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Abstract 

The norm problem involves finding the formula describing the norm from the coefficients of the 

elementary operators. Upper estimate of the norm has been easy to find but estimating the norm from 

below has been proven difficult in general. In this study, we considered a special type of elementary 

operators called normally represented elementary operators. Some of our results show that the norm of 

an elementary operator is equal to the largest singular value of the operator itself i.e. Si(M) = ∥M∥ and 

also if UA,B = A ⊗h B + B ⊗h A is normally represented, then ∥UA,B∥Inj  ≥ 2(√(2 – 1))∥A∥∥B∥. 

Keywords: Norms; Elementary operator; Normally represented elementary operator; Norm-attainable 

operators. 

Introduction 

The structural properties of the 

elementary operators have been of great concern 

in analysis mathematics [1]. Several of them 

have been studied and of the most interesting 

concern is the norm property. The term 

elementary operator came as a result of the 

knowledge of the basic elementary operators 

from an algebra [2]. If A is an algebra, then 

given a, b ∈ A, we define the basic elementary 

operator (implemented by A, B) by: MA, B (H) = 

AXB, ∀ X ∈ B(H). This led to the form 

describing the elementary operators as the sum 

of basic elementary operators.                     

T : B(H) → B(H) by TAi ,Bi(X ) =∑
n

i=1Ai 

X Bi  ∀ X ∈ B(H) and   ∀ Ai , Bi fixed in B(H). 

The coefficients of the norm property have been 

studied by several scholars and their notations 

noted down [3]. For example, the basic 

elementary operator ∥Ma,b∥ ≤ 2∥a∥∥b∥. For 

Jordan elementary,       U = ∥ Ma,b + Ma,b ∥, ∥ 

Ma,b + Ma,b ∥ ≤ 2∥a∥∥b∥ for the upper estimates. 

For the lower estimates, Mathieu proved that for 

the prime C*-algebra, ∥ Ma,b + Ma,b ∥ ≥  ∥a∥∥b∥. 

In [4] the authors showed that for a JB∗-algebra, 

∥Mb,a+ Mb,a∥ ≥ ∥a∥∥b∥ while [5] proved that 

for standard algebra operator on H ∥Mb,a+ Mb,a∥ 

≥2(√2 − 1)∥a∥∥b∥. In [6], the authors also 

showed that ∥Mb,a+ Mb,a∥ ≥ ∥a∥∥b∥ and further 

described the formula for norm of the general 

elementary operators with tracial Geometric 

mean.  

In [7], they described the norm of basic 

elementary operators on algebra of regular norm. 

The study gave a description by showing that E 

is an atomic Banach Lattice with an order 

continuous norm A, B ∈ L
r
(E) and Ma,b is the 

operator on L r(E)defined by MA,B(T ) = AT B, 

then ∥MA,B∥r = ∥A∥ r ∥B∥ r but that there is no 

real α > 0 such that ∥MA,B∥r ≥ α∥A∥ r ∥B∥ r. The 

objectives of this study were to determine the 

norm inequalities for normally represented 

elementary operators. Both the lower norm 

bounds and upper norm bounds have been 

established for normally reperesented elementary 

operators. The results show that the norm of an 

elementary operator is equal to the largest 

singular value of the operator itself i.e. Si(M) = 

∥M∥ and also if UA,B = A ⊗h B + B ⊗h A is 

normally represented, then ∥UA,B∥Inj  ≥ 2(√(2 – 

1))∥A∥∥B∥. 

Research Methodology 

In the present study, some definitions and 

known results used are shown below. 

Definition 1.1. ([8], Definition 1.2.1) Field. A 

field F is a set closed under two binary 
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operations of addition and scalar multiplication 

satisfying the following properties: 

(i). Closure under addition and multiplication. a 

+ b ∈ F and a.b ∈ F, ∀ a, b ∈ F, 

(ii). Associativity: a + (b + c) = (a + b) + c, ∀ a, 

b, c ∈ F, 

(iii). Commutativity: a + b = b + a and (a.b).c = 

(b.c).a, ∀ a, b, c ∈ F, 

(iv). Additive and multiplicative identities: ∀ a ∈ 

F, ∃ − a ∈ F: a + −a = 0. And                            ∃ 

a
-1∈ F: a.a

-1
=1 

 (v). Distributivity: a(b + c) = (ab + ac) ∀ a, b, c 

∈ F, 

 (vi). Existence of additive inverse: ∀ a ∈ F ∃ x ∈ 

K: a + x = 0, and x + a = 0 then a = −x          ∀a, 

x ∈ F, 

(vii). Existence of a multiplicative inverses: For 

each a ∈ F with 0<a> 0 the equations a.x = 1 and 

x.a = 1 have a solution x ∈ F, called the 

multiplicative inverse of a and denoted by a
−1

. 

