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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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HW2

• Due yesterday (10/18) at 2pm on Moodle

• It is ok to work with one partner for homework 2. Must 

include document stating whom you worked with and 

describe extent of collaboration. This policy may be 

modified for future assignments.

• Remember late day policy.

– 5 total late days
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Schedule

• 10/12: Wrap-up logic (logical inference), start optimization 

(integer, linear optimization)

• 10/17: Continue optimization (integer, linear optimization)

• 10/19: Wrap up optimization (nonlinear optimization), go over 

homework 1 (and parts of homework 2 if all students have turned 

it in by start of class), midterm review 

• 10/24: Midterm

• 10/26: Planning
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Minesweeper

• Minesweeper is NP-complete

• http://simon.bailey.at/random/kaye.minesweeper.pdf

http://simon.bailey.at/random/kaye.minesweeper.pdf
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NP-completeness
• Consider Sudoku, an example of a problem that is easy to verify, 

but whose answer may be difficult to compute. Given a partially 

filled-in Sudoku grid, of any size, is there at least one legal 

solution? A proposed solution is easily verified, and the time to 

check a solution grows slowly (polynomially) as the grid gets 

bigger. However, all known algorithms for finding solutions 

take, for difficult examples, time that grows exponentially as the 

grid gets bigger. So Sudoku is in NP (quickly checkable) but 

does not seem to be in P (quickly solvable). Thousands of other 

problems seem similar, fast to check but slow to solve. 

Researchers have shown that a fast solution to any one of these 

problems could be used to build a quick solution to all the 

others, a property called NP-completeness. Decades of 

searching have not yielded a fast solution to any of these 

problems, so most scientists suspect that none of these problems 

can be solved quickly. However, this has never been proved.
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Computational complexity

• P: polynomial-time algorithm exists

– E.g., O(n), O(n^2), O(n^3), etc.

– This is “efficient”

– Most search algorithms we saw were NOT polynomial time

– Many important AI problems can NOT be solved exactly in 

polynomial time

– Theory does not always equal practice (e.g., poker, linear 

programming)

– Polynomial-time algorithm can have constant in exponent, 

but no parameters in exponent.
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NP

• NP: given a candidate solution, it can be verified in polynomial 

time whether it is actually a solution.

– E.g., given a coloring of Australia map, can verify easily whether every 

pair of adjacent regions is a different color

• P is a subset of NP

• NP can also include many problems for which no polynomial-

time algorithms are known

– E.g., Sudoku, Minesweeper, integer programming

• Often the best-known algorithm runtime exponential in one or 

more parameters

– E.g., for DFS it is O(b^m).

• P vs. NP problem: does there exist a polynomial-time algorithm 

for every problem in NP?
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Minesweeper AI?

• https://luckytoilet.wordpress.com/2012/12/23/2125/

https://luckytoilet.wordpress.com/2012/12/23/2125/
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Straightforward algorithm

• “When the number 1 has exactly one empty square 

around it, then we know there’s a mine there.”

• “If a 1 has a mine around it, then we know that all the 

other squares around the 1 cannot be mines.”

• These two inference rules are good enough to solve 

beginner grid

• “The trivially straightforward algorithm is actually 

good enough to solve the beginner and intermediate 

versions of the game a good percent of the time. 

Occasionally, if we’re lucky, it even manages to solve 

an advanced grid!”
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Tank Solver Algorithm

• “From the lower 2, we know that one of the two circled 

squares has a mine, while the other doesn’t. We just 

don’t know which one has the mine … Although this 

doesn’t tell us anything right now, we can combine this 

information with the next 2: we can deduce that the 

two yellowed squares are empty:”

• The idea for the Tank algorithm is to enumerate all 

possible configurations of mines for a position, and see 

what’s in common between these configurations.
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Minesweeper AI

• Will Tank Solver Algorithm always work?
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Minesweeper

• No, sometimes we will need to “guess.” 

– This is the same idea behind inference vs. search for CSP and 

logic.
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Minesweeper AI

• Two endgame tactics:

– “what if the mine counter reads 1? The 2-mine configuration 

is eliminated, leaving just one possibility left. We can safely 

open the three tiles on the perimeter.”

