 6 - 6p = 3 \rightarrow 6p = 3 \rightarrow p = 1/2$$

•
$$u(a_1^2) = u(a_1^3) \rightarrow 5 - 3p = 3 \rightarrow 3p = 2 \rightarrow p = 2/3$$

- $u(a_1^1) = u(a_1^2) \rightarrow 6 6p = 5 3p \rightarrow p = 1/3$
- $u(a_1^1) = u(a_1^3) \rightarrow 6 6p = 3 \rightarrow 6p = 3 \rightarrow p = 1/2$
- $u(a_1^2) = u(a_1^3) \rightarrow 5 3p = 3 \rightarrow 3p = 2 \rightarrow p = 2/3$

- $u(a_1^1) = p \cdot 0 + (1-p) \cdot 6 = 6 6p$
- $u(a_1^2) = p \cdot 2 + (1-p) \cdot 5 = 5 3p$
- $u(a_1^3) = p \cdot 3 + (1-p) \cdot 3 = 3$

replace p with it in the formulas:

- $6 6p = 6 \frac{1}{4} \cdot 6 = 4.5$
- $5-3p=5-3\cdot\frac{1}{4}=4.25$

•
$$6-6p=6-\frac{5}{12}\cdot 6=3.5$$

•
$$5-3p=5-3\cdot\frac{5}{12}=3.75$$

• 3

•
$$6-6p=6-\frac{7}{12}\cdot 6=2.5$$

•
$$5-3p=5-3\cdot\frac{7}{12}=3.25$$

• 3

$$6 - 6p = 6 - \frac{3}{4} \cdot 6 = 1.5$$

•
$$5-3p=5-3\cdot\frac{3}{4}=2.75$$

•

	Player 2		
1		S ₂ ¹	S ₂ ²
Player	S ₁ ¹	0,1	6,0
	S ₁ ²	2,0	5,2
	S ₁ ³	3,4	3,3

- $u(a_2^1) = s_1^1 \cdot 1 + s_1^2 \cdot 0 + s_1^3 \cdot 4$
- $u(a_2^2) = s_1^1 \cdot 0 + s_1^2 \cdot 2 + s_1^3 \cdot 3$

We zero s₁¹:

$$0 \cdot 1 + s_1^3 \cdot 4 = s_1^2 \cdot 2 + s_1^3 \cdot 3 \rightarrow s_1^2 = s_1^3 \cdot 2.$$

As
$$s_1^2 = 1 - s_1^3$$

$$\rightarrow s_1^2 = 1/3$$

- We zero s_1^3 : $s_1^4 \cdot 1 = s_1^2 \cdot 2$. As $s_1^4 = 1 - s_1^2 \rightarrow s_1^2 = 1/3$
- We zero s₁²:

$$s_1^{1} \cdot 1 + s_1^{3} \cdot 4 = s_1^{3} \cdot 3 \rightarrow s_1^{1} = -s_1^{3}$$

→ Contradiction → No valid point

•
$$u(a_2^2) = s_1^1 \cdot 0 + s_1^2 \cdot 2 + s_1^3 \cdot 3$$

For region b, we choose the point (0, 1, 0) which is in between, then we replace p in the formulas with this value:

- 0
- 1 · 2 = 2

- ((0, 0, 1), (1, 0))
- $((\frac{2}{3}, \frac{1}{3}, 0), (\frac{1}{3}, \frac{2}{3}))$ $((\frac{2}{3}, \frac{1}{3}, 0), (\frac{2}{3}, \frac{1}{3}))$