Definition 1.2. ([9], Definition 1.2.2) Vector 

space. Let F be a field and V a collection of 

objects called vectors, then V is a vector space 

over a field F if V is closed under vector addition 

and scalar multiplication. i.e. ∀ v1, v2 ∈ V, v1 + 

v2 ∈ V and ∀ v ∈ V, and ∀ a ∈ F, a.v ∈V , and 

satisfies the following properties: 

(i). Commutativity. v1 + v2 = v2 + v1, ∀v1, v2∈V, 

(ii). Associativity. v1+ (v2 + v3) = (v1 + v2) + v3. 

∀ v1, v2, v3 ∈ V, 

(iii). Additive inverse. ∀ v ∈ v, ∃ − v ∈ V : v + 

−v = 0 ∀ v1, − v ∈ V 

(iv). Additive Identity. ∀ v ∈ V, ∃ 0 ∈ V : v + 0 

= v. ∀ v ∈ V 

(v). Multiplicative Identity. 1.v = v ∀ v ∈ V 

(vi). Distributive property. ∀ a ∈ F, and ∀v1, v2 

∈ V, a(v1 + v2) = (av1 + av2) and the space  

(V, ∥.∥) is called a normed vector space. 

(vii). Unitary law. ∀ v ∈ V, 1.v = v. 

Definition 1.3. ([10], Definition 2.1.8) Banach 

space. This is a complete normed linear space. 

Definition 1.4. ([11], Definition 12.7) Hilbert 

space. A Hilbert space is a complete inner 

product space. 

Definition 1.5 ([12], Definition 2.1.10) C* -

algebra. 

A complex Banach *algebra A is called a C∗-

algebra if ∥xx*∥=∥x∥2 ∀ x ∈A. 

Definition 1.6. ([13], Definition 1.19) Spectrum. 

Let A be a unital Banach algebra, then the 

spectrum of a ∈ A is given by σ(a); = {λ ∈ C : a 

− λI is not invertible}.  

Definition 1.7. ([14], Definition 2.1.1) Norm. A 

norm is a non-negative real valued function that 

takes the elements of a vector space to a field of 

real numbers denoted by ∥.∥: V → R satisfying 

the following conditions: 

(i.) Non-negativity: ∥x∥ ≥ 0, ∀ x ∈ V. 

(ii.) Zero property: ∥x∥ = 0, if and only if x=0, 

for all x ∈. 

(iii.) Homogeneity: ∥αx∥ ≤ |α|∥x∥, ∀ x ∈ V and α 

∈ F 

(iv.) Triangle inequality: ∥x + y∥ ≤ ∥x∥ + ∥y∥, ∀ 

x and y ∈ V 

The pair (V, ∥.∥) is called a normed linear space. 

Definition 1.8. [15]. Elementary Operator. Let H 

be an infinite dimensional complex Hilbert space 

and B(H) be an algebra of all bounded linear 

operators on the H . We define an elementary 

operator T : B(H) → B(H) by TAi ,Bi(X ) =∑
n

i=1Ai 

X Bi  ∀ X ∈ B(H) and   ∀ Ai , Bi fixed in B(H) 

where i = 1, . . . , n. Examples of elementary 

operators include: 

(i). The left multiplication operator LA: B(H) by: 

LA(X) = AX , ∀X ∈ B(H). 

(ii). The right multiplication operator RB: B(H) 

by: RB (X)=BX , ∀X ∈ B(H). 

(iii). The Basic elementary operator 

(implemented by A, B) by: MA, B (H) = AXB, 

∀X ∈ B(H). 

(iv). The Jordan elementary operator 

(implemented by A, B) by: UA,B (X)=AXB + 

BXA, ∀X ∈B(H). 

(v). The Generalized derivation (implemented by 

A, B) by: δA,B = LA − RB. 

(vi).The inner derivation (implemented by A, B) 

by: δA = AX – XA. 

