
Resilient Vector Consensus in Multi-Agent Networks Using Centerpoints

Mudassir Shabbir, Jiani Li, Waseem Abbas, and Xenofon Koutsoukos

Abstract— In this paper, we study the resilient vector con-
sensus problem in multi-agent networks and improve resilience
guarantees of existing algorithms. In resilient vector consensus,
agents update their states, which are vectors in R

d, by locally in-
teracting with other agents some of which might be adversarial.
The main objective is to ensure that normal (non-adversarial)
agents converge at a common state that lies in the convex
hull of their initial states. Currently, resilient vector consensus
algorithms, such as approximate distributed robust convergence
(ADRC) are based on the idea that to update states in each time
step, every normal node needs to compute a point that lies in
the convex hull of its normal neighbors’ states. To compute
such a point, the idea of Tverberg partition is typically used,
which is computationally hard. Approximation algorithms for
Tverberg partition negatively impact the resilience guarantees
of consensus algorithm. To deal with this issue, we propose to
use the idea of centerpoint, which is an extension of median
in higher dimensions, instead of Tverberg partition. We show
that the resilience of such algorithms to adversarial nodes is
improved if we use the notion of centerpoint. Furthermore,
using centerpoint provides a better characterization of the
necessary and sufficient conditions guaranteeing resilient vector
consensus. We analyze these conditions in two, three, and
higher dimensions separately. We also numerically evaluate the
performance of our approach.

Index Terms— Resilient consensus, computational geometry,
centerpoint, fault tolerant networks.

I. INTRODUCTION

Resilient consensus in a network of agents, some of

which might be adversarial or faulty, has several applications

in multirobot networks, distributed computing, estimation,

learning and optimization (for instance, see [1], [2], [3],

[4], [5]). The main goal of resilient consensus is to ensure

that all normal agents in a network agree on a common

state despite the presence of some adversarial agents, which

aim to prevent normal nodes from consensus and whose

identities are unknown to normal agents. Resilient consensus

is achieved if appropriate state update laws are designed

for normal agents and the underlying network topology

satisfies certain connectivity and robustness conditions. For

instance, when agents’ states are scalars, [6] presents a

resilient distributed algorithm guaranteeing convergence of

normal nodes to a common state.

If agents’ states are vectors or points in R
d, d ≥ 2, then the

resilient consensus objective is to ensure that normal agents

converge at some point in the convex hull of their initial

states. A simple approach could be to run d instances of

M. Shabbir is with the Computer Science Department at the Information
Technology University, Lahore, Pakistan (Email:mudassir@rutgers.edu).

J. Li, W. Abbas, and X. Koutsoukos are with the Electrical
Engineering and Computer Science Department at Vanderbilt Uni-
versity, Nashville, TN, USA (Emails: {jiani.li, waseem.abbas, xeno-
fon.koutsoukos}@vanderbilt.edu).

scalar resilient consensus, one for each dimension. However,

as a result of this approach, normal agents might converge

at a point outside of the convex hull of their initial states,

as discussed in [7]. Thus, we cannot rely on resilient scalar

consensus algorithms to achieve resilient vector consensus.

Various solutions have been proposed to achieve resilient

vector consensus, which has been an active research topic,

for instance see [2], [7], [8], [9], [10].

In this paper, we study the resilient vector consensus

problem and a recently proposed solution referred to as

the Approximate Distributed Robust Convergence (ADRC)

algorithm in [2]. We show that the resilience of the algo-

rithm, in terms of the number of adversarial agents whose

presence does not prevent normal agents from converging to

a common state in the desired convex hull, is improved with

some simple modification. In particular, if normal agents

implement ADRC as in [2], then consensus is guaranteed

if the number of adversarial agents in the neighborhood of a

normal agent i is nfi ≤
⌈

|Ni|
2d

⌉

−1, where |Ni| is the number

of nodes in the neighborhood of i, and d is the dimension

of state vector. We show that in the case of d = 2, 3,

consensus is guaranteed if nfi ≤
⌈

|Ni|
d+1

⌉

− 1, and for d > 3

if nfi ≤
⌈

|Ni|

d
r

r−1

⌉

− 1 where r can be any integer.

