
IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1334 | P a g e

Industry's Experiences with Extreme Programming Practices
Dr. Mohamed Basheer.K.P, Asst. Professor, SS College, Areekode, Malappuram- Dt, Kerala

Noushad Rahim M, HSST Dept. of Computer Science DHSE, Kerala

Abstract- Agile methodologies are light weight software development

processes. Agile processes focus on developing high quality software

by embracing change in software development. In this paper the

author discusses the best known Agile methodology called Extreme

Programming (XP), focusing on XP practices and its Software

Industry Experiences. The industry analysis reveals that XP is a
successful software engineering methodology in small projects and

some of its practices can even be used in big projects.

Index Terms- Extreme Programming, XP, Agile Software

Development, Software Engineering, Pair Programming.

I. INTRODUCTION

Kent Beck who introduced the concept of Extreme Programming

describes XP as a light weight efficient, low risk, flexible, predictable,

scientific and fun way to develop software[1]. XP contains a set of

values, beliefs and practices. The target of XP is to reduce defects,

improve design, increase productivity, shorten time to market, easy

knowledge transfer, integration of new comers, reduce training cost,

responding to changes in the requirements and greater customer

satisfaction. This is a replacement for the so-called Big Bang

Waterfall model which needs large scale requirement analysis, design

plan and requirement freezing. In XP the customer and the
development team agrees a series of user stories that concisely define

the user requirements. XP addresses the problem of huge development

cost by providing early prototypes. XP consists of a number of

practices like pair programming, small release, on-site customer input,

code refactoring etc. Communication is the key factor of extreme

programming and it discourages documentation. Even if XP contains

twelve religious like practices, it is basically people oriented rather

than process oriented. XP team is cross functional i.e., it includes

members with testing skills, business analyst, domain experts and

customer himself.

Fig.1: Waterfall Model

II. EXTREME PROGRAMMING PRACTICES

a. Planning Game.

 Quickly determine the scope of next release. The customer along

with the technical people determines the business priorities and

technical estimate is done based on user stories provided by the

customer. As reality over takes the plan, update the plan. This
will reduce guess work and time wasted on useless features.

b. Small release.

Put a simple system into production quickly then release new

versions on a very short cycle. The smaller releases (increments)

will reduce development risks, provide frequent feedback and

reduce the overall project slippage.

c. Metaphor.

The system will be described using simple shared stories.

Customers, programmers and managers use the stories to explain

how the system works. It is a naming concept for classes and

methods which makes it easy everybody to guess what

functionality is. It is a quick and easy way to explain the system

and reduce buzz words and jargon.

d. Simple Design.

The System should be designed as simple as possible at any given

moment. Extra complexity is removed as soon as it is discovered.

The programmer should ask himself is there a simpler way to

implement the functionality. Complex design is discouraged.

e. Testing.
Automated unit testing is used to eliminate defects through source

code changes. Test first development will ensure that every piece

of code is tested before it is shipped.

f. Refactoring

Programmers can rewrite programs whenever he feels to do so to

remove duplication, to make the code simple or add flexibility

without changing the behavior. This provides the developer the

freedom to pro-actively improve the system using design
principles and design patterns.

g. Pair Programming.

All production code is written by a group of pair programmers.

Each pair will use one machine (One monitor and one keyboard).

The pair will work together for designing, coding and testing.

One of them is called driver and the other one is called navigator.

When one is writing code, the other one will think about
refactoring, test cases etc.

h. Collective ownership.

The code belongs to every member of the team and any one can

change any code in the system at any time. This gives freedom

for any programmer to re-factor the code anybody else has

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1335 | P a g e

written. If any member leaves the team it will not affect the

development.

i. Continuous Integration.

Whenever a task is completed it should be integrated to the latest

version of the system. The system should be built and all the

automated test cases should be run. This is done multiple times in

a day. This enables small releases.

j. 40 Hour week

XP advocates forty hour week rule for the developers. Overtime

work will affect the quality and productivity. XP is a people
oriented process and value is placed on the well being of the

developers.

k. On-site Customer.

A real customer should be part of the development team all the

time. The developers can contact the customer for any business

requirement at any time. This will make sure that what is

developed is what is really needed by the customer and a lot of

guess work can be avoided.

l. Coding standard.