Definition 1.9. [16], Normally represented 

elementary operator. Let H be an infinite 

dimensional complex Hilbert space and B(H) be 

the algebra of all bounded linear operators on H. 

We define an elementary operator, T : B(H) → 

B(H) by TAi ,Bi(X ) =∑
n

i=1Ai X Bi  ∀ X ∈ B(H) 

and   ∀ Ai , Bi fixed in B(H) where i = 1, . . . , n. 

From this operator, we can define the 

generalized adjoint by TAi ,Bi(X ) =∑
n

i=1Ai* X Bi* 

and we say that T is normal if and only if         T 

T*= T*T. Now AC = CA, BD = DB, together 

with AA*= A*A, BB*= B*B, CC*= C*C and 

DD*= D*D ensures that the operator TAi ,Bi(X ) = 

AXC + BXD is normal. Therefore, the 
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elementary operator of the form: TAi ,Bi(X ) 

=∑
n

i=1Ai X Bi  where Ai and Bi are commuting 

families of normal operators are called normally 

represented elementary operator. 

Results and Discussions 

The norms of normally represented 

elementary operators are determined and 

discussed. 

Proposition 4.13. Let H be a complex Hilbert 

space and M: B(H) →B(H) be a basic 

elementary operator. Then Si(M) = ∥M∥. Such 

that Si(M) are the singular values of M. 

Proof. Since M is an operator, we represent the 

spectral norm on M as ∥M∥ i.e. ∥M∥2 then by 

definition of a singular value, is known that the 

spectral norm is equal to the largest singular 

value of the operator. I.e. Since M is an operator, 

then ∥M∥2 =√λi(M∗M) = σmax(M). Indeed the 

spectral norm ∥M∥2  of the complex matrix of M 

is defined by max{∥M∥2: ∥x∥ = 1} then also let 

there be a linear transformation of the Euclidean 

vector space E. E is hermite if there exist an 

orthonormal basis of E consisting of all 

eigenvectors of E [17]. So, suppose that E = 

M*M i.e Hermitian matrix, Let λ′i. . . , λn be 

eigenvalues of E and {ei, . . . , en} be an 

orthonormal basis of E then x = aiei +, . . . , + 

anen, we have that:  

∥x∥ = ⟨ ∑ n
 i=1 ai,ei,  ∑ 

n
 i=1 ai,en ⟩ 

=√∑
 n

i=1 ai
i 

                  and       Ex = B(∑
 n

 i=1 ai,ei) 

= ∑
 n

 i=1 ai B (ei) 

 = ∑
 n
 i=1 λiaiei 

We write λj0 to be the largest eigenvalue of E. 

Therefore; 

∥M∥ = ⟨Mx, Mx⟩ = ⟨x, M*Mx⟩ = ⟨x, Ex⟩=⟨∑ n
 i=1 

ai,ei, ∑
 n
 i=1 λiaiei ⟩=√∑

 n
 i=1 ai λi ei 

≤ Max1=j<n√|λj | × (∥x∥). So if ∥M∥2= max {∥M∥: 

∥x∥ = 1} then   

∥M∥2=max1=j<n√| λj |…………….(1) 

Consider also, x0 = ejo⇒ ∥x∥ = 0 so that ∥M∥ ≤ ⟨ 
ejo, E (ejo)⟩…………………….. ……..(4.3.2).   

Adding inequalities [4.3.1] and [4.3.2] gives 

∥M∥ = Max1=j<n√| λj | where λj  is the eigenvalue 

of E = M*M. By [18], we therefore conclude that 

√λmax(M*M) = σ(M). Since λj = max1=j<n√| λj| 

where λj is the eigenvalue i.e. λj =Si(M) then we 

have that  Si(M) = ∥M∥. 

Theorem 4.14. Let UA,B(X ) = AXB + BXA be 

normally  represented then, ∥UA,B∥CB ≥ ∥A∥∥B∥    

for A, B ∈ B(H). 

Proof. Let diam H = 2 and choose W2 ∈ B(H). 

Let also _A = [A, B], _B =[B, A]
l
, then we shall 

use the notation _A ⊙ _B = A ⊗ B + B ⊗ A. It 

is necessary to show that the Haangerup norm of 

_A ⊙ _B holds for ∥_A ⊙ _B∥H ≥∥A∥∥B∥. 