ADRC is an iterative algorithm, and in each iteration, a

normal node needs to compute some point in the convex

hull of points corresponding to its normal neighbors’ states.

To compute such a point, which is referred to as the safe

point, authors in [2] utilize the idea of Tverberg partition

of points in R
d (discussed in Section III). We argue that

instead of computing Tverberg partition, it is much better

to use the notion of centerpoint in R
d to compute safe

points. The notion of centerpoint and its properties have

been an active research topic in discrete geometry [11], [12].

A centerpoint essentially extends the notion of median in

higher dimensions. We show that safe points, as used in

ADRC algorithm, are essentially the interior centerpoints.

This perspective provides a complete characterization of safe

points, and hence allows us to improve the resilience bound

of the algorithm.

• We show that the resilience of ADRC algorithm can be

improved by using the notion of centerpoint instead of

Tverberg partition. We discuss these improvements in

two, three and higher dimensions separately.

• Using centerpoints, we show that |Ni| ≥ (nfi+1)(d+1)
is not only sufficient but also necessary to compute

a safe point, which is a key step in the ADRC algo-

rithm. Here nfi is the number of adversaries in the

neighborhood of a normal node i. We also provide an

overview of various algorithms reported in the literature

to compute centerpoints in different dimensions.

• We compare and numerically evaluate our results with

the existing algorithm by simulating resilient vector

consensus in multirobot networks.

The rest of the paper is organized as follows: Section II

introduces notations and preliminaries. Section III provides

an overview of the ADRC algorithm. Section IV discusses

the notion of centerpoint for ADRC and presents main results

in the paper. Section V gives a numerical evaluation of our

results, and Section VI concludes the paper.

II. NOTATIONS AND PRELIMINARIES

We consider a network of agents modeled by a directed

graph G = (V, E) with self-loops allowed, where V repre-

sents agents and E represents interactions between agents.

Each agent i ∈ V has a d-dimensional state vector whose

value is updated over time. The state of each agent i at time

t is represented by a point xi(t) ∈ R
d. An edge (j, i) means

that i can observe the state value of j. The neighborhood

of i is the set of nodes Ni = {j ∈ V|(j, i) ∈ E}. For

a given set of points X ⊂ R
d, we denote its convex hull

by conv(X). A set of points in R
d is said to be in general

positions if no hyperplane of dimension d−1 or less contains

more than d points. A point x ∈ R
d is an interior point of

a set X ⊂ R
d if there exists an open ball centered at x

which is completely contained in X . We use terms agents

and nodes interchangeably, and similarly use terms points

and states interchangeably.

Normal and Adversarial Agents: There are two types of

agents in the network, normal and adversarial. Normal agents

are the ones that interact with their neighbors synchronously

and always update their states according to a pre-defined

state update rule, that is the consensus algorithm. Adversarial

agents are the ones that can change their states arbitrarily and

do not follow the pre-defined state update rule. Moreover, an

adversarial node can transmit different values to its different

neighbors, which is referred to as the Byzantine model. The

number of adversarial nodes in the neighborhood of a normal

node i is denoted by nfi . For a normal node i, all nodes in its

neighborhood are indistinguishable, that is, i cannot identify

which of its neighbors are adversarial.

Resilient Vector Consensus: The goal of the resilient

vector consensus is to ensure the following two conditions:

• Safety – Let X(0) = {x1(0), x2(0), · · · , xn(0)} ⊂ R
d

be the set of initial states of normal nodes, then at each

time step t, and for any normal node i, the state value

of i, denoted by xi(t) should be in the conv(X(0)).
• Agreement – For every ǫ > 0, there exists some tǫ, such

that for any normal node pair i, j, ||xi(t)− xj(t)|| < ǫ,
∀t > tǫ.

III. BACKGROUND AND APPROXIMATE DISTRIBUTED

ROBUST CONVERGENCE (ADRC) ALGORITHM

In this section, first we provide an overview of a re-

silient vector consensus algorithm known as the approximate

distributed robust convergence, recently proposed in [2].

Then, we discuss improvement in resilience guarantees of

the algorithm by reconsidering its computational aspects.