All the programmers should write the code using same coding

conventions. It should be such that nobody can identify the author

by just looking at the code. This will enable everybody to read

and understand anybody else’s code. This will ensure the code

readability and the code itself become documentation.

Fig.2: Extreme Programming Practices

III. INDUSTRY'S EXPERIENCES WITH EXTREME

PROGRAMMING PRACTICES

Some of the practices of Extreme Programming were part of the

software industry before XP was introduced as a software

development process. But XP was invented 1n 1996 when automaker

Chrysler invited Kent Beck to save their project Chrysler

Comprehensive Compensation (C3). In C3 Beck started using some of

Extreme Programming practices like test first development. But XP

started using in software industry after Kent Beck wrote the book

"Extreme Programming Explained" based on his experiences in C3.

By 2000 onwards many companies have started using XP. In this
paper the author tries to discuss experiences of some of the software

companies like IBM, Connextra (www.Connextra.com), Avaya,

Subex Systems with Extreme Programming.

At IBM a team of ten developers used XP for the development of an

internal component for WebSphere Application Server, one of IBM's

large middle ware products [4] . The team recognized that they will

have to face too many changes in the requirement and thus they
decided to try Extreme Programming. They followed XP practices

religiously and delivered the component on time [4].

Connextra (www.connextra.com) has used XP for the development of

a context-sensitive Advert for web, ActiveAd. Elena, a graphic

designer at Connextra says that XP in Connextra worked well [5].

Avaya Labs also had positive results on their experience with Extreme

Programming. All projects at Avaya was large and they used XP in

some of the teams those were part of a larger project [6].

Subex Sytems,a Bangalore based Indian company, where the author

had worked for three years, has used Extreme programming from the

beginning itself and they were religiously following the XP practices.

The team at IBM says sitting developers and testers in the same room
developed a great team spirit and a new working relationship was

established each offering their own expertise to advance the delivery

of the solution, and productivity noticeably improved [4]. Elena from

Connextra observes that pair programming is some times difficult to

follow, but being a graphic designer she was able to pair with Java

programmers to work on java code even if she did not know java. She

says that this helped her to understand the wider system context. Mark

Windhottz who followed solo programming for twelve years and later

moved to XP says that pair programming will correct the team to right

direction if one of them is going in wrong direction. At Avaya the

team used pair programming only upon difficult code. In normal cases
they followed solo programming. Avaya had to do this because their

project was a large one and only in small teams they were allowed to

follow XP practices. One interesting thing noted at Avaya is that two

developers who were located 2000 miles apart paired for debugging

using a shared desk. Pair Programming is good as everybody share

product knowledge and if any developer quits the organization it will

not affect the development. In a study conducted by Prashant Behti,

Dr. Laurie Williams and Dr. David Stotts, Dept. of Computer Science,

North Carolina State University on pair programming on distributed

Object Oriented projects[8], finds out that Pair programming can be

used in distributed environments and is comparable with collocated

software development in terms of quality and productivity. The
author's experience at Subex System is that pair programming helped

to resolve complex problems more easily than solo programming.

Using pair programming for simple code is also good since it will help

the new comers to be trained automatically on the product and the

process. The only problem with pair programming is that it will not

allow you to sit and silently analyze the code oneself.

The practice of short iterations has good result from the software

industry. At IBM the team used fortnightly iterations with fifteen

minute daily standup meeting. It took a few iterations for them to find

the best way of doing iterations. But the team says the result was

impressive [4] .The author's experience at Subex Systems of iterations
based on user stories is that it is an excellent way of identifying the

requirements of the system.

Since it is a cross functional activity including customer, developer

and tester, time wasted on low value features can be reduced much. At

Avaya Labs, projects used small releases in some form. The size of

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1336 | P a g e

the interval varied from two to four weeks. Some of the teams

punctuated each interval with demo. Some other teams failed but they

admits that they did not re-estimate after each iteration [6]. John

Giblin who was a senior vice president of engineering at Dublin an

Ireland based Software Company, Iona observes that XP embraces

changes and that is a direct consequence of small releases. He says
that because of the lengthy development cycles in traditional approach

the original set of requirements only be partially relevant at the end of

the development and XP is the solution. Also that XP can reduce time

to market [7].