Multiplying A by a scalar l and B by , let ∥_A∥ 

= ∥B∥ and then ∥A∥ = 1 = ∥B∥. Is known that for 

each invertible matrix D ∈ W2; it follows that 

_AD
−1⊙ DB_ = _A ⊙ _B ⇒∥_A ⊙ _B∥H = inf 

∥_AA
−1∥∥DB_∥ ∀ D ∈ W2. Since for each 

unitary 2 × 2 matrix v, we have that ∥_Av∥ = 

∥_B∥ and similarly for columns, by using the 

polar decomposition, it suffices that the infimum 

over all positive matrices A only and clearly we 

may also let that det D = 1. We therefore show 

that ∥_AD
−1∥2∥DB_∥2

≥ 1 for all positive D ∈ W2 

with det D = 1. We let D = , ≥ 0 then  

AD−1∥2∥DB =(γA – βB
-
) ⊗ (βA + αB) + (−βA 

+ αB) ⊗ (γA + βB
-
). This can be reduced by 

putting X = |β |
2
+ γ

2
, Y = β (α + γ ), Z = α

2
+ |β |

2
, 

so we can write ∥XAA*− 2Re(Y AB*) + ZBB*∥ 

· ∥XA*A+ 2Re(Y B*A) + ZB*B∥ ≥ 1 Assuming 

that X ≥ Z , then noting that ∥UA,B∥CB = 

∥UuAv,uBv∥CB for all unitaries u, v ∈ W2 we can 

write A by |A| and B by v*B, where A = u|A| is a 

polar decomposition of A i.e. we let A be 

positive, so that A and B are of the same form A 

=  and B=  where h=[0,1]  and 

β1, β2, β3, β4 ∈  C then, 

XAA*−2Re(YAB*)+ZBB*=    

, and  

XAA* + 2Re(YAB*)+ZBB*=    

 ⇒ 

det D = 1 and that |Y |
2 
− XZ = −1 because Z ≥ 0 

we have that X ± 2|Y ||β1 + Z|β1|
2
≥ 0  since  X ≥ 

2  and XZ = 1 + |Y |
2
, also we have that X ≥ 1 

and  thus         

 (X − 2Re(Y β
-
 ) + Z (|β1|

2
+ |β2|

2
))(A + 2Re(Y β

-

1) +Z (|β1|
2
+ |β3|

2
)   

≥ (X + Z |β1|
2
− 2Re(Y β1)(X + Z |β1|

2
+ 2Re(Y 

β1)) 

= (X + Z |β1|
2
)
2
− 4(Re(Y β1))

2
 ≥ (X + Z |β1|

2
)
2
− 

4|Y |
2
|β1|

2
 

= (X + Z |β1|
2
)
2
− 4(XZ − 1)|β1|

2 
= (X − Z |β1|

2
)
2
+ 

4|β1|
2
 

 ≥ X
2
(1 − |β1|

2
)
2
+ 4|β1|

2
 ≥ (1 − |β1|

2
) + 4|β1|

2
(1 + 

|β1|
2
)
2
 

This completes the proof if dim H = 2.  



Wafula et al., 2018.                                                                                   Norms of normally represented elementary operators 

©2018 The Authors. Published by G J Publications under the CC BY license. 13 

Suppose that dim H > 2, then it follows that, by 

choosing some δ > 0, and a unit vector ε and ξ ∈ 

H such that ∥Aξ∥ ≥ ∥A∥ − δ and ∥Bε∥ ≥ ∥B∥ − δ. 

Let N1be a two dimensional space containing ξ 

and ε and let n2also be a two dimensional space 

containing Aξ and Bε, moreover, let q ∈ B(H) be 

orthogonal projections onto N1 and let p ∈ B(H) 

be partial symmetry with final space N1 and 

initial space N2, then ∥pAq∥ ≥ ∥A∥ − δ and 

∥pBq∥ ≥ ∥B∥ − δ. It becomes trivial to verify that 

 ∥UA,B∥CB ≥ ∥pAq,  pBq∥CB  hence regarding pAq 

and pBq as operators on the two dimensional 

space n1, it follows that  ∥UA,B∥CB ≥ ∥pAq∥∥pBq∥ 

≥ (∥A∥ − δ)(∥B∥ − δ). By letting δ > 0, we have  

∥UA,B∥CB ≥ ∥pAq∥∥pBq∥ ≥ ∥A∥ ≥ ∥B∥ ⇒  

∥UA,B∥CB ≥ ∥A∥∥B∥. 