The ADRC is an iterative algorithm, in which a normal

node i gathers the state values of its neighbors in each

iteration t, and then computes a point that lies in the interior

of the convex hull of its normal neighbors’ states. After

computing this point, which is referred to as the safe point

si(t), node i updates its state as follows:

xi(t+ 1) = αi(t)si(t) + (1− αi(t))xi(t), (1)

where, αi(t) is a dynamically chosen parameter in the

range (0 1].1 It is shown in [2] that if all normal nodes

follow this procedure, they converge at a common point and

achieve resilient consensus (satisfying safety and agreement

conditions stated in the previous section).

Computation of safe point in each iteration is the key step

in the algorithm. For this, [2] utilizes results from discrete

geometry, in particular the idea of Tverberg partitions [13]

and related results. We first state the main result regarding the

partitioning of points in R
d, and then discuss the application

of this result, as adapted in [2], for computing safe points.

Proposition 3.1: ([14], [15], [16]) If we have a set X of

n points in general positions in R
d, where n ≥ r(d + 1)

and d ≤ 8, then it is possible to partition X into r pairwise

disjoint subsets X1, X2, · · · , Xr such that the intersection of

convex hulls of these r subsets is non-empty and is at least

d-dimensional.

Such a partition is a Tverberg partition. Now, consider

a normal node i in our network having n neighbors in its

neighborhood out of which at most nf are adversarial.2 Each

node corresponds to a point in R
d. The goal for a node i is to

compute an interior point in the convex hull of n−nf normal

points. If n ≥ (nf + 1)(d+ 1), then by Proposition 3.1, we

will have a partition of n points into nf +1 subsets such that

the intersection of convex hulls of these subsets is non-empty

and is d-dimensional. We call this intersection region as

Tverberg region. Since there are at most nf adversarial nodes

and we have nf + 1 subsets in the partition, one of these

subsets consists of points corresponding to normal nodes

only. Let us denote this subset by X∗. Note that the Tverberg

region lies in the convex hull of X∗, and conv(X∗) itself lies

in the convex hull of all normal nodes points. Consequently,

every interior point in the Tverberg region is a safe point.

Thus, to compute a safe point, a normal node i computes a

Tverberg partition, which is possible if n ≥ (nf +1)(d+1).
In other words, a normal node can compute a safe point in

the presence of nf adversarial neighbors if nf ≤ n
d+1 − 1.

Figure 1 gives an illustration of these ideas.

However, computing a Tverberg partition in general is an

NP-hard problem. The best known algorithm that computes

1The choice of αi(t) depends on applications, for instance, in multirobot
systems, it is selected such that the physical constraints including maximum
allowable displacement by a robot is not violated.

2For the ease of notation, we drop the subscript i from ni and nfi
denoting the total number of neighbors and the number of adversarial
neighbors of node i respectively from here onward. Note that, in general
these values can be different for different nodes.

v1

v2

v3

v4
v5

v6

(a) (b) (c)

Fig. 1. (a) Five normal (blue) and a single adversarial node. Shaded area
is the convex hull of normal nodes. (b) Tverberg partition consisting of two
subsets, out of which one contains only normal nodes. Convex hulls of both
subsets have a non-empty intersection, corresponding to a Tverberg region.
(c) Intersection of Tverberg region and the convex hull of normal nodes.

it in a reasonable run time is an approximate algorithm [17],

which has a time complexity of dO(1)n. The algorithm is

approximate in a sense that to have a partition of n points

into r subsets, n ≥ 2dr (as compared to n ≥ r(d + 1) in

Proposition 3.1). Consequently, to compute a safe point in the

presence of nf adversarial neighbors, a normal node needs

to have at least n ≥ (nf + 1)2d nodes in its neighborhood.

In other words, with a total of n neighbors, a node i can

compute a safe point, and hence achieve resilient consensus

(using ADRC) if there are nf adversarial nodes in its

neighborhood, where

nf ≤
⌈ n

2d

⌉

− 1. (2)

Note that (2) indicates resilience of the ADRC algorithm

that relies on approximate Tverberg partitions to compute

safe points. For instance, the algorithm guarantees resilient

consensus in R
2 if for every normal node, less than 25% of

its neighbors are adversarial.

