Math 2471 Calc 3 - Homework \#5

Pg. 909, \#3, 7, 11, 12 and 15
Pg. 917, \#7, 11, 15, 16^{*}, and 19
pg. 928, \#7, $9,11,13,15,17$ and 29
Pg. 909 Find the total differential for the following

$$
\begin{array}{ll}
\text { \#3 } & z=5 x^{3} y^{2} \\
\# 7 & w=x^{2} y z^{2}+\sin (y z)
\end{array}
$$

For the following calculate (a) $f(2,1)$ and $f(2.1,1.05)$ and calculate Δz and (b) use the total differential to find $d z$

$$
\begin{array}{ll}
\# 11 & f(x, y)=16-x^{2}-y^{2} \\
\text { \#12 } & f(x, y)=y / x
\end{array}
$$

In the following find $z=f(x, y)$ and use the total differential to approximate the quantity

$$
\# 15 \quad(2.01)^{2}(9.02)-2^{2} \cdot 9
$$

Pg. 917 Using the appropriate chain rule calculate either $d w / d t$ or $\partial w / \partial s$ and $\partial w / \partial t$ the following:

$$
\begin{aligned}
& \# 7 \quad w=x-\frac{1}{y^{\prime}} \quad x=e^{2 t}, y=t^{3} \\
& \# 11 \quad w=x y+x z+y z, x=t-1, y=t^{2}-1, z=t \\
& \# 15 \quad w=x^{2}+y^{2}, x=s+t, y=s-t \\
& \# 16 \quad w=y^{3}-3 x^{2} y, \quad x=t^{2}+s^{2}, y=2 t s,(*) \\
& \# 19 \quad w=x y z, \quad x=s+t, y=s-t, z=s t^{2}
\end{aligned}
$$

Pg. 928 Find the directional derivative for the following in either the direction of \vec{v} or the direction of $\overrightarrow{P Q}$.

$$
\begin{aligned}
\text { \#7 } & f(x, y)=3 x-4 x y+9 y, \quad P(1,2), \vec{v}=\frac{3}{5} \vec{i}+\frac{4}{5} \vec{j} \\
\text { \#9 } & g(x, y)=\sqrt{x^{2}+y^{2}}, P(3,4), \vec{v}=3 \vec{i}-4 \vec{j} \\
\text { \#11 } & f(x, y)=x^{2}+3 y^{2}, P(1,1), Q(4,5) \\
\text { \#13 } & f(x, y)=e^{y} \sin x, P(0,0), Q(2,1)
\end{aligned}
$$

Find the gradient of the following at the given point and the maximum value (\# 29 only)

$$
\begin{align*}
& \text { \#15 } f(x, y)=3 x+5 y^{2}+1, \quad(2,1) \\
& \text { \#17 } f(x, y)=\frac{\ln \left(x^{2}-y\right)}{x}-4, \quad(2,3) \tag{2,3}\\
& \text { \#29 } f(x, y)=y^{2}-x \sqrt{y}, \quad(0,3)
\end{align*}
$$

$\left.{ }^{(*}\right)$ I changed the problem slightly from the text.
Due: Monday, June 27, 2022.