Theorem 4.15. Let A, B ∈ B(H) and UA,B =A ⊗h 

B + B ⊗h A be normally represented then ∥ 

UA,B ∥Inj ≥ 2(√2 − 1)∥A∥∥B∥. 

Proof. Let ∥A∥ = ∥B∥ = 1 and A, B be functions 

on D := (B(H)*), and UA,B as a function on        

D × D. Taking dot products of A and B using a 

suitable scalars of modulus 1, we let A(x0) = 1 

and B(y0) ∀ x0, y0 ∈ D. Putting A1 = A(x0), and 

B1 = B(y0). Then it gives                                 

UA,B (x0, y0) = 2B1, UA,B (y0, y0) = 2A, UA,B(x0, 

y0) = 1 + A1B1  if  |A1| or|B1| ≥ √(2 – 1). This 

completes the proof. On the other hand, if 

suppose that |A1| < √(2 – 1) and |B1| <√(2 – 1) 

then, 

 |1+ A1B1| > |− (√(2 – 1))
2
|=2(√(2 −1)) ∥A∥∥B∥. 

Corollary 4.16. Let R =∑
n

i=1Ai ⊗ Bi ∈ B(H) ⊗ 

B(H). Then we have ∥R∥Inj= sup{∥Ai ⊗ Bi∥ : X ∈ 

B(H)}, ∥X ∥ = 1 if and only if X is rank one 

Operator. 

Proof. Let R(X ) =∑
n

i=0Ai ×Bi and ∥R∥β = 
sup{∥Rx∥ : X ∈ B(H), ∥X ∥ =1, and, rank (X ) = 

1}. It is known [70] that every rank one operator 

X ∈ B(H) is of the form x = v ⊗ ¯ς  for all v, ς ∈ 

H then this gives  

∥R∥β= sup{| ∑ n
 i=1⟨Ai × Bi⟩ ξε| : ∥X ∥ = 1, Rank 

(X ) = 1, ∥ξ ∥ = ∥ε∥ = 1} 

= sup{|n ∑i=1⟨Ai, v, ε ⟩⟨B1ξ, δ ⟩|: ∥δ ∥ = 

∥v∥ = ∥ξ ∥ = ∥ε∥ = 1} 

= sup{|∑
 n

 i=1f (Ai) g(Bi)|}. 

Taking the last supremum all over all functionals 

of the form f = V ⊗¯ε, g = ξ ⊗¯δ. For all 

elements in the product U(H) of B(H ) is a norm 

limit of convex combinations of elements of the 

form V ⊗ ¯ ε and the unit ball U(H) is a weak 

dense in the unit ball of dual of B(H). This 

implies that ∥R∥β = ∥R∥Inj. 

Proposition 4.17. Let A, B ∈ B(H) where H is 

infinite dimensional, then r(A*A = B*B) = 
inf

 

l>0r(lA*A +1lB∗B) if and only if there exists ε ∈ 

H, ∥ε∥ = 1 such that                                                   

∥Aε∥2= ∥Bε∥2=12r(A∗A + B∗B). 

Proof. By letting r(A*A + B*B) = 1, if the 

second part is satisfied, then                                        

⟨r(A*A + B*B)ε, ε⟩ = ∥Aε∥2
= ∥Bε∥2

=12 (l +1l) 

≥ 1 On the other hand, if the first part holds, put 

k = Ker(A*A + B*B) − 1 and ϱB (H)be 

orthogonal  projection onto k. Put y =1n, such 

that n ≥ 2 then by the first part, there exists a 

sequence {xn} of the unit vector x in H such that                 

⟨((1 − yn)A∗A +11−ynB∗B)xn, xn⟩ ≥ r(A*A + 
B*B). For all n ≥ 2, let q = (A*A + B*B) and      

z = (B*B – A*A) then, we have, ⟨qxn, xn⟩ 
+yn⟨zxn, xn⟩ ≥ 1. Since H is finite dimensional, 
the unit ball of H is compact and there exists a 

convergent sequence of {xn}. Letting x =limnxn, 

then from the above equation and that ⟨qxn, xn⟩ ≤ 
1 then it follows that ⟨qxn, xn⟩ = 1hence       qx = 

x since ∥q∥ = 1 and for x ∈ k. From (iv), so we 

have that 

yn⟨zxn, xn⟩ + y
2

n/(1 − yn)⟨B*Bxn, xn⟩ ≥ 0. 
Dividing through by yn, we have that                     

⟨zxn, xn⟩ +yn(1−yn)⟨B*B xn, xn⟩≥ 0. Letting n → 

∞, we conclude that     ⟨zxn, xn⟩ ≥ 0. Likewise, 
from the sequence ln = −(1n) instead of yn =1n, 

we obtain a unit vector v ∈H such that ⟨zv, v⟩ ≤ 
0. So there exists a unit vector ε ∈ H such that 