A. How Can We Improve the Resilience of ADRC?

Here, we ask if it is possible to improve the resilience

of the ADRC algorithm? What modifications will allow us

to guarantee consensus even if the number of adversarial

nodes in the neighborhood of a normal node is greater than

⌈ n
2d
⌉ − 1? Next, we show that it is possible to achieve a

better resilience bound if we use a slightly different way of

computing safe points, that is by using the notion of cen-

terpoint instead of Tverberg partition. Moreover, centerpoint

provides a better characterization of necessary and sufficient

conditions for computing safe points.

IV. ADRC USING CENTERPOINTS

In this section, we explain the notion of a centerpoint and

its relation to safe point. Then, we discuss that computing a

safe point through centerpoint is more desirable as it results

in improving the resilience of the ADRC algorithm.

A. Safe point and the Interior Centerpoint

The notion of safe point is pivotal in the ADRC algorithm,

so we define nf -safe point as in [2] below.

Definition 4.1: (nf -Safe point) Given a set of n points in

d dimensions, of which at most nf correspond to adversarial

nodes, an nf -safe point is a point that lies in the relative

interior of the convex hull of (n − nf) normal points. We

refer to a (n
d+1 −1)-safe point in R

d as an optimal safe point

or just safe point.

As we discussed in the last section, a point that lies in the

interior of the Tverberg region of (nf +1) subsets is always

an nf -safe point Here, we provide a better characterization

of nf -safe point using centerpoint, which is defined below.

Definition 4.2: (Centerpoint) Given a set S of n points

in R
d in general positions, a centerpoint p is a point, not

necessarily from S, such that any closed half-space3 of R
d

that contains p also contains at least n
d+1 points from S.

Intuitively, a centerpoint lies in the “center region” of the

point cloud, in the sense that there are enough points of

S on each side of a centerpoint. A centerpoint, essentially,

extends the notion median to higher dimensions. A related

notion of centerpoint depth is defined as follows:

Definition 4.3: For a given pointset, centerpoint depth or

simply depth of a point q is the maximum number α such

that every closed halfspace containing q contains at least α
points.

Thus, a centerpoint has depth at least n
d+1 . The existence of

such a point for any given set S is guaranteed by the famous

Centerpoint Theorem (see [18], [19]).

Theorem 4.4: (Centerpoint Theorem) For any given point

set in general positions in an arbitrary dimension, a center-

point always exists.

A centerpoint doesn’t need to be unique, in fact, there can

be infinitely many centerpoints. The set of all centerpoints

constitutes the centerpoint region or simply the center region.

It is known that center region is closed and convex. We

observe that the safe point from [2] is actually an interior

centerpoint.

Theorem 4.5: For a given set of points S in R
d, an

nf -safe point is equivalent to an interior centerpoint for

nf = n
d+1 − 1.

Proof: See [20].

Theorem 4.5 provides a complete characterization of a

safe point in the presence of nf adversarial nodes. Here,

we would also like to note that nf = 1
d+1 − 1 is the best

possible fraction, that is, there exist general node positions

where allowing more adversary nodes would mean that there

is no safe point at all.

Proposition 4.6: For a set of n nodes in general positions,

if nf ≥ n
d+1 , then there exist general examples in which an

nf -safe point does not exist.

Proof: Imagine d+1 copies of n
d+1 points at the vertices

of a non-degenerate d-simplex. If there are n
d+1 adversarial

nodes whose identities are unknown, then there is no point

that lies in the convex hull of remaining points. Note that

points in this examples can be arbitrarily perturbed to ensure

that general positions condition is not violated.

Figure 2 demonstrates Proposition 4.6 for the planar case.

Further, we note that every point in the intersection of an

appropriate Tverberg partition is a centerpoint and thus, also

a safe point. However, the converse is not true; a centerpoint

or a safe point need not be a Tverberg point in general.

3Recall that closed half-space in R
d is a set of the form {x ∈ R

d :
aT x ≥ b} for some a ∈ R

d \ {0}.

X

Y Z

Fig. 2. S is partitioned into X,Y, Z each of which contains n/3 points. If
there are n/3 adversarial nodes then points in either of these three sets can
all be adversarial. We require that an nf -safe point must lie in the convex
hull of normal nodes for all three possibilities. This is not possible because
intersection of three possible sets of normal nodes X ∪ Y , Y ∪Z, Z ∪X
is empty. Therefore, there is no nf -safe point in this case.

