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Abstract 

Certain properties of operator algebras have been studied such as boundedness, positivity, surjectivity, 

linearity, invertibility, numerical range, numerical radius and idempotent property. Of great interest is 

the study of spectrum of linear mappings. It is therefore necessary to characterize Jordan 

homomorphisms on semisimple Banach algebras in terms of their spectrum.  The objectives of the study 

are to: Investigate whether Jordan homomorphisms on semisimple Banach algebras are spectral 

isometries; Investigate whether Jordan homomorphisms are unital surjections on semisimple Banach 

algebras and to establish the relationship between unital surjections and spectral isometries on 

semsimple Banach algebras. For us to achieve our objectives we used Kadison's theorem, Gelfand 

theory and Nagasawa's theorem. The results obtained show that Jordan homomorphism is spectral 

isometry if it preserves nilpotency also is unital surjection if it preserves Jordan zero products and 

finally is unital surjective spectral isometry if it preserves commutativity and numerical radius between 

semisimple Banach algebras.  These results are useful in characterizations in quantum mechanics and 

operator algebras. 
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Introduction 

Linear preserver problems have a 

relatively long history and different kinds [1] and 

[2]. Some of the most popular linear preserver 

problems are linear maps preserving problems 

related to invertibility or spectrum [3]. In [4] 

they dealt with the problem of characterizing 

linear maps compressing the numerical range. A 

counter example was given to show that such a 

map need not be a Jordan*-homomorphism in 

general even if the C*-algebras were 

commutative. Under an auxiliary condition they 

showed that such a map was a Jordan *-

homomorphism. In [5] studied non-linear 

transformations between the unitary groups of 

Von Neumann algebras and the twisted 

subgroups of positive invertible elements in 

unital C*-algebras with various preserver 

properties concerning the spectrum, spectral 

radius and generalized distance measures. They 

presented several results which showed that 

those transformations were closely related to the 

Jordan*-isomorphisms between the underlying 

full algebras. In [6] the author investigated to 

what extent a unital spectrally bounded operator 

from a simple unital C*-algebra of real rank zero 

onto a unital semisimple Banach algebra was a 

Jordan epimorphism.  

In [7] the author established that all 

derivations on a semisimple Jordan-Banach 

algebra were automatically continous. Also it is 

shown that "almost all" primitive ideals in the 

algebra were invariant under a given derivation, 

the general case was reduced to that of primitive 

Jordan-Banach algebras. In [8] it is proved that 

every unital, surjective, invertibility preserving 

map from Von Neumann algebra onto standard 

operator algebra was a Jordan homomorphism.  

In [9] it is shown that a continuous derivation on 
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Banach algebra over the real or complex field 

leaves the primitive ideals of the algebra 

invariant. Also showed that every (linear) 

derivation on a semisimple Banach algebra was 

continuous. Thus every derivation on a 

semisimple Banach algebra, leaves the primitive 

ideals of the algebra invariant.  

The author in [10] was concerned with 

certain automatic continuity problems for 

homomorphisms and derivations on Banach 

algebras. Cusack showed that if there existed a 

discontinous homomorphism from Banach 

algebra or a discontinuous derivation on a semi 

prime Banach algebra, then there existed a 

topologically simple radical Banach algebra. 

Furthermore Cusack showed that there were no 

Jordan derivations which were not also 

associative derivations on any semi-prime 

algebra over a field not of characteristic 2. 

Moreover it followed that every Jordan 

derivation on semisimple Banach algebras was a 

derivation and therefore continuous. In [11] they 

showed that every surjective n-homomorphism 

(n-anti-homomorphism) from Banach algebra A 

into a semisimple Banach algebra B was 

continuous. 

Research Methodology 

Definition 2.1 [1, Definition 3.1.2]. The function 

is surjective (onto) if every element of the 

codomain is mapped by at least one element of 

the domain (That is the image and the codomain 

of the function are equal).  

Definition 2.2 [8, Definition 2.8.5]. Let A be a 

complex Banach algebra,we say that A is 

semisimple if  rad (A) = 0. 

Theorem 2.3 [7, Theorem 3.3.2]. Nagasawa's 

theorem which asserts that since T is a bijective 

spectral isometry, we have that the image under 

T of the Jacobson radical of A is exactly the 

Jacobson radical of B. 