⟨(A∗A −B∗B)ε, ε⟩ > 0. This together with           

(A∗A + B∗B)ε = ε  implies that ∥Aε∥2
= 

∥Bε∥2
= r (A∗A + B∗B). 

Theorem 4.18. Let UA,B: B(H) → B(H) be defined 

by UA,B = A∗XB +B∗ XA be normally 

represented, then ∥UA,B∥ = ∥UA,B|B∗(H )SA∥ 

=
inf

l>0∥lA∗A +1lB∗ B∥. 

Proof.  Let ∥A*A + B*B∥ = 1 then since UA,B = 

U lA(= )B for all l   = 0 then we have that inf 

l>0∥lA∗A +1lB∗B∥=∥∗A + B∗B∥ = 1. If H is 

infinite dimensional, then by the proposition 

[4.13], there exist a unit vector ε satisfying 

∥Aε∥2
=∥Bε∥2

==  meaning that the linear span 

L of  {Aε, Bε} can be defined by the adjoint of 

X by XAε = Bε and XBε = Aε then the adjoint 

X*, we can extend X to X* as an operator on H 

such that X = X* and X
2
= 1 then |⟨(A*XB + 

B*XA)ε, ε⟩| = 1 hence UA,B ≥ 1. But ∥UA,B ∥ ≥ 

∥UA,B∥CB ≤i
nf

l>0∥lA∗A + B∗ B∥ = 1. This 

completes the proof when H is finite 

dimensional. Suppose that H is infinite 
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dimensional, then let {sn} be a net of finite rank 

orthogonal projections increasing to identity, we 

denote by the restrictions of  snA to the range of 

sn and analogously for B for each n, let ln be 

such that  
inf

 l>0 ∥ lnA*nAn + B*nBn ∥ = ∥ lnA*nAn + B*nBn 

∥ so we have; 

∥UA,B∥ =  
sup

 ∥x∥ =1 ∥A*XB + B*XA ≥ A*sn X sn 

B + B* snXsn A   

               ≥
 sup

 ∥x∥ =1 (snA∗sn)( snXsn)( snB∗sn)( 

snXsn)( snAsn)                                                        

               = ∥lnA*nAn + B*nBn ∥ ln → l0, then  

lim 
n∥ lnA*nAn + B*nBn ∥ = ∥l0A∗A +  B*B ∥ ≥ 

∥lA*A +  B*B ∥.  

Hence ∥UA,B∥ ≥
inf

 l>0 ∥lA*A + B*B ∥. 

Proposition 4.19. Let UA,B :B(H) → B(H ) be 

defined by UA,B =A*XB + B*XA be normally 

represented, and that UA,B is real and linear, 

then, ∥UA,B∥≥i
nf 

l>0∥lA*A +  B*B∥. 

Proof. From the theorem above, let ε be a unit 

vector and X a unitary  operator such that        

XBε = Aε, then  ∥UA,B∥ ≥ ⟨(lA*XB+  B*XA)ε, 

ε⟩ =r(A*A + B*B) = ∥A*A + B*B∥. The reverse 

inequality becomes, ∥UA,B(X )∥ = ∥ 

∥≥∥A*A+B* B∥∥X 

∥. 

Corollary 4.20. Let A, B ∈ B(H ) be self adjoint 

and normal, then for UA,B = AXB + BXA we have 

that  ∥UA,B|B(H)SA∥ =
inf

l>0∥lA2+1lB2∥  If dim 

H= 2. 

