
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu

2

HW2

• Due yesterday (10/18) at 2pm on Moodle

• It is ok to work with one partner for homework 2. Must

include document stating whom you worked with and

describe extent of collaboration. This policy may be

modified for future assignments.

• Remember late day policy.

– 5 total late days

3

Schedule

• 10/12: Wrap-up logic (logical inference), start optimization

(integer, linear optimization)

• 10/17: Continue optimization (integer, linear optimization)

• 10/19: Wrap up optimization (nonlinear optimization), go over

homework 1 (and parts of homework 2 if all students have turned

it in by start of class), midterm review

• 10/24: Midterm

• 10/26: Planning

4

Minesweeper

• Minesweeper is NP-complete

• http://simon.bailey.at/random/kaye.minesweeper.pdf

http://simon.bailey.at/random/kaye.minesweeper.pdf

5

NP-completeness
• Consider Sudoku, an example of a problem that is easy to verify,

but whose answer may be difficult to compute. Given a partially

filled-in Sudoku grid, of any size, is there at least one legal

solution? A proposed solution is easily verified, and the time to

check a solution grows slowly (polynomially) as the grid gets

bigger. However, all known algorithms for finding solutions

take, for difficult examples, time that grows exponentially as the

grid gets bigger. So Sudoku is in NP (quickly checkable) but

does not seem to be in P (quickly solvable). Thousands of other

problems seem similar, fast to check but slow to solve.

Researchers have shown that a fast solution to any one of these

problems could be used to build a quick solution to all the

others, a property called NP-completeness. Decades of

searching have not yielded a fast solution to any of these

problems, so most scientists suspect that none of these problems

can be solved quickly. However, this has never been proved.

6

Computational complexity

• P: polynomial-time algorithm exists

– E.g., O(n), O(n^2), O(n^3), etc.

– This is “efficient”

– Most search algorithms we saw were NOT polynomial time

– Many important AI problems can NOT be solved exactly in

polynomial time

– Theory does not always equal practice (e.g., poker, linear

programming)

– Polynomial-time algorithm can have constant in exponent,

but no parameters in exponent.

7

NP

• NP: given a candidate solution, it can be verified in polynomial

time whether it is actually a solution.

– E.g., given a coloring of Australia map, can verify easily whether every

pair of adjacent regions is a different color

• P is a subset of NP

• NP can also include many problems for which no polynomial-

time algorithms are known

– E.g., Sudoku, Minesweeper, integer programming

• Often the best-known algorithm runtime exponential in one or

more parameters

– E.g., for DFS it is O(b^m).

• P vs. NP problem: does there exist a polynomial-time algorithm

for every problem in NP?

8

Minesweeper AI?

• https://luckytoilet.wordpress.com/2012/12/23/2125/

https://luckytoilet.wordpress.com/2012/12/23/2125/

9

Straightforward algorithm

• “When the number 1 has exactly one empty square

around it, then we know there’s a mine there.”

• “If a 1 has a mine around it, then we know that all the

other squares around the 1 cannot be mines.”

• These two inference rules are good enough to solve

beginner grid

• “The trivially straightforward algorithm is actually

good enough to solve the beginner and intermediate

versions of the game a good percent of the time.

Occasionally, if we’re lucky, it even manages to solve

an advanced grid!”

10

Tank Solver Algorithm

• “From the lower 2, we know that one of the two circled

squares has a mine, while the other doesn’t. We just

don’t know which one has the mine … Although this

doesn’t tell us anything right now, we can combine this

information with the next 2: we can deduce that the

two yellowed squares are empty:”

• The idea for the Tank algorithm is to enumerate all

possible configurations of mines for a position, and see

what’s in common between these configurations.

11

Minesweeper AI

• Will Tank Solver Algorithm always work?

12

Minesweeper

• No, sometimes we will need to “guess.”

– This is the same idea behind inference vs. search for CSP and

logic.

13

Minesweeper AI

• Two endgame tactics:

– “what if the mine counter reads 1? The 2-mine configuration

is eliminated, leaving just one possibility left. We can safely

open the three tiles on the perimeter.”