Theorem 2.4 [10, Proposition 3.2]. (Kadison's 

Theorem)  Let A and B be unital semisimple 

Banach algebras. Let T:A  B be a surjective 

spectral isometry. Then T belongs to the centre B 

and its spectrum lies in the unit circle in C. 

Theorem 2.5 [5, Theorem 2.1.10]. (Gelfand 

Theorem) If both A and B are commutative 

unital C*-algebras and T is a unital surjective 

numerical radius preserving linear map from A 

to B then r(a)= ||a||  and r(T(a))=|| (a)||. 

Theorem 2.6 [11, Theorem 3.5] When T:AB 

is a surjective linear isometry between two unital 

C*-algebras A and B, then T1 is a unitary in B 

and the mapping x a (T1)
-1

Tx,x in A is a Jordan 

*-isomorphism (that is, it preserves additionally 

self-adjoint elements). 

Theorem 2.7 [4, Theorem 3.1]. Let T:AB be a 

spectral isometry between the unital 

commutative semisimple Banach algebras A and 

B. We define µT :TA   TB by µT = TBoToTA
-1

. 

Then T is a spectral isometry which is unital or 

surjective, when T has these properties. 

Moreover, since spectral radius and norm 

coincide for continous functions µT   isometry. 

Definition 2.8 [9, Definition 2.6]. Automorphism  

is an isomorphism from a mathematical object to 

itself. It is in some sense a symmetry of the 

object and a way of mapping the object to itself 

while preserving all of its structure. 

Definition 2.9 [6, Definition 3.2]. Isometry is a 

distance preserving transformation between 

metric spaces, usually assumed to be bijective. A 

composition of two opposite isometries ia a 

direct isometry. A reflection in a line is an 

opposite isometry. 

Definition 2.10 [10, Definition 1.4]. If A and B 

are algebras then we will call a linear map 

T:A  B  called a Jordan Homomorphism if 

T(xy + yx) = T(x)T(y) + T(y) T(x)  for every x,y 

in A 

Definition 1.6 [1, Definition 2.2.3]. Morphism 

refers to a structure preserving map from one 

mathematical structure to another. 

Results and discussions 

Proposition 3.1: Let A,B be semisimple Banach 

algebras. Let   :A   B be a spectral isometry. 

Then    is a Jordan homomorphism if it has the 

property that  p
2
=  p for every projection p in 

A. 

Proof. We have to show that  a
2
= a

2
 for every 

a in A. Let p and q be orthogonal projections in 

A. Then p+q is a projection,therefore by 

assumption   p + q=  

p+ q
2
=( p+ p)( q)+( q)( p)+ q) it 

follows that  p)( q)+ q)( p)=0 and 

hence,( p)( q)=-( p)( q)( p)=( q)( p) 

since  p is idempotent. As a result,  p and  q 

are orthogonal idempotents. 
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Let a=
1

n

j

  jpj be a linear combination of 

mutually orthogonal projections p1,.....,pn in A. 

Then  (a
2
)= (

1

n

j


2
jpj)=

1

n

j


2
 pj=( a

2
) for 

 p1,...., pn are mutually orthogonal 

idempotents. By spectral theorem every self-

adjoint element a in Asa is the norm-limit of 

finite linear combinations of mutually orthogonal 

projections. Hence, the continuity of    entails 

that  (a
2
)=( a)

2
 for every a in Asa. Replacing a 

by a+b in this identity yields 

 (ab+ba)=( a)( b)+( b)( a) for all a,b in 

A{sa}. Suppose a=a1+ia2 with ai in Asa is the 

cartesian decomposition of a in A. 

By the above,  (a
2
)= (a1

2
-

a2
2
+i(a1a2+a2a1))=( a1)

2
-

( a2)
2
+i(( a1)( a2)+( a2)(  a1))=( a)

2
. This 

proves the result. 

Theorem 3.2.  Let  :AB be a Jordan 

homomorphism then    is a spectral isometry if 

it preserves nilpotency. 

Proof. By composing   with the canonical 

epimorphism BB/rad B since B is 

semisimple. As a result    is bounded and hence 

open. Let N>0 be such that, for each y  B, 

there is x in A with the properties  x=y and  

||x||  N ||y ||. Let m> 0 be such that r( x) < 

mr(x) for all x in A.  