In [2], normal nodes compute safe points using ap-

proximate Tverberg partitions [17], which deteriorate the

resilience of ADRC algorithm from nf ≤ n
d+1 − 1 to

nf ≤ n
2d

− 1. However, with this new characterization, we

can use centerpoints to compute safe points. Thus, if we

are able to compute centerpoint exactly (in a reasonable run

time), then we are able to improve the resilience of ADRC

algorithm, that is,

nf ≤
n

d+ 1
− 1 (3)

as compared to (2).

Next, we discuss the existence and computation of interior

centerpoints in two, three and higher dimensions separately.

B. Centerpoint-based Resilient Consensus in 2-D

In [2], authors show that an nf -safe point can be found

in R
2 when the number of adversarial nodes nf is at most

min
(

⌈n
4 ⌉, ⌊

n
3 ⌋

)

− 1 where n is total number of nodes in

the neighborhood of a normal node. As is evident, this is a

loose bound on the resilience of such a consensus algorithm.

Unfortunately, that is the best that can be hoped for if

one is to seek a safe-point using an approximate Tverberg

partition. Tverberg partitions are, in general, thought to be

computationally expensive. However, we have showed in

Theorem 4.5 that safe points and the interior centerpoints

always coincide, and in the following subsection, we summa-

rize a well-known linear time algorithm to find a centerpoint

in the plane. It should be pointed out that complexity of

finding a centerpoint in general dimensions is unknown,

although computing centerpoint depth of a given point is

coNP-Complete. In this section, we propose the following

result to compute a safe point in the plane:

Theorem 4.7: Given a set of n points in two dimensions

in general positions, an nf -safe point exists whenever the

number of adversarial nodes is nf ≤ n
3 − 1. Moreover, such

a safe point can be computed in linear time.

Proof: See [20].

Remark 4.8: The set of Tverberg points is a subset of

the centerpoint region. Thus, the existence of an interior

centerpoint in the plane, as shown above, is also implied

by the existence of an interior Tverberg point in dimensions

two to eight. We hope that the alternative proof above may

help extend this result to dimensions greater than 8 for which

the existence of an interior centerpoint and interior Tverberg

point are unknown.

C. Computing Centerpoint in 2-D

Here we address the computational aspects of the center-

point in two dimensions. Due to a seminal result in [21], it is

possible to find a centerpoint for a non-degenerate pointset

in the optimal O(n) time. We remark that this result is

also significant because it makes finding a centerpoint in

linear time possible even when checking whether a point is

a centerpoint can not be done in better than Ω(n log n) time.

Here, we briefly outline this method to compute a centerpoint

of a set of points; the details can be found in [21].

The algorithm is based on the idea that by pruning or

replacing some of the “marginal points”, a centerpoint of the

remaining points is still a centerpoint of the original pointset.

In each iteration one can compute the points that are to be

discarded or replaced, which will reduce the size of the set by

a fraction. We continue the pruning procedure until the size

of the set becomes smaller than a fixed constant, one can then

compute a centerpoint by any straightforward brute-force

method. Pruning of points is a pivotal step in the algorithm.

Given a set of n points P , we start by defining four half-

planes, named L, U , R, and D (representing Left, Up, Right,

and Down, respectively), such that each of them contains less

than ⌈n
3 ⌉−1 points (this ensures that they don’t contain any

centerpoint) and their closures contain at least ⌈n
3 ⌉ points.

And the closure of each of the sets L∩U , L∩D, R∩U , and

R∩D contains at least
(

⌈n
3 ⌉ − ⌈n

4 ⌉
)

points. It is, then, argued

that either one can discard the points of a triangle on three

points from three of the four intersections or substitute four

points from the four intersection sets by their Radon point4.

This reduces the size of P by a significant fraction and a

centerpoint of the remaining point set is also a centerpoint

of the original point set. The pruning process, as illustrated in

Figure 3, is repeated until the number of points is less than a

small constant, and then one can compute the centerpoint by

a brute-force method. The construction of halfplanes with the

prescribed number of points in their intersection is achieved

by the famous ham-sandwich cut algorithm [22].

(a) (b) (c)

Fig. 3. One iteration illustration of replacing points in L ∩ U , L ∩ D,
R ∩ U , and R ∩D by their Radon points: (a) point set of 100 points, (b)
intersections of the four half-planes, and (c) replacement of points in the
intersections by their Radon point.