Proof. If H is real, then by the theorem above, it 

is trivial. If H is complex with dim H = 2, we 

shall use the orthogonal basis {ξ1, ξ2} of H 

relative to which A is diagonal. So because B is 

self adjoint, the diagonal entries of B are real and 

the two off-diagonal entries of B can be made 

real by replacing ξ2 by ζξ2 for a suitable scalar ζ 

of modulus 1. I.e. we let A and B be real 

matrices. We may assume that 
inf

 l>0∥lA
2
+  B

2∥ 

=
 inf

 l>0∥A
2
+ B

2
 ∥ = 1 then we obtain a unit vector 

ε such that ∥Aε∥2
 = ∥Bε∥2

=   furthermore, ε is 

an eigenvector of the real symmetric matrix              

(A
2
+ B

2
)ε = ε hence ε is real. Then ⟨Aε, Bε⟩ ∈ 

R and we can also get a unitary self adjoint 

matrix X satisfying XAε= Bε and XBε = Aε.  

Then the proof follows the theorem 4.12 

Proposition 4.21. Let W2 denote the algebra of a 

complex square matrix of order 2 ×2 and Let A, 

B ∈ W2 be self adjoint, then ∥UA,B∥CB = ∥UA,B∥. 
Proof. By proposition 4.19, we can clearly see 

that 

∥UA,B|B(H )SA∥=
 inf

 l>0∥lA
2
+ B

2∥ ≥ ∥UA,B∥CB ≥ 

∥UA,B∥ = ∥UA,B|B(H)SA∥= 
inf

 l>0∥lA
2
+ B

2∥  

Hence ∥UA,B∥CB = ∥UA,B∥ 

Corollary 4.22. Let W2 denote the algebra of a 

complex square matrix of order 2 × 2 and Let A, 

B ∈ W2 be self adjoint, and normally 

represented, then ∥UA,B∥= ∥UA,B|(W2)SA∥ ≥ 

∥A∥2∥B∥2
. 

Proof. Let 
inf

l>0∥lA
2
+ B

2∥ =
 inf

l>0∥A
2
+ B

2∥. Put n 

= ∥ A
2
+ B

2∥ then by the proposition above, there 

exist a unit vector ε satisfying (A
2
+ B

2
)ε = ε and 

∥Aε|2∥Bε∥2
= .  Let ε⊥ be a unit vector 

orthogonal to ε and we put k =∥Aε⊥∥2
. Since 

A
2
+ B

2 
≤ n1 we have ∥Bε∥2

 ≤ w − k. From 

∥A∥2
2= ∥Aε∥2

= w + k and  ∥B∥2
2= ∥Bε∥2

= w – 

k   then it follows that  

 ∥A∥2
2∥B∥2

2 ≤ ( w + k)( w − k) ≤ w2= 

∥UA,B|(W2)SA∥2 
. 

Example 4.23. ([4] Example 4.5) Put A = e − iu 

and B = (e + iu)/2 where e= u =  

Let X = [Xij] then UA,B(X ) =    so 

that ∥UA,B∥ = 1 we need to show that ∥UA,B∥CB 

=√2. We note that UA,B(X ) = AXB + BXA = 

eXe + uXu. Expressing w by Hangearup norm,  

w = e⊗e + u⊗u. It suffices to consider the 

representation of w of the form w =(γe−¯βu) ⊗ 

(αe + βu) + (−βe + αu) ⊗ (¯βe + γu), then by a 

short computation,  ∥w∥H = inf{∥(A + C )e∥  

∥Ae⊥+ Ce +2Re(Bu*)∥ : AC −|B|2= 1} where 

e⊥= 1 − e. More so, Ae⊥+Ce + 2 Re(BU*)  = 

 and the norm of the last matrix is 

equal to(A + C +√(A + C )
2
+ 4|B|

2
)/2.  By 

symmetry, we assume that A ≥ C, hence  ∥Ae⊥+ 

Ce + 2Re(BU*)∥ ≥   (A + C + |A − C |) = A  

therefore,  ∥UA,B∥CB = ∥W∥H ≥ (A + C )12 A12 

≥ (2AC )12 = (2(1+ |B|2))12 ≥√2 thus in fact 

∥UA,B∥CB =√2. 

Theorem 4.24. Let Ai and Bi be commuting 

operators in B(H ), then                                            

∥∑
n

i=1 Ai ⊗ Bi ∥Inj  ≥ |σ(Ai) ◦ σ(Bi)|  if and only if  

Ai  and  Bi  are normal operators. 
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Proof. Let (φ, ψ) ∈ ΓA × ΓB, where Γ is the set 

of all multiplicative linear functionals on 

commutative algebras in B(H) then is clear that 

we can extend φ and ψ to unit functionals f and g 

on B(H) respectively using the Hahn-Banach 

theorem. This follows that  

∥( UA,B)∥ ≥|∑
n

i=1f (Ai)g(Bi)| = |∑
 n

i=1φ(Ai)ψ(Bi)|. 