If there exists c> 0 such that r(a+x)<c|| x ||
1/n

 for 

all x in A with || x || < 1. Take y in B with || y|| < 

1

N
  and choose x in A such that  x=y and || x 

||< N|| y ||.  

We have 

r( a+y)=r( (a+x))<mr(a+x)<mc||x||
1/n

< mcN
1/n

|| 

y ||
1/n

}. Thus  for some bounded neighbourhood 

of zero u in A, there is a constant cu> 0 such that 

r(a+x)<cu|| x ||
1/n

  for all x in u then ( a)
n
=0. 

Theorem 3.3. Every spectral isometry is a Jordan 

homomorphism if it preserves elements with 

square zero. If e,f are orthogonal idempotents in 

A,then ( a)( b)+( b)( a)=0 for all a in eAe,b 

in fAf which can be written as finite sums of 

elements with square zero. 

Proof. Let a in eAe,b in fAf be written as 

a= ai ,b= bi  respectively, where ai in eAe 

and bj in fAf are elements with square zero for 

all i,j. Then (ai+bj)
2
=0 for all i,j therefore, by 

assumption, ( (ai+bj)
2
=0 which yields 

( ai)( bj)+( bj)( ai)=0 for all i,j. Summing 

over all i,j we find ( a)( b)+( b)( a)=0. 

Corollary 3.4. Let A,B be semisimple Banach 

algebras and  :AB be a spectral isometry 

which is a Jordan homomorphism. If it preserves 

elements with square zero, then    maps 

projections in A onto idempotents in B. 

Proof. Let p in A be a projection. Suppose at 

first that both p and 1-p are properly infinite. 

Then ( p)(1- p)( p)=0 which is equivalent to 

( p)
2
= p. Suppose that p is properly infinite 

but 1-p is not. Then there is a sub projection f of 

p such that p : f : p-f, where : denotes 

equivalence, so that both f and p-f are properly 

infinite. It follows that 1-f and 1-p+f=1-(p-f) are 

properly infinite. For example, let z in A be a 

central projection with z(1-f)< 0. Writing z(1-

f)=z(1-p)+z(1-f), we see that z(1-f) is infinite 

whenever z(p-f)<0 as 1-p and p-f are orthogonal. 

If z(p-f)=0 then zp=0 since p-f : p. Therefore, 

z(1-f)=z is infinite in this case too. Hence, 1-f is 

properly infinite and similarly for 1-(p-f). By 

step 1 we have ( f)
2
= f and ( (p-f))

2
= (p-f) 

with e=p-f, we also have  (p-f)( f)+( f) (p-

f)=0.  

Consequently, ( p)
2
= ( (p-f)+ f)

2
 =( (p-

f)
2
+ (p-f)( f)+( f) (p-f)+( f)

2
  =  (p-

f)+ f= p. 

Suppose now that p is not properly infinite but 

finite. Let z in A be the unique (minimal) 

projection in A such that zp is properly infinite 

and (1-z)p is finite,  (zp) is idempotent. Since z 

and 1-z are properly, then we can apply za and 

(1-z)b and obtain  (za) ((1-z)b)+ ((1-

z)b) (za)=0 a,b in  A. 

 Rearranging we get 

 (za) (b)+ (b) (za)= (za) (zb)+ (zb) (za

), a,b in A…………….(1) 

Set b=1 since    is unital, it follows that 2 (za) 

=  (za) (z)+ (z) (za) and multiplying this 

identity on the left by the idempotent  (z) as 

well as on the right and then subtracting the 

resulting identities, we 

have (z) (za)= (za) (z)= (za), a in A. Set 

a=1in (1) Then using the identity just obtained 
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 (z) (b) (z) =  (z) (zb)+ (zb) (z) 

=2 (zb) for all b in A 

As above, this entails that   (z) (b) =  (b) (z) 

=  (zb), b in A. In particular, 

  (p) (zp) =  (p) (z) (p)  = (p) (z)
2
 (p)= 

 (p) (z) (p) (z) =  (zp) (zp) =  (zp) 

and similarly  (zp) (p)= (zp). 