– “The mine counter reads 2. Each of the two circled regions 

gives us a 50-50 chance – and the Tank algorithm stops here. 

Of course, the middle square is safe! To modify the 

algorithm to solve these cases, when there aren’t that many 

tiles left, do the recursion on all the remaining tiles, not just 

the border tiles.”
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How do the algorithms do?

• Experiments on advanced grid:

• The naïve algorithm could not solve it, unless we get very lucky.

• Tank Solver with probabilistic guessing solves it about 20% of 

the time.

• Adding the two endgame tricks bumps it up to a 50% success 

rate.
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Wumpus world

• Figure 7.9 reproduces in a more precise form the 

reasoning illustrated in Figure 7.5. A general algorithm 

for deciding entailment in propositional logic is in 

Figure 7.10. Like the BACKTRACKNIG-SEARCH 

algorithm for CSP, TT-ENTAILS? Performs a 

recursive enumeration of a finite space of assignments 

to symbols. The algorithm is sound because it 

implements directly the definition of entailment, and 

complete because it works for any KB and A and 

always terminates—there are only finitely many 

models to examine. 
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Remember 4 criteria for search algorithms

• Completeness 

– If a solution exists, the algorithm will find it

• Optimality

• Running time

• Space requirement

• Soundness is converse of completeness: a logical 

inference algorithm is sound if it derives only entailed

sentences.

– In general, a search algorithm is sound if the following holds: 

If no solution exists, the algorithm will output that there is no 

solution (it will not output a false “solution”).
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Soundness vs. completeness

• Recall that a sentence A is entailed by sentence B if it follows 

logically from it using one of the rules we have seen.

• Soundness is highly desirable for logical inference: an unsound 

inference procedure “essentially makes things up as it goes 

along—it announces the discovery of nonexistent needles” and 

can derive some statements that are not logically implied by the 

knowledge base.

• Completeness property is also highly desirable: an inference 

algorithm is complete if it can derive any sentence that is 

entailed. For real haystacks, which are finite in extent, it seems 

obvious that a systematic examination can always decide 

whether the needle is in the haystack. 

• These are both important for general search as well.
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Wumpus world
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Logical inference algorithm
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Constraint satisfaction problems

• A constraint satisfaction problem consists of three 

components, X, D, and C:

– X is a set of variables, {X1,…,Xn}.

– D is a set of domains, {D1,…,Dn}, one for each variable.

– C is a set of constraints that specify allowable combinations 

of values.
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Example problem: Map coloring

• Suppose that, having tired of Romania, we are looking at a map 

of Australia showing each of its states and territories. We are 

given the task of coloring each region either red, green, or blue 

in such a way that no neighboring regions have the same color. 

• To formulate this as a CSP, we define the variables to be the 

regions: X = {WA, NT, Q, NSW, V, SA, T}

• The domain of each variable is the set Di = {red, green, blue}.

• The constraints require neighboring regions to have distinct 

colors. Since there are nine places where regions border, there 

are nine constraints: C = {SA!=WA, SA!=NT,SA!=Q, etc.}

• SA!=WA is shortcut for ((SA,WA),SA!=WA), where SA!=WA 

can be fully enumerated in turn as {(red,green),(red,blue),…}
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Integer programming

• Special case of a CSP where domain set for each 

variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite, 

{0,1,2,3,…..}

– Often it is just binary {0,1}

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables 

together
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Objective functions

• In most CSP examples we saw, the goal was just to 

find a single assignment of values to variables that 

satisfied all the constraints, and it did not matter which 

solution was found. We also considered the more 

general setting where we have “preference constraints” 

which are encoded as costs on individual variable 

assignments, leading to an overall objective function 

that want would like minimize, subject to all of the 

constraints being adhered to.
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CSP variations

• The constraints we have described so far have all been absolute 

constraints, violation of which rules out a potential solution. 