4Any set of 4 points in R
2 can be partitioned into two disjoint sets whose

convex hulls intersect. A point in the intersection of these convex hulls is
called a Radon point of the set.

D. Centerpoint-based Resilient Consensus in 3-D

The resilience bound that we get from the results in [2]

guarantee an nf -safe point in three dimensions whenever

nf ≤ n
8 -1 adversarial nodes. From the centerpoint theorem,

we know that a safe point exists in the interior of centerpoint

region in 3-D even in the presence of (n/4)− 1 adversarial

nodes. In context of Theorem 4.5, this property can be

leveraged to present a better resilience guarantee.

Theorem 4.9: An
(

n
4 − 1

)

-safe point exists for every

pointset in general positions in R
3. Such a point can be

computed in O(n2) expected time.

Proof: We know that an
(

n
4 − 1

)

-safe point is an

interior centerpoint from Theorem 4.5, and [15] implies that

an interior centerpoint must exist in three dimensions. A

randomized algorithm by Chan can be used to compute a

centerpoint in three dimensions in O(n2) expected time [23].

We proceed by running Chan’s algorithm four times, and

compute the centroid of the four centerpoints returned to get

an interior centerpoint.

Next, we provide a brief overview of Chan’s algorithm

in which he computes a centerpoint of a non-degenerate

pointset in O(nd−1) time [23]. He first solves the decision

version of the problem: does there exist a point of depth k for

a given k? If the answer is yes, then a point of given depth

is reported as well. This decision version is solved using a

randomized Linear Program solver by dualizing the pointset:

given points S are dualized to a set S∗ of hyperplane and

a point of given depth dualizes to special hyperplane that

has at least k hyperplanes from S∗ above or below it. The

problem of finding this hyperplane is solved by partitioning

the space and solving sub-problems in each smaller region.

The partitioning is done by the famous Cutting Lemma [24].

For further details, we refer to the paper [23].

E. Centerpoint-based Resilient Consensus in d-dimensions

for d > 3

In higher dimensions, current methods to compute either

a desirable Tverberg partition or a centerpoint for a given

pointset become computationally impractical. It is known

deciding whether a point lies in the intersection of a Tverberg

partition is NP-Complete and deciding whether a point is

centerpoint is coNP-Complete. Various approximations are

employed to compute these points in practice. In [2], authors

use a “lifting-based” approximation that finds an nf -safe

point in presence of nf ≤ n
2d

− 1 adversarial nodes. In the

following, we outline an algorithm by Miller and Sheehy to

compute an approximate centerpoint [25]. The point returned

by this algorithm has a centerpoint depth of n
dr/r−1

for any

integer r ≥ 2. For r = 3, this gives an nf -safe point when the

number of adversarial nodes is at most n
d3/2 . By increasing

r, the quality of approximation, and hence the bound on the

number of adversarial nodes improves. However, it comes at

the cost of increasing time complexity as the runtime of the

algorithm is O(rdd) for an integer r > 1.

Miller and Sheehy centerpoint-approximation algorithm is

based on the technique of Radon’s theorem which states

that for any given set of at least d + 2 points, there exists

a partition into two sets with intersecting convex hulls; a

point in the intersection of the two said sets is called a

Radon point. They improve upon a classic algorithm that

starts by partitioning a given pointset S into groups of d+2
points and computing Radon point for each group. The set

of ⌈ |S|
d+2⌉ Radon points returned in the previous iteration are

assumed to be the new pointset and centerpoint for these

points is recursively computed. An approximate centerpoint

is, thus, found in at most logd+2 |S| iterations. Miller and

Sheehy showed that they can create groups of larger sizes

(of multiples of d + 2 points) and reduce the number of

iterations. Details of their algorithm, anyalsis and proof of

correctness is available in [25]. As a consequence, we have

the following result:

Theorem 4.10: For a given pointset in R
d in general

positions, a
(

n
dr/r−1

)

-safe point exists and can be computed

in time O(rdd) for any integer r > 1.

Thus, using approximate centerpoint in dimension d, con-

sensus is guaranteed if the number of adversarial nodes in

the neighborhood of every normal node is nf ≤ n
dr/r−1

for

an integer r > 1, which is better than the resilience achieved

by using approximate Tverberg partition, where nf ≤ n
2d
−1.