From this, we deduce that 

 ( ((1-z)(1-p)))
2
 = (1- (z)-( (p)- (zp)))

2
  

                           = (1- (z))
2
+( (p)- (zp))

2
-2(1-

 (z))( (p)- (zp))  

                           =1- (z)+ (p)
2
+ (zp)

2
-

2 (p) (zp) 

                           =-2( (p)- (z) (p)-

 (zp)+ (z) (zp)) 

                         = 1- (z)+ (p)
2
+ (zp)-z (p) 

                           =(1- (z)- (p)+ (zp))+(( p)
2
-

 p) 

This gives ( ((1-z)(1-p)))
2
- ((1-z)(1-p)) = 

( p)
2
- p. 

Therefore  p is idempotent if and only if  q is 

idempotent, where q is the projection q=(1-z)(1-

p). Let z' be a central projection in A. If z'(1-z)=0 

then z'q=0 as q<1-z. If z'q<0 is finite, then z'(1-

z)p must be infinite as z'q+z'(1-z)p=z'(1-z) which 

is either infinite or zero and the sum of two 

orthogonal finite projections is finite since z'(1-

z)p is subprojection of the finite projection (1-

z)p it follows that z'q is either zero or infinite. By 

means of this, q is properly infinite whence  q 

is an idempotent by the second part of the proof. 

Therefore,  p is an idempotent. 

Finally, suppose that p is finite. Then, 1-p is 

infinite wherefore  (1-p)=1- p is idempotent, 

which completes the proof. 

Lemma 3.5. Let A and B be semisimple Banach 

algebras. Assume that   :AB is a unital 

surjective map which preserves invertibility. 

Then T is a Jordan homomorphism. 

Proof. Let p1,p2 in A be orthogonal Hermitian 

idempotent since p1+p2 is a projection, we have 

( (p1)+ (p2))
2
 =  (p1)+ (p2)  This yields 

 (p1) (p2)+  (p2)  (p1)= 0. It follows that if H 

in A is of the form H= 
1

n

j

tjpj


  where t in R and 

pj are Hermitian idempotents such that pipj=0 if 

i<j, then  (H
2
)=  (H)

2
.The set of all Hermitian 

elements  that can be represented as finite real 

linear combination of mutually orthogonal 

projections is dense in the set of all Hermitian 

elements in A. Therefore we have 

 (H
2
)=( (H))

2
 for every Hermitian element H 

in A. Now replace H by H+K where H and K are 

both Hermitian, we get (HK + KH)=  (H)  

(K)+ (K) (H) since an arbitrary A in A can be 

written in the form A= H +iK with H,K 

Hermitian, which imply that  (A
2
)= ( A)

2
. 

Theorem 3.6. Let A and B be semisimple Banach 

algebras. Let    :AB be a unital surjective 

bounded linear map preserving Jordan zero 

products. Then   is a  Jordan homomorphism J 

from A onto B such that  (A)= (1)J(A) if  

 (1) is an invertible central element of B. 

Proof. Let   :AB be a bounded linear map 

such that (TS) (T)+ (T) (S)=0 for S,T in A 

with ST+TS=0. Then for any S in A we 

have (1) (S)
2
 =  (S)

2
 (1),  (1) (S)

2
+ 

 (S)
2
 (1) = 2 (S)

2
. Replacing S by S+T with 

S,T in A we have 

                       (1) (S) (T) +  (T) (S) = 

 (S) (T)+ (T) (S) (1)  

                 
(1) (ST+TS)+ (ST+TS) (1)=2( (S) (T)+ (

T) (S)) 

 For each A in A, write A=S+iT with S,T in A. 

Applying above equations and the linearity of , 

we get  (1) (A)
2
 =  (A)

2 (1)…………(2)   

and 

    (1) (A
2
)+ (A

2
) (1) = 2 (A)

2
 …….(3) 

hold for all A in A. Since every element in a 

semisimple Banach algebra in an algebraic sum 

of square elements and   is surjective, from (ii) 

we know that  (1) is the center of B. Hence it 

follows from (2) that  (1)B=B. In particular, 

 (1)E= (1) for some E in B. So, (A)
2
E 

= (A
2
) (1)E=   (A

2
) (1)= (A)

2
 for all A in 

A. Thus BE=B for all B in B. Similarly, EB=B 

for all B in B. This implies that B is unital with 

unit E and it follows from  (1)B=B that  (1) is 

invertible. Let J(A)= (1)
-1 (A) for all A in A, 

then it is easy to verify that J is surjective Jordan 

homomorphism from A onto B.
 