Many real-world CSPs include preference constraints

indicating which solutions are preferred. For example, in a 

university class-scheduling problem there are absolute constraints 

that no professor can teach two classes at the same time. But we 

also may allow preference constraints: Prof. R might prefer 

teaching in the morning, whereas Prof. N prefers teaching in the 

afternoon. A schedule that has Prof. R teaching at 2 p.m. would 

still be an allowable solution (unless Prof. R happens to be the 

department chair) but would not be an optimal one. 
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CSP variations

• Preference constraints can often be encoded as costs on 

individual variable assignments—for example, 

assigning an afternoon slot for Prof. R costs 2 points 

against the overall objective function, whereas a 

morning slot costs 1. With this formulation, CSPs with 

preferences can be solved with optimization search 

methods, either path-based or local. We call such a 

problem a constraint optimization problem, or COP. 

Linear/integer/nonlinear programming problems do 

this kind of optimization.
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Integer programming

• Special case of a CSP where domain set for each (or 

some) variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite, 

{0,1,2,3,…..}

– Often it is just binary {0,1}

– Some variables do not have integer restrictions and can be 

any real number

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables

• Objective function of the variables to optimize
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Integer linear programming

• Often the constraints and the objective are both 

LINEAR functions of the variables, and we referring to 

integer programming (IP) as integer linear 

programming in this case (ILP). One could also 

consider other forms for the constraints and objective 

(e.g., quadratic program, quadratically-constrained 

program, conic program). Specialized algorithms exist 

for these as well, though more attention has been given 

to the linear case and typically those algorithms are 

much more effective in practice. 
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Manufacturing site selection

• A manufacturer is planning to construct new buildings at four 

local sites designated 1, 2, 3, and 4. At each site, there are three 

possible building designs labeled A, B, and C. There is also the 

option of not using a site. The problem is to select the optimal 

combination of building sites and building designs. Preliminary 

studies have determined the required investment and net annual 

income for each of the 12 options. This information is shown in 

Table 7.1 with A1, for example, denoting design A at site 1. The 

company has an investment budget of $100 million ($100M). 

The goal is to maximize total annual income without exceeding 

the investment budget. As the optimization analyst, you are 

given the job of finding the optimal plan.
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Manufacturing site selection

• It is an obvious requirement here that only whole 

buildings may be built and only whole designs may be 

selected. To begin creating a model, variables must be 

defined to represent each decision. Let I = {A,B,C} be 

the set of design options, and let J = {1,2,3,4} be the 

set of site options.

• Let yij = 1 if design i is used at site j, and 0 otherwise

• Also, denote by pij the annual net income and by aij 

the investment required for the design/site combination 

i,j. As a first try, you propose the following model for 

finding the maximum of annual income:
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Manufacturing site selection

• Maximize z = sumi sumj pij yij

• Subject to:

– sumi sumj aij yij <= 100

– yij in {0,1} for all i in I and j in J
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Manufacturing site selection

• Solving the model with an appropriate algorithm for 

the parameter values given in the table, the optimal 

solution is:

– yA1=yA3=yB3=yB4=yC1=1, with all other values of yij 

equal to zero and z = 40. Of the available budget, $99M is 

used.
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Manufacturing site selection

• Your supervisor reviews the solution and questions your basic 

reasoning. You seem to have omitted some of the logic of the 

problem, because two designs are built on the same site—that is, 

A1 and C1, and also A3 and B3, are all in the solution. In 

addition, your supervisor now realizes that you were not alerted 

to several other logical restrictions imposed by the owners and 

architects—i.e., site 2 must have a building, design A can be 

used at sites 1, 2, and 3 only if it is also selected for site 4, and at 

most two of the designs may be included in the plans.

• Your solution violates all of these restrictions and must be 

discarded. The following additional constraints are needed to 

guarantee a feasible solution:
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Manufacturing site selection

• Site 2 must have a building: sumi yi2 = 1

• There can be at most one building at each of the other 

sites: sumi yij <= 1 for j = 1,3,4

• Design A can be used at sites 1, 2, and 3 only if it is 

also selected for site 4: yA1 + yA2 + yA3 <= 3yA4.

• To formulate the constraints associated with design 

selection, three new binary variables are introduced. 