But implementing XP practices in a non XP environment is found to

be difficult. Usually an upfront design is required for high level

architecture design. This really contradicted XP's just in time design

approach. But once a high level design is obtained, development of

each module can be done using XP practices [4].The team at IBM

observes that short release planning and iterations makes estimation of

the development more realistic and project velocity can be easily

tracked. Daily stand-up meeting allowed tracking progress concerns of
the development. At Avaya XP's simple design is considered an

important part of the practice.

The team at IBM observes that the test first development helped them

to reduce much of the defects much earlier than they would have had

if they had followed traditional approach. Test driven development,

continuous integration with regression testing, refactoring and pair

programming certainly improved code quality. Kyle Larson, who was

a senior consultant at Minnesota based Advanced Technologies

Integration says XP's continuous integration eliminates the nightmare

of last minute integration of the product [8]. At Avaya, they tried test

first design, but at some occasions schedule pressure created problems
to implement it rigorously. When XP practices are tried in large

projects they had to adapt some of the practices for the organizations.

At Avaya, where XP is used for large projects code integration

occurred weekly which is against XP practice of continuous

integration. And code ownership varied from project to project; some

occasions there were people who had gained natural expertise in

certain part of the code. At the same time 40 hours/week was

successfully practiced at Avaya.

Considering code refactoring, it helped IBM team to analyze complex

problems and extensive unit testing gave people confidence to refactor

code. At Avaya since they had an upfront design code refactoring did

not figure prominently.
In all the companies, considered in this study, coding standards were

successfully implemented. The author’s experience at Subex Systems,

it is found that following coding standard religiously will make the

code easily readable for any developer and the code itself become

documentation of the product. The only constraint is that every

developer should strictly follow coding standard. The good side is that

pair programming will guide the programmers in this direction. The

most difficult practices of XP are onsite customer and metaphor. At

Avaya no project had a onsite customer. This was not practicing at

Avaya since a project itself had multiple customers. Also that use of

metaphor found difficult because of existing practices in the
organization. This has been reported by Kent Beck, that people tell

him that they do XP except metaphor, of-course. The team at IBM

observes that in XP customer is the driving force and this helps to

reduce wastage of time on working on low priority features. But the

thing is that the customer of their product was a framework itself.

From quantitative study of the XP practices the following success

factors are identified:

Fig.3: Success factors of XP

The study also reveals the risk factors of XP[10]. The most critical

aspects are Metaphor and On-site Customer. The chart given below

explains it in detail.

Fig.4: Risk factors of XP

IV. CONCLUSION

Extreme Programming has been successful in software industry. All
developers who tried XP says that they would reuse XP in next

project if allowed. There are software companies practicing XP in

their entire development team. Most critical aspects are Metaphor and

on-site customer. Pair programming, small release, test first design,

collective ownership, refactoring and continuous integration are

welcomed [10].Implementing XP practices in large companies faces

difficulties, but practices like test first design can be adapted even in

large projects.

V. REFERENCES
[1]. Beck Kent, Extreme Programming Explained. ISBN 0-201-61641-6,

Addison Wesly, 2000.www.ibm.com/

[2]. Beck, Kent et al. (2001). Manifesto for Agile Software Development.
Agile Alliance. Retrieved 14 June 2010.

[3]. International Journal of Computer Trends and Technology volumn2
Issue2 – 2011.

[4]. http:// developerworks/ websphere/ techjournal/ 0408_mitchell/
0408_mitchell.html. IBM WebSphere Developer Technical Journal.

[5]. Using XP to develop Context-Sensitive Adverts for the Web.
http://www.id-book.com/firstedition/casestudy_xp.htm

[6]. A Study of Extreme Programming in a Large Company. Niel B Harison
Avaya Labs.

[7]. More Programmers going Extreme. http://news.cnet.com/2100-1040-
255167.html

[8]. Exploring Pair Programming in Distributed Object Oriented Team
Projects. Preshant Behti, Dr. Laurie Williams,Dr. David Stotts. Dept. of
omputer Science, North arolina.

[9]. Jeffries.R, Anderson A Hendrickson , Extreme Programming Installed.
Addison Wesly 2001

[10]. Bernhard Rumpe, Astrid Schroder. Quantitative Survey on Extreme
Programming Projects.

http://www.ibm.com/
http://www.ibm.com/
http://www.ibm.com/
http://www.id-book.com/firstedition/casestudy_xp.htm
http://news.cnet.com/2100-1040-255167.html
http://news.cnet.com/2100-1040-255167.html