Theorem 3.7. Let H and K be Banach algebras 

and A, B be semisimple Banach algebras on H 
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and K respectively. Let   :AB be a unital 

surjection then   is a Jordan homomorphism if 

there exists a non-zero scalar c and an invertible 

bounded linear or conjugate  linear operator 

U:HK such that either  (A)=cUAU
-1

,for all 

A in H or  (A)=cUA
-1

 U
-1

  for all A in H. 

Proof.    is injective. 

 Step 1:   preserves idempotents and 

rank-one idempotents in both directions. If p in 

A is an idempotent, then p(1-p)+(1-p)p=0. This 

implies  (p)(1- (p))+(1- (p)) (p)=0, that is 

 (p)= (p)
2
. Consequently,  (p) is an 

idempotent. Suppose that p is rank-one while 

 (p) is not rank one. Then  (p) can be written 

as a sum of an idempotent and a rank-one 

idempotent in B. Since  -1 satisfies the same 

property as  .  Rank-one idempotent p can also 

be written as a sum of two non-zero idempotents. 

This is a contradiction. 

 Step 2:   preserves rank-one operators in 

both directions. In particular,    preserves rank-

one nilpotent in both directions. Let p be an 

idempotent of rank-one, then for every non-zero 

  in C, we have   p)(1-p)+(1-p)( p)=0 which 

implies that 2 ( p)= (  p) (p)+ (p) ( p). 

Since  (p) is a rank-one idempotent, we obtain 

 ( p) (p)= (p) ( p) (p)= (p) (  p). It 

follows that  ( p)=  (p) is of rank-one. 

Especially, there exists fp( ) in C such that 

 ( p)= fp( ) (p). If A=x f is a nilpotent of 

rank-one, then there exists f1 in H' such that 

f1(x)=1. Let f2=f1-f. Then pi=x fi (i=1,2) are 

rank-one idempotents and A=p1-p2=x f1-x f2.  

Suppose that    (pi)=yi gi by step 1, gi(yi)=1. 

Notice that p=
1

2
(p1+p2) is a rank-one 

idempotent so  (p)=
1

2
(y1 g1)+(y2 g2) is a 

rank-one idempotent. Then either y1,y2 are 

linearly dependent or g1,g2 are linearly 

dependent. Assume y1=y2=y, then  (A)=y g1-

y  g2 which is a nilpotent of rank-one. 

 Step 3: Either 

(i) there exists a bijective bounded linear or 

conjugate linear U:HK such that 

 (A)=UAU
-1

 for every finite rank 

operator A in H or 

(ii) There exists a bijective bounded linear or 

conjugate linear operator U:H'  K 

such that  (A)=UA'U
-1 

for every finite 

rank operator A in H. In this case H and 

K are reflexive. 

Since   is additive and preserves rank-one 

operators, rank-one idempotent and rank-one 

nilpotent in both directions. 

 Step 4: for every operator A in A a rank-

one idempotent R in H,  (RAR)= (R)   

(A) (R). By Step 3, for every finite rank 

operator A0 in H, we have  (RA 0R)= (R)   

(A0 (R)). We have to prove that above equation 

holds for every A in A. Let R=Z h and p in H 

with p=x f a rank-one idempotent, where x,Z 

in H and f,h in H'. Then there exist nilpotents 

s=x y and T=y f of rank one with y in H, g in 

H' such that p=sT. Furthermore, Q-Ts=y g is 

an idempotent of rank-one disjoint with p, and R 

is a linear combination of p,Q,S and T. For every 

A in A, let B=(1-p-Q)A(1-p-Q), then we have 

pB=QB=sB=TB=0 and Bp=BQ=BS=BT=0. 

Consequently, RB=BR=0. By the property of , 

we get  (R) (B)+ (B) (R)=0. Since  (R) is 

an idempotent, a simple computation shows that 

 (R) (B) (R)=0. Using the fact that A-B is of 

finite rank, we get  (RAR)= (R(A-

B)R)= (R) (A-B) (R)= (R) (A) (R). 

 Step 5: Either  (A)=UAU
-1

 for every A 

in A or  (A)=UA'U
-1

 for every A in A. 