– Let wi = 1 if design i is used, 0 otherwise, for i = A,B,C

– At most two designs may be used: wA + wB + wC <= 2

– Finally, the yij and wi variables must be tied together: sumj

yij <= 4wi for i = A, B, C 
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Manufacturing site selection

• The new model has 15 variables and 10 constraints not 

including the integrality requirement. Solving, you find 

that the optimal solution is 

yA1=yA4=yB2=yB3=wA=wB=1 with all other 

variables equal to zero and z = 37. All the budget is 

spent, but the profit has decreased.
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Traveling salesman problem

• The travelling salesman problem (TSP) asks the following 

question: "Given a list of cities and the distances between each 

pair of cities, what is the shortest possible route that visits each 

city exactly once and returns to the origin city?“

• The problem was first formulated in 1930 and is one of the most 

intensively studied problems in optimization. It is used as a 

benchmark for many optimization methods. Even though the 

problem is computationally difficult, a large number of 

heuristics and exact algorithms are known, so that some 

instances with tens of thousands of cities can be solved 

completely and even problems with millions of cities can be 

approximated within a small fraction of 1%.
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Traveling salesman problem
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Traveling salesman problem

• The TSP has several applications even in its purest formulation, 

such as planning, logistics, and the manufacture of microchips. 

Slightly modified, it appears as a sub-problem in many areas, 

such as DNA sequencing. In these applications, the concept city

represents, for example, customers, soldering points, or DNA 

fragments, and the concept distance represents travelling times 

or cost, or a similarity measure between DNA fragments. The 

TSP also appears in astronomy, as astronomers observing many 

sources will want to minimize the time spent moving the 

telescope between the sources. In many applications, additional 

constraints such as limited resources or time windows may be 

imposed.
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Traveling salesman problem
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Linear programming

• Similar to ILP (both constraints and objective are linear 

functions of the variables). However, for LP the 

variables are not restricted to be integers; they can be 

any real number. So not only are the domains infinite 

for each variable, they are uncountably infinite. Integer 

(and e.g., binary) variables are not allowed for LP.

– Often there are nonnegativity constraints on some of the 

variables, e.g., Xi >= 0.

– Cannot impose integrality constraints, e.g., for manufacturing 

problem could not use binary variables to ensure whole 

buildings are built, and may end up with solution such as 

yij=0.8, which is nonsensical (can’t build 0.8 of a building).
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LP vs ILP

• Which is easier to solve, LP or ILP?
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LP vs. ILP

• Every LP is also an ILP (can just not include any integer 

variables), so clearly ILP is at least as hard as LP. It turns out 

that LP can be solved in polynomial-time, while ILP is NP-hard. 

In fact, several algorithms for ILP involve solving a series of LP 

“relaxations,” where several of the integer variables are assigned 

to specific values and the resulting optimization formulation is 

solved as a linear program without any integrally-constrained 

variables.

• This is perhaps counterintuitive, as for LP variables all have 

infinite domain, but for ILP they may even just have domains of 

size 2.

• That said, of course huge LPs are more difficult to solve than 

tiny ILPs in practice, and worst-case complexity does not tell the 

full story.
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ILP algorithms

• Exhaustive enumeration: can be performed if all 

variables have finite domain (can’t be done if there are 

non-integral variables or integral variables over infinite 

domain). Can iterate over all possible combinations of 

variable values. For each combination, test for 

feasibility (whether it satisfies all constraints). If it is 

feasible, compute the objective value, and ultimately 

output the assignment that has highest objective value 

out of feasible solutions.

• Is this algorithm efficient?
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ILP algorithm

• Unfortunately, the number of possible solutions 

is 2n, where n is the number of variables. For n 

= 20, there are more than 1,000,000 candidates; 

for n=30, the number is greater than 

1,000,000,000, which is too large to be solved 

by computers. 
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0-1 integer program example
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ILP search tree



46

ILP search tree

• We draw the tree with the root at the top and the leaves

at the bottom. The circles are called nodes, and the 

lines are called branches. At the very top of the tree, 

we have node 0 or the root. As we descend the tree, 

decisions are made as indicated by the numbers on the 

branches. A negative number, -j, implies that the 

variable xj has been set equal to 0, whereas a positive 

number, +j, implies that xj has been set equal to 1.
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ILP algorithm

• The nodes are numbered sequentially as the variables are fixed 

to either 0 or 1. The sequence will vary depending on the 

enumeration scheme. Each node k inherits all the restrictions 

defined by the branches on the path joining it to the root. This 

path is given the designation Pk. For example, at node 1 the 

decision +1 is indicated y the branch joining node 0 to node 1. 

