

Airside Fundamentals-II "Airside Distribution"

1. Duct Design <12 hours>

- A. Pressure Variations in a Duct System
 - 1) Concepts:
 - a) Static, Velocity, Total Pressure & Losses
 - b) Takeoff Variations
 - c) Effect of Fabrication on Regain
 - d) Reducer Variations
- B. Equal Friction Duct Design
 - 1) Use of Air Friction Chart & Ductulator
 - 2) Create your own design method
 - 3) Round vs. Rectangular
 - 4) Airflow Balancing
- C. Static Regain Duct Design
 - 1) Efficiency & inherent balance
 - 2) Computerized Duct Design Analysis
- D. Practical Duct Layout Guidelines

<u>Purpose</u>: Duct Design is intended to give the student a better understanding of what happens to air as it moves through a duct system. They will learn how certain design variables affect the overall losses. This course will help a designer know when to use one design over the other and how best to optimize each design for the particular application.

2. Fans & Fan Laws <8-10 hours>

- A. Definitions
- B. Concepts
 - 1) Resistance vs. Velocity; Fan Testing; Fan Curves; Fan Surge; System Curve
 - 2) Actual Fan Selection (analysis of various sizes that meet criteria)
- C. Fan Types:
 - 1) FC, BI, AF
 - 2) Centrifugal, Vaneaxial, Plug/Plenum
- D. Fan Laws
 - 1) #1 Effect of RPM Change
 - 2) #4 Density Change Constant Volume
 - 3) #6 Density Change Constant Mass Flow Rate
- E. Fan Modulation Methods
- F. Application Considerations

<u>Purpose:</u> Fans & Fan Laws is intended to give the student a better understanding of how a fan works & which fan works best for each application. It will help a student to diagnose problem jobs as well as to increase the overall efficiency of a new design. They will learn how certain design variables such as size, RPM, type & class affect the overall efficiency and acoustical performance of a particular fan. Most importantly, they will learn how to use the fan laws to make important changes in existing fan systems.

3. Acoustics <2-4 hours>

- A. Concepts:
 - 1) Noise, Audiometry, Sound
 - 2) Frequency, Wavelength & Amplitude
 - 3) Pure Tone, Broad Band & White Noise
 - 4) Sound Pressure, Power & Intensity
 - 5) Octave Bands
 - 6) Acoustical Sound Meters
 - 7) Free Fields vs. Far Fields
 - 8) Anechoic vs. Reverberation Chambers
 - 9) NC vs. NR Curves
- B. Acoustic Rules of Thumb
- C. Effectiveness of a Sound Barrier
- D. Why Humans Hear Differently Than A Microphone
- E. How To Do A Sound Map
- F. How To Calculate Influence of Background Noise
- G. How to Calculate the Influence of Multiple Source

<u>Purpose:</u> Acoustics is one of the least understood aspects of HVAC design. This course lays a practical foundation that allows the student to handle a majority of acoustical problems they are likely to face. On existing problem jobs the student will learn what are the most cost effective ways to reduce sound levels. And on a new job, they will learn how best to design the proper acoustical levels up front.