Suppose that for the operator of finite rank the 

case (i) of step 3 holds. Let A in A, for any z in 

H and y in H' and y(z)=1, R=z y in H is an 

idempotent of rank-one and by step 4, we have 

t(y(Az)URU
-1

=t(y(U
-1 (A)Uz))URU

-1
 where t is 

an identity or the conjugation of C. This yields 

y(Az)=y(U
-1 (A)Uz) ..............(4) 

Fix z for a moment. Then (iv) holds for every y 

in H' with y(z)=1 and so, for every y in H' by 

linearity. Thus Az=U
-1 (A)Uz is valid for every 

z in H and the case (1) of the theorem is proved. 

Now we assume that case (ii) of step 3 holds for 

every operator of finite rank. Then for every z in 

H and y in H' with y(z)=1 by step 4 we get 

t(y(Az)U(x y)'U
-1

=t(h((U
-1 (A)U')z)) and 

therefore y(Az)=y((U
-1 (A)U)'z). Using similar 

arguments, as above, we obtain A=(U
-

1 (A)}U)'. Consequently, the case (2) of the 

theorem holds true. 
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Theorem 3.8. Let H and K be Banach algebras 

and A and B be semisimple Banach algebras on 

H and K respectively. Let   :AB be a unital 

surjection then   is a Jordan homomorphism if 

either; 

(i) There exists a bijective bounded linear or 

conjugate linear operator U:H  K 

such that  (A)=UAU
-1

  for all A in A. 

(ii) There exists a bijective bounded linear or 

conjugate linear operator U:H'  K 

such that  (A)=UA'U
-1

  for all A in A. 

In this case H and K are reflective. 

Proof. Let p in B(H) with p
2
=p since p(1-p)+(1-

p)p=0, we have  (p) (1-p)+ (1-p) (p)=0 

and consequently  
(1) (p)+ (p) (1)=2 (p)2. Thus we have  

 (p)
2
 (1)+ (p) (1) (p)=2 (p)

3
 and 

 (1) (p)
2
+ (p) (1) (p)=2 (p)

3
. These 

together imply that  (1) (p)
2
= (p)

2
 (1). 

Similarly, it follows from 

 (1)
2
 (p)+ (1) (p) (1)=2 (1) (p)

2 
and 

 (p) (1)
2
+ (1) (p) (1)=2 (p)

2
 (1) that 

is (p) (1)
2
= (1)

2 (p). 

 Since every infinite-dimensional Banach 

algebras has infinite multiplicity then every 

bounded linear operator on an infinite-

dimensional Banach algebra is an algebraic sum 

of finite many idempotents. Hence we 

have (A) 2
=  (1)

2 (A)holds for every A in 

H. Therefore, by surjectivity of  (1)^{2} =  1 

for some scalar  . Let T,S in H with ST=0 for 

any idempotent p, it follows from Tp(1-p)S+(1-

p)STP=0 and that  (TP) (S)+ (S) ((1-

P)S) (TP)=0. 

Thus  (TP)   

(S)+ (S) (TP)= (TP) (PS)+ (PS) TP)...(5)  

holds for every idempotent p. On the other hand 

T(1-p)pS+pST(1-p)=0 implies that  (T(1-

p)) (pS)+ (pS) (T(1-p))=0 and hence 

 (T) (pS) (T)= (Tp) (pS)+ (pS) (Tp)..(6)

for every idempotent p. Combining (5) and (6) 

we get  

 (Tp) (S)+ (S) (Tp)= (T) (pS)+(pS) (T). 

For every idempotents p. Hence for every A in H 

 (TA) (S)+ (TA)= (T) (AS)+  

(AS) (T)..................................(7) 

Take T=Q and S=1-Q for some Q in H with 

Q
2
=Q. Then ST=O and from (iii) we get 

 (QA) (1-Q)+ (1-Q) (QA)= (Q) (A(1-

Q))+ (A(1-Q)) (Q). Thus we see that 

   (QA) (1)+ (1) (QA)- (Q) (A)-

 (A) (Q)= (QA) (Q)+ (Q) (QA)- (Q)   

(AQ)- (AQ) (Q) 

 On the other hand, taking T=1-Q and 

S=Q we obtain from (iii) another equation 

 (1) (AQ)+ (AQ) (1)- (A) (Q)-

 (Q) (A)= (Q) (AQ)+ (AQ) (Q)-

 (QA) (Q)- (Q) (QA). 