– “The mine counter reads 2. Each of the two circled regions

gives us a 50-50 chance – and the Tank algorithm stops here.

Of course, the middle square is safe! To modify the

algorithm to solve these cases, when there aren’t that many

tiles left, do the recursion on all the remaining tiles, not just

the border tiles.”

14

How do the algorithms do?

• Experiments on advanced grid:

• The naïve algorithm could not solve it, unless we get very lucky.

• Tank Solver with probabilistic guessing solves it about 20% of

the time.

• Adding the two endgame tricks bumps it up to a 50% success

rate.

15

Wumpus world

• Figure 7.9 reproduces in a more precise form the

reasoning illustrated in Figure 7.5. A general algorithm

for deciding entailment in propositional logic is in

Figure 7.10. Like the BACKTRACKNIG-SEARCH

algorithm for CSP, TT-ENTAILS? Performs a

recursive enumeration of a finite space of assignments

to symbols. The algorithm is sound because it

implements directly the definition of entailment, and

complete because it works for any KB and A and

always terminates—there are only finitely many

models to examine.

16

Remember 4 criteria for search algorithms

• Completeness

– If a solution exists, the algorithm will find it

• Optimality

• Running time

• Space requirement

• Soundness is converse of completeness: a logical

inference algorithm is sound if it derives only entailed

sentences.

– In general, a search algorithm is sound if the following holds:

If no solution exists, the algorithm will output that there is no

solution (it will not output a false “solution”).

17

Soundness vs. completeness

• Recall that a sentence A is entailed by sentence B if it follows

logically from it using one of the rules we have seen.

• Soundness is highly desirable for logical inference: an unsound

inference procedure “essentially makes things up as it goes

along—it announces the discovery of nonexistent needles” and

can derive some statements that are not logically implied by the

knowledge base.

• Completeness property is also highly desirable: an inference

algorithm is complete if it can derive any sentence that is

entailed. For real haystacks, which are finite in extent, it seems

obvious that a systematic examination can always decide

whether the needle is in the haystack.

• These are both important for general search as well.

18

Wumpus world

19

Logical inference algorithm

20

Constraint satisfaction problems

• A constraint satisfaction problem consists of three

components, X, D, and C:

– X is a set of variables, {X1,…,Xn}.

– D is a set of domains, {D1,…,Dn}, one for each variable.

– C is a set of constraints that specify allowable combinations

of values.

21

Example problem: Map coloring

• Suppose that, having tired of Romania, we are looking at a map

of Australia showing each of its states and territories. We are

given the task of coloring each region either red, green, or blue

in such a way that no neighboring regions have the same color.

• To formulate this as a CSP, we define the variables to be the

regions: X = {WA, NT, Q, NSW, V, SA, T}

• The domain of each variable is the set Di = {red, green, blue}.

• The constraints require neighboring regions to have distinct

colors. Since there are nine places where regions border, there

are nine constraints: C = {SA!=WA, SA!=NT,SA!=Q, etc.}

• SA!=WA is shortcut for ((SA,WA),SA!=WA), where SA!=WA

can be fully enumerated in turn as {(red,green),(red,blue),…}

22

Integer programming

• Special case of a CSP where domain set for each

variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite,

{0,1,2,3,…..}

– Often it is just binary {0,1}

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables

together

23

Objective functions

• In most CSP examples we saw, the goal was just to

find a single assignment of values to variables that

satisfied all the constraints, and it did not matter which

solution was found. We also considered the more

general setting where we have “preference constraints”

which are encoded as costs on individual variable

assignments, leading to an overall objective function

that want would like minimize, subject to all of the

constraints being adhered to.

24

CSP variations

• The constraints we have described so far have all been absolute

constraints, violation of which rules out a potential solution.

Many real-world CSPs include preference constraints

indicating which solutions are preferred. For example, in a

university class-scheduling problem there are absolute constraints

that no professor can teach two classes at the same time. But we

also may allow preference constraints: Prof. R might prefer

teaching in the morning, whereas Prof. N prefers teaching in the

afternoon. A schedule that has Prof. R teaching at 2 p.m. would

still be an allowable solution (unless Prof. R happens to be the

department chair) but would not be an optimal one.