Therefore ∥∑ n
i=1 Ai ⊗ Bi ∥Inj ≥|σ(Ai) ◦ σ(Bi)|. 

Since Ai and Bi are commuting operators in 

B(H),  it suffices that | σ(Ai) ◦ σ(Bi)| ≥ ∥(UA,B)∥.   

Because | σ(Ai) ◦ σ(Bi)| ≥ |φ(∑
n

i=1ψ(Ai)Bi)| and  

φ(∑
n

i=1ψ(Ai)Bi) is normal for all   (φ, ψ) ∈ ΓA 

×ΓB  then    |σ(Ai) ◦ σ(Bi)|  ≥ 
sup

 ψ∈Γ 

|φ(∑
n

i=1ψ(Ai)Bi)| = ∥φ(∑n
i=1ψ(Ai)Bi)∥ this implies  

that |σ(Ai)◦σ(Bi)| ≥|φ(∑
n

i=1φ(Ai)f (Bi)| = ∥φ(∑n
i=1f 

(Ai)Bi)∥ for all (φ, ψ) ∈ ΓA × ΓB and f ∈ S1 then 

we have that |σ(Ai) ◦ σ(Bi)| ≥∥(UA,B)∥. 

Theorem 4.25. Let A be invertible posinormal in 

B(H) and normally represented, then for   UA,A−1 

= A ⊗ A−1+ A−1⊗ A we have 

(i) ∥A ⊗ A
−1

+A
−1⊗ A∥Inj = ∥A∥∥A

−1∥ + 

 

(ii) ∥A*⊗ A
−1

+ A
−1⊗ A*∥Inj = ∥A∥∥A

−1∥ +  

 if and only if  A ∈ J 

(H)where  J (H) is the set of all 

invertible operators in B(H). 

Proof. From ([9]), it follows clearly that ∥(ΦA)∥ 

=
sup

p∈δ(MA)(p + ). Also that min ∥(ΦA)∥ 

=1∥A
−1∥and max ∥(ΦA)∥ = ∥A∥, because δ(MA) 

=δ(A
−1

) then min ∥(MA)∥ = = A and max 

∥(MA)∥ = ∥A∥∥A
−1∥=   then have that Max {p 

+ : A ≤ p ≤1A} = A + .  This maximum is 

attainable in A and    thus the result follows 

clearly since it is true that A ∈δ(MA) For (ii),  

since A ∈ J (H), there exist V ∈ (H ) such that A 

= V p|p = |A|, By ([72] corollary 1), we have that 

{x ∈ B(H) : rank x = 1} = {V*x :X ∈ B(H ), rank 

X = 1} and ∥A∥ = ∥P ∥, ∥A
−1∥ = ∥P

−1∥ this 

implies that;     

∥A*⊗ A
−1

+ A
−1⊗ A ∥Inj =

sup
∥x∥=1=rank x 

∥A*X
A−1

+ 
A−1

XA*∥ 

=
 sup

∥x∥=1=rank x ∥PV*XP
−1

V*+ P
−1

V*XP V*∥ 

=
 sup

∥x∥=1=rank x ∥P (V*X) P
−1

+ P
−1 

(V*X) P ∥ 

=
 sup

∥x∥=1=rank x ∥P XP
−1

+ P
−1

XP ∥ 

= ∥P ⊗P−1+ P−1⊗ P ∥Inj 

= ∥P ∥∥P
−1∥ +  

= ∥A∥∥A
−1∥ + . 

Conclusions 

The field of elementary operators has been so 

interesting over the past decades and much have 

been done. The norm property in particular has 

attracted many scholars but a lot can be done 

further. In our study, we considered the normally 

represented elementary operators. We 

recommend that other properties of the normally 

represented elementary operators can be studied 

like numerical ranges, positivity and spectrum. 

The norm property is also not exhausted. For the 

Jordan elementary operator, we conjecture that 

the norm ∥U∥ = ∥A∥∥B∥ + ϵ where the ϵ > 0 is 

arbitrary.   
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