Hence (QA+AQ) (1)+ (1) (QA+AQ)=2( (

Q) (A)+ (A) (Q)) holds for every idempotent 

Q. This further implies 

that (AB+BA) (1)+ (1) (AB+BA)=2( (A)

 (B)+ (B) (A).....(8) holds for every B in H 

multiplying (iv) from left and right by  (1) 

respectively, we see that  (1)
2
   

(AB+BA)+ (1) (AB+BA) (1)=2 (1)( (A)

(B)+ (B) (A)) and  (1) (AB+BA)  

(1)+ (AB+BA) (1)
2
=2( (A) (B)+ (B) (A)

 (1)). These two equations, together with the 

fact that  (1)
2
= 1, entail that 

 (1)( (A) (B)+ (B) (A))=( (A) (B)+ (B

) (A)) (1)..........(9) 

  Let A=B in (iv) and (v) 

then (1) (A
2
)+ (A

2
) (1)=2 (A)

2
.......(10) 

and   (1) (A)
2
= (A)

2 (1)......................(11) 

 By surjectivity of , equation (7) implies 

that  (1) commutes with all idempotent 

operators and hence there must exist a scalar u 

such that  (1)=u1 while equation (vi) shows that 

u<0. Let c=
1

u
 and  (.)=c (.), then   :H  K 

is an additive and surjective preserving Jordan 

zero products and  (1)=1. Moreover for every 

A in H,  (A
2
)= (A)

2
 which implies that   is a 

Jordan homomorphism. Since K is prime, we can 

see that   is either a ring homomorphism or a 

ring anti-homomorphism. Therefore   is a 

scalar multiple of a surjective ring 

homomorphism or a surjective ring anti-

homomorphism. 

 We will show that   is injective. Without 

loss of generality we assume that   is a 
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surjective ring homomorphism. We first claim 

that the null space of   is closed. For every 0  y 

in K, define kery( )={T in H|  (T)y=0} which 

is a left ideal of H and ker( )= I ker y( ). If L 

is a left ideal such that kery   is a proper subset 

L, then   (L)y is a non-zero invariant linear 

manifold K. It follows that  (L)y=K. So, there 

exists T in L such that  (T)y=y for any s in H 

we have s-sT in ker y( )L. This implies that s 

in L since sT in L. Therefore, we have L=H and 

consequently,  y( ) is closed and hence ker( ) 

is closed. Note that the set of ring two-sided 

ideals, coincides with the set of algebraic two-

sided ideals in H. Thus if    is not injective, then 

the kernel of   is a closed two-sided ideal which 

contains the ideal consisting of all compact 

operators. Suppose the dimension of H is NH, 

which is an infinite cardinal number NNH, let 

1N={T in H |dim M<N holds for all closed linear 

subalgebras M  range (T)}. 

 Then IN is a closed two-sided ideal of H 

and every closed two-sided ideal of H arises in 

this way. In particular, INH is the largest one. 

Therefore,   induces a ring isomorphism from 

the quotient algebra H/ker    onto K. This 

implies that there is an element A in H such that 

A+ker    is a single element of H/ker  . An 

element T in an semisimple Banach algebra A is 

single if, for any S,R in A, STR=0 will imply 

ST=0 or TR=0. For an semisimple Banach 

algebra A there exists a representation ( ,H) of 

A such that an element T in A is a single element 

if and only if  (T) is of rank one on H, and 

consequently, dim TAT=1. Hence 

(A+ker )H(A+ ker  )=AB(H)A + ker   is of 

dimension one modulo ker . Let NNH be the 

infinite cardinal number such that ker  =IN. 

Then the range of A contains a close subalgebra 

of dimension N. By halving the subalgebra into 

two; each of dimension N, we see that AHA 

contains two elements linearly independent 

modulo IN a contradiction. So,   is injective. 

Hence we have shown that   is a scalar multiple 

of a ring isomorphism or a ring anti-

isomorphism from H onto K. Thus   is a unital 

surjective Jordan homomorphism. 

Theorem 3.9. Let A and B be semisimple Banach 

algebras. Let  :AB be a Jordan 

homomorphism. Then   is a unital surjective 

spectral isometry if it preserves commutativity 

and numerical radius. 

Proof.   is invertible. Suppose a in A and let 

A1=  a,1    be the closed sub-algebra of A 

generated by a and 1. Define a linear map  1:A-

1  (A-1) by  1(x)=  (x) for all x in A1. 