This means we have set variable x1 equal to 1. At node 5, the 

decision -2 is indicated by the branch joining nodes 1 and 5, so 

we have the additional restriction x2 = 0. The leaves at the 

bottom of the tree signal that all variables have been fixed. Each 

of these eight nodes represents a complete solution that can be 

identified by tracing the path from the leaf node to the root and 

noting the decisions associated with the branches traversed 

along the way. Thus, node 6 represents the solution x = (1,0,1), 

whereas node 10 represents x = (0,1,1).
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ILP algorithm

• Can perform a recursive DFS backtracking search 

algorithm (similar to both CSP backtracking search and 

minimax search) on this search tree.

• Could always branch to the left, arbitrary branching, or 

use more intelligent heuristics.

• Can integrate various pruning techniques like we did 

for minimax search (e.g., alpha-beta pruning) and for 

CSP search.
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Branch and bound 

• LP relaxation: the ILP but without the integrality constraints

• Suppose we have an incumbent solution with objective value 

zB, and zK is the objective value of the LP relaxation at node k.

• Four alternatives:

– LP has no feasible solution (in which IP also has no feasible solution)

– LP has an optimal solution with lower objective value (in which the 

current IP optimal solution is better than the LP optimal one and cannot 

provide an improvement over the incumbent).

– Optimal solution to the LP is integer valued and feasible, and yields 

improved solution.

– None of the above: i.e., the optimal LP solution improves the objective 

but is not integer-valued.

• For first 3 cases nothing more to be done. Only for case 4 is 

further branching needed.
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Branch and bound

• Note that the relaxed problem associated with each 

node does not have to be an LP. A second choice could 

be an IP that is easier to solve than the original. Typical 

relaxations of the traveling salesman problem, for 

instance, are the assignment problem and the minimum 

spanning tree (MST) problem.
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Branch and bound (B&B)

• We now elaborate and present the basic steps that are 

needed for solving a 0-1 integer program using B&B 

(can also be used for IPs with larger domains). 

Although most steps are general in that they are 

appropriate for a variety of problem classes, several 

computational procedures are problem dependent. 

Although a maximization objective is assumed, if the 

goal is to minimize, the problem can be solved with the 

same algorithm after making a few modifications, or 

directly by converting it to a maximization problem. 

The five routines below are used to guide the search for 

the optimal solution and to extract information that can 

be used to reduce the size of the B&B tree.
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Branch and Bound

• Bound: This procedure examines the relaxed problem 

at a particular node and tries to establish a bound on 

the optimal solutions. It has two possible outcomes:

1. An indication that there is no feasible solution in the set of 

integer solutions represented by the node

2. A value zUB– an upper bound on the objective for all 

solutions at the node and its descendent nodes
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Branch and Bound

• Approximate: This procedure attempts to find a 

feasible integer solution from the solution of the 

relaxed problem. If one is found, it will have an 

objective value, call it Z_LB, that is a lower bound on 

the optimal solution for a maximization problem.

• Variable fixing: This procedure performs logical tests 

on the solution found at a node. The goal is to 

determine if any of the free binary variables are 

necessarily 0 or 1 in an optimal integer solution at the 

current node or at its descendants, or whether they 

must be set to 0 or 1 to ensure feasibility as the 

computations progress.
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Branch and Bound

• Branch: A procedure aimed at selecting one of the free 

variables for separation. Also decided is the first 

direction (0 or 1) to explore. 

• Backtrack: This is primarily a bookkeeping procedure 

that determines which node to explore next when the 

current node is fathomed. It is designed to enumerate 

systematically all remaining live nodes of the B&B tree 

while ensuring that the optimal solution to toe original 

IP is not overlooked.
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Branch and bound algorithm
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Linear programming (LP)
• Countless real-world applications have been successfully 

modeled and solved using LP techniques. This has produced an 

ongoing revolution in the way decisions are made throughout all 

sectors of the economy. Typical applications include the 

scheduling of airline crews, the distribution of products through 

a manufacturing supply chain, and production planning in the 

petrochemical industry. 