25

CSP variations

• Preference constraints can often be encoded as costs on

individual variable assignments—for example,

assigning an afternoon slot for Prof. R costs 2 points

against the overall objective function, whereas a

morning slot costs 1. With this formulation, CSPs with

preferences can be solved with optimization search

methods, either path-based or local. We call such a

problem a constraint optimization problem, or COP.

Linear/integer/nonlinear programming problems do

this kind of optimization.

26

Integer programming

• Special case of a CSP where domain set for each (or

some) variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite,

{0,1,2,3,…..}

– Often it is just binary {0,1}

– Some variables do not have integer restrictions and can be

any real number

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables

• Objective function of the variables to optimize

27

Integer linear programming

• Often the constraints and the objective are both

LINEAR functions of the variables, and we referring to

integer programming (IP) as integer linear

programming in this case (ILP). One could also

consider other forms for the constraints and objective

(e.g., quadratic program, quadratically-constrained

program, conic program). Specialized algorithms exist

for these as well, though more attention has been given

to the linear case and typically those algorithms are

much more effective in practice.

28

Manufacturing site selection

• A manufacturer is planning to construct new buildings at four

local sites designated 1, 2, 3, and 4. At each site, there are three

possible building designs labeled A, B, and C. There is also the

option of not using a site. The problem is to select the optimal

combination of building sites and building designs. Preliminary

studies have determined the required investment and net annual

income for each of the 12 options. This information is shown in

Table 7.1 with A1, for example, denoting design A at site 1. The

company has an investment budget of $100 million ($100M).

The goal is to maximize total annual income without exceeding

the investment budget. As the optimization analyst, you are

given the job of finding the optimal plan.

29

Manufacturing site selection

• It is an obvious requirement here that only whole

buildings may be built and only whole designs may be

selected. To begin creating a model, variables must be

defined to represent each decision. Let I = {A,B,C} be

the set of design options, and let J = {1,2,3,4} be the

set of site options.

• Let yij = 1 if design i is used at site j, and 0 otherwise

• Also, denote by pij the annual net income and by aij

the investment required for the design/site combination

i,j. As a first try, you propose the following model for

finding the maximum of annual income:

30

Manufacturing site selection

• Maximize z = sumi sumj pij yij

• Subject to:

– sumi sumj aij yij <= 100

– yij in {0,1} for all i in I and j in J

31

Manufacturing site selection

• Solving the model with an appropriate algorithm for

the parameter values given in the table, the optimal

solution is:

– yA1=yA3=yB3=yB4=yC1=1, with all other values of yij

equal to zero and z = 40. Of the available budget, $99M is

used.

32

Manufacturing site selection

• Your supervisor reviews the solution and questions your basic

reasoning. You seem to have omitted some of the logic of the

problem, because two designs are built on the same site—that is,

A1 and C1, and also A3 and B3, are all in the solution. In

addition, your supervisor now realizes that you were not alerted

to several other logical restrictions imposed by the owners and

architects—i.e., site 2 must have a building, design A can be

used at sites 1, 2, and 3 only if it is also selected for site 4, and at

most two of the designs may be included in the plans.

• Your solution violates all of these restrictions and must be

discarded. The following additional constraints are needed to

guarantee a feasible solution:

33

Manufacturing site selection

• Site 2 must have a building: sumi yi2 = 1

• There can be at most one building at each of the other

sites: sumi yij <= 1 for j = 1,3,4

• Design A can be used at sites 1, 2, and 3 only if it is

also selected for site 4: yA1 + yA2 + yA3 <= 3yA4.

• To formulate the constraints associated with design

selection, three new binary variables are introduced.

– Let wi = 1 if design i is used, 0 otherwise, for i = A,B,C

– At most two designs may be used: wA + wB + wC <= 2

– Finally, the yij and wi variables must be tied together: sumj

yij <= 4wi for i = A, B, C

34

Manufacturing site selection

• The new model has 15 variables and 10 constraints not

including the integrality requirement. Solving, you find

that the optimal solution is

yA1=yA4=yB2=yB3=wA=wB=1 with all other

variables equal to zero and z = 37. All the budget is

spent, but the profit has decreased.