Suppose  (A1) is a subalgebra of B since A1 is 

commutative and   preserves commutativity so 

 (A1) is commutative. Also 
1
, preserves 

numerical radius, therefore 
1
 is a Jordan 

homomorphism, so  (a
2
)= (a)

2
. Otherwise let 

B1=   (A1)    and define a linear map T1:B1  

T
-1

B1 by T(y)=T
 -1

(y) for all y in B1, suppose  -

1(B1) is a subalgebra of A, since B1 is 

commutative, and T
-1

 is numerical radius 

preserving, therefore T
-1

 is a homomorphism and 

hence T(y
2
)=T1

(y)
2
, then T1

(  

(a)
2
)=T1

( (a))
2
=a

2
 therefore  (a)

2
= (a

2
). 

Otherwise, let A2=  
-1

(B1)    and define a linear 

map  2:A2  (A2) by  2(x)= (x) for all x in 

A2. By continuing the process we obtain 

sequences An and Bn commutative subalgebras 

of A and B respectively such that A1=  a,1  , 

An=  
-1

(Bn-1)   Bn=   (An)    A1  A2   

....A and B1B2 ...  B. Define A'= U An 

and B'= U Bn and  ' :A'   B' by  '(x)= (x) for 

every x in A'. A' and B' are commutative and  ' 

is a unital surjective spectral isometry, so  ' is 

Jordan homomorphism and hence  '(a
2
)= '(a)

2
, 

therefore  (a
2
)= (a)

2
. 

Theorem 3.10. Let  :AB be a unital 

surjective spectral isometry between semisimple 

Banach algebras A and B. Then   is Jordan 

homomorphism if there is a unitary u in Z(B) 

and a unital surjective spectral isometry 

 1:AB such that  a=u 1a, a in  A. 

Proof. Put u= 1 which is a unitary and set 

 1a=u
-1 a, a in A. Since u is central for each a 

in A, r( 1a)<r(u
-1

)r( a)=r( a)=r(a)=r(uu
-

1 a)<r(u)r(u
-1 a)= r( 1a) hence  1 is a unital 

surjective spectral isometry. 

Theorem 3.11. Let A and B be simisimple 

Banach algebras. Let  :AB be unital 

surjective spectral isometry. Then   is a Jordan 

homomorphism if   rad(A)=rad(B). 
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Proof. Take a in rad(A) and y in B such that 

r(y)=0. Choose x in A with y= x then, 

r(x)=r(y)=0 it follows that r( a+y)=r( (a+x))=0 

so that   a in rad(B). Conversely, take b in 

rad(B) and let a in A be such that b= a. Let x  in 

A be quasinilpotent. Then r(a+x)=r( (a+x))= 

r(b+ x)=0. Since  x is quasinilpotent. It 

follows that a in rad(A) therefore b in rad(A). 

We conclude that  rad(A)=rad(B). 

Remark 3.12. In particular if both A and B are 

commutative unital semisimple Banach 

algebras and   is a unital surjective spectral 

isometry from A to B, then by Gelfand theorem 

r(a)=||a|| and r( (a))=|| (a)|| so r(a)=||a||=v(a) 

and r( (a))= ||   (a)||=v( (a)) for all a in A, 

therefore r(a)=r( (a)) and we can use 

Nagasawa theorem. 

Conclusions 

Certain properties of operator algebras have been 

studied such as boundedness, positivity, 

surjectivity, linearity, invertibility, numerical 

range, numerical radius and idempotent property. 

Jordan homomorphisms have been studied by 

several scholars such as Mathieu, Sorour, Semrl, 

Braser among others. For instance, Kazempour 

showed that a linear map on two Banach 

algebras is a Jordan homomorphism and 

multiplicative. Furthermore, Martin and Gerhard 

showed that Jordan homomorphisms between 

Von Neumann algebras are spectrally bounded. 

However studies on spectral characterization on 

semisimple Banach algebras have been done but 

to a little extent. It is therefore necessary to 

characterize Jordan homomorphisms on 

semisimple Banach algebras in terms of their 

spectrum. This work established that Jordan 

homomrphism is a unital surjection, spectral 

isometry and unital surjective spectral isometry 

on semisimple Banach algebras. 
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