• Because of the simplicity of the LP model, software has been 

developed that is capable of solving problems containing 

millions of variables and tens of thousands of constraints. 

Computer implementations are widely available for most 

mainframes, workstations, and microcomputers. A variety of 

problems with nonlinear functions, multiple objectives, 

uncertainties, or multiple decision makers, such as those arising 

in game theory, can be modeled as linear programs.
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LP solution concepts

• Solution: An assignment of values to the decision variables is a 

solution to the LP model. Given a solution, the expressions 

describing the objective function and the constraints can be 

evaluated. A solution is feasible if all the constraints, the non-

negativity restrictions, and the simple upper bounds are satisfied. 

If any one of the restrictions is violated, the solution is infeasible.

• Optimal solution: A feasible solution that maximizes or 

minimizes the objective function (depending on the criterion). 

The purpose of an LP algorithm is to find the optimal solution or 

to determine that no feasible solution exists.
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LP solution concepts
• Alternative optima: If there is more than one optimal solution 

(solutions that yield the same value of the objective z), the model 

is said to have multiple or alternative optimal solutions. Many 

practical problems have alternative optima.

• No feasible solution: If there is no specification of values for the 

decision variables that satisfies all the constraints, the problem is 

said to have no feasible solution. In practical problems, it is 

possible that the set of constraints does not allow for a feasible 

solution (e.g., x >= 3, x <=2). Such a situation might result from a 

mistake in the problem statement or an error in data entry. 

Redundant equality constraints or nearly identical inequality 

constraints in the problem formulation may lead to a false 

indication that no feasible solution exists. Although the set of 

equalities may have a solution in theory, rounding errors inherent 

in computer computations may make the simultaneous satisfaction 

of these equalities (and sometimes inequalities) impossible.
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LP solution concepts

• Unbounded model: If there are feasible solutions for which the 

objective function can achieve arbitrarily large values (if 

maximizing) or arbitrarily small values (if minimizing), the 

model is said to be unbounded. When all variables are restricted 

to be nonnegative and have finite simple upper bounds, this 

condition is impossible. If no bounds are specified for some 

variables, the model may have an unbounded solution. However, 

since most decisions must take into account limitations on 

resources and laws of nature, such a model is probably a poor 

representation of the real problem.
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Simplex algorithm

• The simplex algorithm, developed by George Dantzig in 1947, solves LP 

problems by constructing a feasible solution at a vertex of the polytope and then 

walking along a path on the edges of the polytope to vertices with non-

decreasing values of the objective function until an optimum is reached for sure. 

In many practical problems, "stalling" occurs: Many pivots are made with no 

increase in the objective function. In rare practical problems, the usual versions 

of the simplex algorithm may actually "cycle". To avoid cycles, researchers 

developed new pivoting rules.

• In practice, the simplex algorithm is quite efficient and can be guaranteed to find 

the global optimum if certain precautions against cycling are taken. The simplex 

algorithm has been proved to solve "random" problems efficiently, i.e. in a cubic 

number of steps, which is similar to its behavior on practical problems.

• However, the simplex algorithm has poor worst-case behavior: Klee and Minty 

constructed a family of linear programming problems for which the simplex 

method takes a number of steps exponential in the problem size. In fact, for some 

time it was not known whether the linear programming problem was solvable in 

polynomial time, i.e. of complexity class P.
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Interior point algorithm

• In contrast to the simplex algorithm, which finds an optimal 

solution by traversing the edges between vertices on a 

polyhedral set, interior-point methods move through the interior 

of the feasible region.

• The ellipsoid algorithm (Khachiyan) is the first worst-case 

polynomial-time algorithm for linear programming. To solve a 

problem which has n variables and can be encoded in L input 

bits, this algorithm uses O(n^4 L) pseudo-arithmetic operations 

on numbers with O(L) digits. Khachiyan's algorithm and his 

long standing issue was resolved by Leonid Khachiyan in 1979 

with the introduction of the ellipsoid method. The convergence 

analysis has (real-number) predecessors, notably the iterative 

methods developed by Naum Z. Shor and the approximation 

algorithms by Arkadi Nemirovski and D. Yudin.
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Nonlinear optimization

• Maximize (or minimize) f(x)

subject to g_i(x) <= 0 for each i in {1,…,m}

h_j = 0 for each j in {1,…,p)}

x in X 

• n,m,p positive integers

• X is subset of R^n (e.g., [0,1], or [-infinity,infinity]

• F, g_i, h_j real-valued functions on X for each I and 

each j, with at least one of f, g_i, h_j being nonlinear
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Nonlinear optimization

• If the objective function f is linear and the constrained space is a 

polytope, the problem is a linear programming problem, which 

may be solved using well-known linear programming techniques 

such as the simplex method.