35

Traveling salesman problem

• The travelling salesman problem (TSP) asks the following

question: "Given a list of cities and the distances between each

pair of cities, what is the shortest possible route that visits each

city exactly once and returns to the origin city?“

• The problem was first formulated in 1930 and is one of the most

intensively studied problems in optimization. It is used as a

benchmark for many optimization methods. Even though the

problem is computationally difficult, a large number of

heuristics and exact algorithms are known, so that some

instances with tens of thousands of cities can be solved

completely and even problems with millions of cities can be

approximated within a small fraction of 1%.

36

Traveling salesman problem

37

Traveling salesman problem

• The TSP has several applications even in its purest formulation,

such as planning, logistics, and the manufacture of microchips.

Slightly modified, it appears as a sub-problem in many areas,

such as DNA sequencing. In these applications, the concept city

represents, for example, customers, soldering points, or DNA

fragments, and the concept distance represents travelling times

or cost, or a similarity measure between DNA fragments. The

TSP also appears in astronomy, as astronomers observing many

sources will want to minimize the time spent moving the

telescope between the sources. In many applications, additional

constraints such as limited resources or time windows may be

imposed.

38

Traveling salesman problem

39

Linear programming

• Similar to ILP (both constraints and objective are linear

functions of the variables). However, for LP the

variables are not restricted to be integers; they can be

any real number. So not only are the domains infinite

for each variable, they are uncountably infinite. Integer

(and e.g., binary) variables are not allowed for LP.

– Often there are nonnegativity constraints on some of the

variables, e.g., Xi >= 0.

– Cannot impose integrality constraints, e.g., for manufacturing

problem could not use binary variables to ensure whole

buildings are built, and may end up with solution such as

yij=0.8, which is nonsensical (can’t build 0.8 of a building).

40

LP vs ILP

• Which is easier to solve, LP or ILP?

41

LP vs. ILP

• Every LP is also an ILP (can just not include any integer

variables), so clearly ILP is at least as hard as LP. It turns out

that LP can be solved in polynomial-time, while ILP is NP-hard.

In fact, several algorithms for ILP involve solving a series of LP

“relaxations,” where several of the integer variables are assigned

to specific values and the resulting optimization formulation is

solved as a linear program without any integrally-constrained

variables.

• This is perhaps counterintuitive, as for LP variables all have

infinite domain, but for ILP they may even just have domains of

size 2.

• That said, of course huge LPs are more difficult to solve than

tiny ILPs in practice, and worst-case complexity does not tell the

full story.

42

ILP algorithms

• Exhaustive enumeration: can be performed if all

variables have finite domain (can’t be done if there are

non-integral variables or integral variables over infinite

domain). Can iterate over all possible combinations of

variable values. For each combination, test for

feasibility (whether it satisfies all constraints). If it is

feasible, compute the objective value, and ultimately

output the assignment that has highest objective value

out of feasible solutions.

• Is this algorithm efficient?

43

ILP algorithm

• Unfortunately, the number of possible solutions

is 2n, where n is the number of variables. For n

= 20, there are more than 1,000,000 candidates;

for n=30, the number is greater than

1,000,000,000, which is too large to be solved

by computers.

44

0-1 integer program example

45

ILP search tree

46

ILP search tree

• We draw the tree with the root at the top and the leaves

at the bottom. The circles are called nodes, and the

lines are called branches. At the very top of the tree,

we have node 0 or the root. As we descend the tree,

decisions are made as indicated by the numbers on the

branches. A negative number, -j, implies that the

variable xj has been set equal to 0, whereas a positive

number, +j, implies that xj has been set equal to 1.

47

ILP algorithm

• The nodes are numbered sequentially as the variables are fixed

to either 0 or 1. The sequence will vary depending on the

enumeration scheme. Each node k inherits all the restrictions

defined by the branches on the path joining it to the root. This

path is given the designation Pk. For example, at node 1 the

decision +1 is indicated y the branch joining node 0 to node 1.