V. NUMERICAL EVALUATION

We perform simulations5 to compare resilient consensus

in multirobot systems in two dimensions using centerpoint

and approximate Tverberg partition [2]. At each iteration

t of the multi-robot consensus algorithm, a normal robot

i computes a safe point si(t) of its neighbors’ positions

(using centerpoint or approximate Tverberg partition), and

calculates its new position using (1). In our experiments, we

set αi(t) = 0.8. We consider stationary adversarial nodes,

and assume that the network graph is undirected and fixed.6

A group of 45 robots of which 5 are adversarial is distributed

in a planar region W = [−1, 1]× [−1, 1] ∈ R
2 as shown in

Figure 4(a). All normal robots have at most
(

⌈ |Ni|
3 ⌉ − 1

)

adversaries in their neighborhood, which means resilient

consensus is guaranteed by the centerpoint based algorithm.

However, a couple of normal robots (depicted in yellow

color) have nfi adversaries in their neighborhood, where
(

⌈ |Ni|
4 ⌉ − 1

)

< nfi ≤
(

⌈ |Ni|
3 ⌉ − 1

)

. For the two robots in

yellow, they have 7 and 8 neighbors, and both of them have

2 adversarial neighbors in their respective neighborhoods.

Consequently, the resilient consensus condition for the ap-

proximate Tverberg partition based algorithm is not satisfied,

and consensus is not guaranteed. Figures 4(b) and (c) show

final positions of robots for both algorithms. It is clear that

consensus is achieved with the centerpoint based algorithm,

whereas robots fail to converge at a common point using

the approximate Tverberg partition based algorithm. Figure

5 illustrates positions of robots as a function of iterations

and demonstrates the same results.
5Our code is available at https://github.com/JianiLi/

MultiRobotsRendezvous
6For additional experiments with disk graphs and moving adversaries, see

[20].

(a) (b) (c)

Fig. 4. (a) Initial positions of robots. (b) Final positions of robots using
approximate Tverberg partition based algorithm. (c) Final positions using
centerpoint based algorithm.

(a) (b)

Fig. 5. Positions of normal robots as a function of iterations using (a)
approximate Tverberg partition based, and (b) centerpoint based algorithms.

VI. CONCLUSION

The task of ensuring consensus in the convex hull of vector

states for a set of nodes, a fraction of which may be under

the influence of an adversary, is a challenging problem. In

this work, we presented a geometric characterization of an

optimal point, in the form of a centerpoint, in the convex

hull of normal nodes when the number of adversarial nodes is

limited to a 1/(d+1) fraction of the size of the neighborhood

of a node. It also followed that the upper bound on the

number of adversarial nodes is best possible in the worst

case. We proposed to use well-known efficient algorithms

to compute exact centerpoints in two and three dimensions.

For higher dimensions, we used an approximate centerpoint

algorithm proposed in [25], and improved previous bound on

the number of adversarial nodes.

It follows from our results that if the fraction of adversarial

nodes in the neighborhood of every normal node is at

least d/(d + 1), then adversarial nodes can make normal

nodes converge to any point they desire. At the same time,

if their fraction is less than 1/(d + 1), then the resilient

consensus is guaranteed. In future, we aim to study and

characterize the effect of adversarial nodes if their fraction

in the neighborhood of a normal node is between the above

two numbers.

ACKNOWLEDGEMENTS

This work was supported in part by the National Institute

of Standards and Technology under Grant 70NANB18H198,

and by the National Science Foundation under award CNS-

1739328.