• If the objective function is concave (maximization problem), or 

convex (minimization problem) and the constraint set is convex, 

then the program is called convex and general methods from 

convex optimization can be used in most cases.

• If the objective function is quadratic and the constraints are 

linear, quadratic programming techniques are used.

• If the objective function is a ratio of a concave and a convex 

function (in the maximization case) and the constraints are 

convex, then the problem can be transformed to a convex 

optimization problem using fractional programming techniques.
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Nonlinear optimization

• Several methods are available for solving nonconvex problems. One 

approach is to use special formulations of linear programming 

problems. Another method involves the use of branch and bound 

techniques, where the program is divided into subclasses to be solved 

with convex (minimization problem) or linear approximations that 

form a lower bound on the overall cost within the subdivision. With 

subsequent divisions, at some point an actual solution will be obtained 

whose cost is equal to the best lower bound obtained for any of the 

approximate solutions. This solution is optimal, although possibly not 

unique. The algorithm may also be stopped early, with the assurance 

that the best possible solution is within a tolerance from the best point 

found; such points are called ε-optimal. Terminating to ε-optimal 

points is typically necessary to ensure finite termination. This is 

especially useful for large, difficult problems and problems with 

uncertain costs or values where the uncertainty can be estimated with 

an appropriate reliability estimation.
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Nonlinear programming

• Quadratic programming: For positive definite Q, the ellipsoid 

method solves the problem in polynomial time. If, on the other 

hand, Q is indefinite, then the problem is NP-hard. In fact, even 

if Q has only one negative eigenvalue, the problem is NP-hard.

• Convex optimization: variability complexity, often solved by 

gradient or subgradient methods.

• The following problems are all convex minimization problems, 

or can be transformed into convex minimizations problems via a 

change of variables: Least squares, Linear programming, 

Convex quadratic minimization with linear constraints, 

quadratic minimization with convex quadratic constraints, Conic 

optimization, Geometric programming, Second order cone 

programming, Semidefinite programming, Entropy 

maximization with appropriate constraints
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Homework 1

• Solutions and graded assignments back today
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Midterm on Tuesday 10/24

• Material will be from lectures (which obviously 

overlap a lot with the textbook) and from homeworks. 

• No programming or questions that require Python. 

• No questions on material from the textbooks that was 

not covered in lecture, other than material related to the 

homework problems.
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Midterm format

• ~30 Multiple choice questions

– 3 pts each

• ~15 True/False with explanation

– 4 pts each (1 point for True/False, 3 points for 

explanation)

• 5 Analytical exercises

– 10 pts each
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Midterm format

• All of the following search algorithms require an 

amount of space that is exponential in one of the 

problem parameters EXCEPT:

a) BFS

b) UCS

c) DFS

d) Bidirectional search
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Midterm format

• True/False: In a search tree, BFS will always find a 

goal node with minimal depth if one exists?

– If true, give a proof.

– If false, provide a counterexample.

– 3 points for correct true/false answer, 3 points for correct 

explanation.
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Midterm topics

• Search

– Uninformed search (e.g., BFS, UCS, DFS, DLS, IDS, bidirectional 

search, “Big four” search criteria)

– Informed search (e.g., best-first search, A*, heuristic functions)

– Local search (e.g., hill climbing, simulated annealing, genetic algorithms)

– Adversarial search (e.g., minimax search, alpha-beta pruning)

– Constraint satisfaction problems (e.g., inference vs. search, arc 

consistency, backtracking search, variable and value ordering)

• Logic

– Propositional logic (e.g., wumpus world, models, truth tables)

– Logical inference (e.g., entailment, model checking)

• Optimization

– (Linear) integer optimization

– Linear optimization

– Nonlinear optimization