This means we have set variable x1 equal to 1. At node 5, the

decision -2 is indicated by the branch joining nodes 1 and 5, so

we have the additional restriction x2 = 0. The leaves at the

bottom of the tree signal that all variables have been fixed. Each

of these eight nodes represents a complete solution that can be

identified by tracing the path from the leaf node to the root and

noting the decisions associated with the branches traversed

along the way. Thus, node 6 represents the solution x = (1,0,1),

whereas node 10 represents x = (0,1,1).

48

ILP algorithm

• Can perform a recursive DFS backtracking search

algorithm (similar to both CSP backtracking search and

minimax search) on this search tree.

• Could always branch to the left, arbitrary branching, or

use more intelligent heuristics.

• Can integrate various pruning techniques like we did

for minimax search (e.g., alpha-beta pruning) and for

CSP search.

49

Branch and bound

• LP relaxation: the ILP but without the integrality constraints

• Suppose we have an incumbent solution with objective value

zB, and zK is the objective value of the LP relaxation at node k.

• Four alternatives:

– LP has no feasible solution (in which IP also has no feasible solution)

– LP has an optimal solution with lower objective value (in which the

current IP optimal solution is better than the LP optimal one and cannot

provide an improvement over the incumbent).

– Optimal solution to the LP is integer valued and feasible, and yields

improved solution.

– None of the above: i.e., the optimal LP solution improves the objective

but is not integer-valued.

• For first 3 cases nothing more to be done. Only for case 4 is

further branching needed.

50

Branch and bound

• Note that the relaxed problem associated with each

node does not have to be an LP. A second choice could

be an IP that is easier to solve than the original. Typical

relaxations of the traveling salesman problem, for

instance, are the assignment problem and the minimum

spanning tree (MST) problem.

51

Branch and bound (B&B)

• We now elaborate and present the basic steps that are

needed for solving a 0-1 integer program using B&B

(can also be used for IPs with larger domains).

Although most steps are general in that they are

appropriate for a variety of problem classes, several

computational procedures are problem dependent.

Although a maximization objective is assumed, if the

goal is to minimize, the problem can be solved with the

same algorithm after making a few modifications, or

directly by converting it to a maximization problem.

The five routines below are used to guide the search for

the optimal solution and to extract information that can

be used to reduce the size of the B&B tree.

52

Branch and Bound

• Bound: This procedure examines the relaxed problem

at a particular node and tries to establish a bound on

the optimal solutions. It has two possible outcomes:

1. An indication that there is no feasible solution in the set of

integer solutions represented by the node

2. A value zUB– an upper bound on the objective for all

solutions at the node and its descendent nodes

53

Branch and Bound

• Approximate: This procedure attempts to find a

feasible integer solution from the solution of the

relaxed problem. If one is found, it will have an

objective value, call it Z_LB, that is a lower bound on

the optimal solution for a maximization problem.

• Variable fixing: This procedure performs logical tests

on the solution found at a node. The goal is to

determine if any of the free binary variables are

necessarily 0 or 1 in an optimal integer solution at the

current node or at its descendants, or whether they

must be set to 0 or 1 to ensure feasibility as the

computations progress.

54

Branch and Bound

• Branch: A procedure aimed at selecting one of the free

variables for separation. Also decided is the first

direction (0 or 1) to explore.

• Backtrack: This is primarily a bookkeeping procedure

that determines which node to explore next when the

current node is fathomed. It is designed to enumerate

systematically all remaining live nodes of the B&B tree

while ensuring that the optimal solution to toe original

IP is not overlooked.

55

Branch and bound algorithm

56

Linear programming (LP)
• Countless real-world applications have been successfully

modeled and solved using LP techniques. This has produced an

ongoing revolution in the way decisions are made throughout all

sectors of the economy. Typical applications include the

scheduling of airline crews, the distribution of products through

a manufacturing supply chain, and production planning in the

petrochemical industry.

• Because of the simplicity of the LP model, software has been

developed that is capable of solving problems containing

millions of variables and tens of thousands of constraints.