REFERENCES

[1] L. Tseng and N. Vaidya, “Iterative approximate byzantine consensus
under a generalized fault model,” in International Conference on

Distributed Computing and Networking. Springer, 2013, pp. 72–86.
[2] H. Park and S. A. Hutchinson, “Fault-tolerant rendezvous of multirobot

systems,” IEEE Transactions on Robotics, vol. 33, pp. 565–582, 2017.
[3] J. Li and X. Koutsoukos, “Resilient distributed diffusion for multi-task

estimation,” in Proceedings of the 14th International Conference on

Distributed Computing in Sensor Systems, 2018, pp. 93–102.
[4] W. Abbas, A. Laszka, and X. Koutsoukos, “Improving network

connectivity and robustness using trusted nodes with application
to resilient consensus,” IEEE Transactions on Control of Network

Systems, vol. 5, no. 4, pp. 2036–2048, 2017.
[5] L. Su and N. Vaidya, “Multi-agent optimization in the presence of

byzantine adversaries: Fundamental limits,” in 2016 American Control

Conference (ACC). IEEE, 2016, pp. 7183–7188.
[6] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient

asymptotic consensus in robust networks,” IEEE Journal on Selected

Areas in Communications, vol. 31, no. 4, pp. 766–781, 2013.
[7] N. H. Vaidya and V. K. Garg, “Byzantine vector consensus in complete

graphs,” in Proceedings of the 2013 ACM Symposium on Principles

of Distributed Computing (PODC). ACM, pp. 65–73.
[8] N. H. Vaidya, “Iterative byzantine vector consensus in incomplete

graphs,” in International Conference on Distributed Computing and

Networking. Springer, 2014, pp. 14–28.
[9] H. Mendes and M. Herlihy, “Multidimensional approximate agreement

in byzantine asynchronous systems,” in 45th Annual ACM Symposium

on Theory of Computing, 2013, pp. 391–400.
[10] L. Su and N. H. Vaidya, “Fault-tolerant multi-agent optimization: opti-

mal iterative distributed algorithms,” in ACM Symposium on Principles

of Distributed Computing, 2016, pp. 425–434.
[11] M. Shabbir, “Some results in computational and combinatorial geom-

etry,” Ph.D. dissertation, Rutgers University-New Brunswick, 2014.
[12] N. H. Mustafa, S. Ray, and M. Shabbir, “k-centerpoints conjectures

for pointsets in d,” International Journal of Computational Geometry

& Applications, vol. 25, no. 03, pp. 163–185, 2015.
[13] H. Tverberg, “A generalization of Radon’s theorem,” Journal of the

London Mathematical Society, vol. 1, no. 1, pp. 123–128, 1966.
[14] J. R. Reay, “An extension of Radon’s theorem,” Illinois J. Math.,

vol. 12, no. 2, pp. 184–189, 06 1968.
[15] J.-P. Roudneff, “New cases of Reays conjecture on partitions of points

into simplices with k-dimensional intersection,” European Journal of

Combinatorics, vol. 30, no. 8, pp. 1919–1943, 2009.
[16] ——, “Partitions of points into intersecting tetrahedra,” Discrete

Mathematics, vol. 81, no. 1, pp. 81–86, 1990.
[17] W. Mulzer and D. Werner, “Approximating tverberg points in linear

time for any fixed dimension,” Discrete & Computational Geometry,
vol. 50, no. 2, pp. 520–535, 2013.

[18] R. Rado, “A theorem on general measure,” Journal of the London

Mathematical Society, vol. 1, no. 4, pp. 291–300, 1946.
[19] J. Matoušek, Lectures on Discrete Geometry. Springer, 2002.
[20] M. Shabbir, J. Li, W. Abbas, and X. Koutsoukos, “Resilient

vector consensus in multi-agent networks using centerpoints,” 2020.
[Online]. Available: https://arxiv.org/abs/2003.05497

[21] S. Jadhav and A. Mukhopadhyay, “Computing a centerpoint of a
finite planar set of points in linear time,” Discrete & Computational

Geometry, vol. 12, no. 3, pp. 291–312, 1994.
[22] N. Megiddo, “Partitioning with two lines in the plane,” Journal of

Algorithms, vol. 6, no. 3, pp. 430 – 433, 1985.
[23] T. M. Chan, “An optimal randomized algorithm for maximum tukey

depth,” in Proceedings of the 15th annual ACM-SIAM Symposium on

Discrete Slgorithms (SODA). SIAM, 2004, pp. 430–436.
[24] B. Chazelle, “Cutting hyperplanes for divide-and-conquer,” Discrete

& Computational Geometry, vol. 9, no. 2, pp. 145–158, 1993.
[25] G. L. Miller and D. R. Sheehy, “Approximate centerpoints with

proofs,” Computational Geometry, vol. 43, no. 8, pp. 647–654, 2010.