Computer implementations are widely available for most

mainframes, workstations, and microcomputers. A variety of

problems with nonlinear functions, multiple objectives,

uncertainties, or multiple decision makers, such as those arising

in game theory, can be modeled as linear programs.

57

LP solution concepts

• Solution: An assignment of values to the decision variables is a

solution to the LP model. Given a solution, the expressions

describing the objective function and the constraints can be

evaluated. A solution is feasible if all the constraints, the non-

negativity restrictions, and the simple upper bounds are satisfied.

If any one of the restrictions is violated, the solution is infeasible.

• Optimal solution: A feasible solution that maximizes or

minimizes the objective function (depending on the criterion).

The purpose of an LP algorithm is to find the optimal solution or

to determine that no feasible solution exists.

58

LP solution concepts
• Alternative optima: If there is more than one optimal solution

(solutions that yield the same value of the objective z), the model

is said to have multiple or alternative optimal solutions. Many

practical problems have alternative optima.

• No feasible solution: If there is no specification of values for the

decision variables that satisfies all the constraints, the problem is

said to have no feasible solution. In practical problems, it is

possible that the set of constraints does not allow for a feasible

solution (e.g., x >= 3, x <=2). Such a situation might result from a

mistake in the problem statement or an error in data entry.

Redundant equality constraints or nearly identical inequality

constraints in the problem formulation may lead to a false

indication that no feasible solution exists. Although the set of

equalities may have a solution in theory, rounding errors inherent

in computer computations may make the simultaneous satisfaction

of these equalities (and sometimes inequalities) impossible.

59

LP solution concepts

• Unbounded model: If there are feasible solutions for which the

objective function can achieve arbitrarily large values (if

maximizing) or arbitrarily small values (if minimizing), the

model is said to be unbounded. When all variables are restricted

to be nonnegative and have finite simple upper bounds, this

condition is impossible. If no bounds are specified for some

variables, the model may have an unbounded solution. However,

since most decisions must take into account limitations on

resources and laws of nature, such a model is probably a poor

representation of the real problem.

60

Simplex algorithm

• The simplex algorithm, developed by George Dantzig in 1947, solves LP

problems by constructing a feasible solution at a vertex of the polytope and then

walking along a path on the edges of the polytope to vertices with non-

decreasing values of the objective function until an optimum is reached for sure.

In many practical problems, "stalling" occurs: Many pivots are made with no

increase in the objective function. In rare practical problems, the usual versions

of the simplex algorithm may actually "cycle". To avoid cycles, researchers

developed new pivoting rules.

• In practice, the simplex algorithm is quite efficient and can be guaranteed to find

the global optimum if certain precautions against cycling are taken. The simplex

algorithm has been proved to solve "random" problems efficiently, i.e. in a cubic

number of steps, which is similar to its behavior on practical problems.

• However, the simplex algorithm has poor worst-case behavior: Klee and Minty

constructed a family of linear programming problems for which the simplex

method takes a number of steps exponential in the problem size. In fact, for some

time it was not known whether the linear programming problem was solvable in

polynomial time, i.e. of complexity class P.

61

Interior point algorithm

• In contrast to the simplex algorithm, which finds an optimal

solution by traversing the edges between vertices on a

polyhedral set, interior-point methods move through the interior

of the feasible region.

• The ellipsoid algorithm (Khachiyan) is the first worst-case

polynomial-time algorithm for linear programming. To solve a

problem which has n variables and can be encoded in L input

bits, this algorithm uses O(n^4 L) pseudo-arithmetic operations

on numbers with O(L) digits. Khachiyan's algorithm and his

long standing issue was resolved by Leonid Khachiyan in 1979

with the introduction of the ellipsoid method. The convergence

analysis has (real-number) predecessors, notably the iterative

methods developed by Naum Z. Shor and the approximation

algorithms by Arkadi Nemirovski and D. Yudin.

62

Nonlinear optimization

• Maximize (or minimize) f(x)

subject to g_i(x) <= 0 for each i in {1,…,m}

h_j = 0 for each j in {1,…,p)}

x in X

• n,m,p positive integers

• X is subset of R^n (e.g., [0,1], or [-infinity,infinity]

• F, g_i, h_j real-valued functions on X for each I and

each j, with at least one of f, g_i, h_j being nonlinear

63

Nonlinear optimization

• If the objective function f is linear and the constrained space is a

polytope, the problem is a linear programming problem, which

may be solved using well-known linear programming techniques

such as the simplex method.

• If the objective function is concave (maximization problem), or

convex (minimization problem) and the constraint set is convex,

then the program is called convex and general methods from

convex optimization can be used in most cases.

• If the objective function is quadratic and the constraints are

linear, quadratic programming techniques are used.

• If the objective function is a ratio of a concave and a convex

function (in the maximization case) and the constraints are

convex, then the problem can be transformed to a convex

optimization problem using fractional programming techniques.

64

Nonlinear optimization

• Several methods are available for solving nonconvex problems. One

approach is to use special formulations of linear programming

problems. Another method involves the use of branch and bound

techniques, where the program is divided into subclasses to be solved

with convex (minimization problem) or linear approximations that

form a lower bound on the overall cost within the subdivision. With

subsequent divisions, at some point an actual solution will be obtained

whose cost is equal to the best lower bound obtained for any of the

approximate solutions. This solution is optimal, although possibly not

unique. The algorithm may also be stopped early, with the assurance

that the best possible solution is within a tolerance from the best point

found; such points are called ε-optimal. Terminating to ε-optimal

points is typically necessary to ensure finite termination. This is

especially useful for large, difficult problems and problems with

uncertain costs or values where the uncertainty can be estimated with

an appropriate reliability estimation.

65

Nonlinear programming

• Quadratic programming: For positive definite Q, the ellipsoid

method solves the problem in polynomial time. If, on the other

hand, Q is indefinite, then the problem is NP-hard. In fact, even

if Q has only one negative eigenvalue, the problem is NP-hard.

• Convex optimization: variability complexity, often solved by

gradient or subgradient methods.

• The following problems are all convex minimization problems,

or can be transformed into convex minimizations problems via a

change of variables: Least squares, Linear programming,

Convex quadratic minimization with linear constraints,

quadratic minimization with convex quadratic constraints, Conic

optimization, Geometric programming, Second order cone

programming, Semidefinite programming, Entropy

maximization with appropriate constraints

66

Homework 1

• Solutions and graded assignments back today

67

Midterm on Tuesday 10/24

• Material will be from lectures (which obviously

overlap a lot with the textbook) and from homeworks.

• No programming or questions that require Python.

• No questions on material from the textbooks that was

not covered in lecture, other than material related to the

homework problems.

68

Midterm format

• ~30 Multiple choice questions

– 3 pts each

• ~15 True/False with explanation

– 4 pts each (1 point for True/False, 3 points for

explanation)

• 5 Analytical exercises

– 10 pts each

69

Midterm format

• All of the following search algorithms require an

amount of space that is exponential in one of the

problem parameters EXCEPT:

a) BFS

b) UCS

c) DFS

d) Bidirectional search

70

Midterm format

• True/False: In a search tree, BFS will always find a

goal node with minimal depth if one exists?

– If true, give a proof.

– If false, provide a counterexample.

– 3 points for correct true/false answer, 3 points for correct

explanation.

71

Midterm topics

• Search

– Uninformed search (e.g., BFS, UCS, DFS, DLS, IDS, bidirectional

search, “Big four” search criteria)

– Informed search (e.g., best-first search, A*, heuristic functions)

– Local search (e.g., hill climbing, simulated annealing, genetic algorithms)

– Adversarial search (e.g., minimax search, alpha-beta pruning)

– Constraint satisfaction problems (e.g., inference vs. search, arc

consistency, backtracking search, variable and value ordering)

• Logic

– Propositional logic (e.g., wumpus world, models, truth tables)

– Logical inference (e.g., entailment, model checking)

• Optimization

– (Linear) integer optimization

– Linear optimization

– Nonlinear optimization

