Preliminary Design Review Presentation

Vertical Projectile - AIAA OC Section 2017-2018 November 27, 2017

Contents

- Introduction of Team Members
- Mission Statement
- Vehicle
- Design
- Recovery Subsystem
- GPS Tracking System
- Other Subsystems

Contents cont.

- Engineering Payload
- Risks and Safety
- Educational Outreach
- Budget
- Timeline

Mission Statement

Mission Statement

The AIAA OC Section team will construct a rocket that controls its ascent with air brakes to collect data to carbon dioxide levels one mile into the troposphere down to the crust of the lithosphere.

Vehicle

Sketch

$\phi=$ separation points
$T=$ screw placement, $3 x$
$=$ shear pin placemert, $3 x$

Vehicle - Design

- Length - 139.5 in
- Diameter-4 in
- Semi Span of Fins - 3.25 in
- Total Mass - 11501 g
- Motor Choice - Cesaroni K2000

Vehicle - Design

- Stability Margin at rail exit: 2.033 calibers
- Center of Gravity: 74.5034 in
- Center of Pressure: 116.485 in

Motor
Drogue Chute

Air Brakes

Motor Selection Comparison

Cesaroni Engines	$\begin{aligned} & \text { Total } \\ & \text { Impulse (Ns) } \end{aligned}$	Total Mass (g)	Max Altitude (ft), no air brake function	Max Velocity (ft/s)	Max Accel (ft/s ${ }^{\mathbf{2}}$)	Velocity at Rail Exit (ft/s, altitude \approx $8 \mathrm{ft})$
K1085 (75 mm)	2378.7	2430	5413.85	653.11	616.23	61.73
$\underline{K 2000} \mathbf{(7 5 ~ m m)}$	2331.5	2464.5	5363.22	380.05	734.17	90.328
K661 (75 mm)	2436.5	2527.8	5383.20	609.43	616.24	47.315

Vehicle - Subsystems

Vehicle - Recovery Subsystem

Dual Deployment Configuration

Vehicle - Recovery Subsystem

- Primary set of recovery electronics - Stratologger CF Flight Computer
- Backup set - RRC3 Flight Computer

Vehicle - Recovery Subsystem

Vehicle - GPS Tracking Subsystem

GPS system	Pros	Cons
Whistle GPS dog tracker	Easy to use because it requires knowledge of using a smartphone app. It can be recharged easily using the base station and is not dependent on any other external electronics. No additional telemetry required.	Only works where there is cellular coverage. Bigger than the other GPS options. More expensive because of money needed for cellular service.
EM-506 GPS Receiver	Really small, really accurate in rough geographical conditions like canyons, relatively cheap.	Relatively difficult to use compared to dog tracker. Also not as durable. Additional telemetry may be required.
Arduino GPS tracker	Small and easy to set up. It will be easy for us to use because of our experience with Arduino in TARC.	Additional space required for battery, really expensive, will require use to use a new and unfamiliar version of Arduino. Additional telemetry may be required, making it relatively harder to use.

Vehicle - Airbrake Subsystem

Vehicle - Airbrake Subsystem

Teensy 2.0

- $1.2^{\prime \prime} \times 0.7^{\prime \prime} \times 0.125^{\prime \prime}$
- Arduino compatible
- Will independently con air brakes

Teensy 2.0, with Arduino-compatible wires

Vehicle - Airbrake Subsystem

Dimensions	$1.72^{\prime \prime} \times 0.88^{\prime \prime} \times 1.57^{\prime \prime}(43.8 \times 22.4 \times 40$ $\mathrm{mm})$
Product Weight	$2.76 \mathrm{oz}(78.2 \mathrm{~g})$
No-Load Speed $(6.0 \mathrm{~V})$	$0.21 \mathrm{sec} / 60^{\circ}$
No-Load Speed $(7.4 \mathrm{~V})$	$0.17 \mathrm{sec} / 60^{\circ}$
Stall Torque $(6.0 \mathrm{~V})$	$500 \mathrm{oz} / \mathrm{in}(26 \mathrm{~kg} . \mathrm{cm})$
Stall Torque (7.4V)	$611 \mathrm{oz} / \mathrm{in}(44 \mathrm{~kg} . \mathrm{cm})$
Travel per $\mu \mathrm{s}$ (out of box)	$.080^{\circ} / \mu \mathrm{sec}$
Travel per $\mu \mathrm{s}$ (reprogrammed high res)	$.132^{\circ} / \mu \mathrm{sec}$

> SERVO OPERATING CAVITY

Engineering Payload

System Diagrams and Schematics

Linear Actuator

Suspended Nose Cone+Payload

Safety

Safety

Risk	Mitigation
Impact to the body	Gloves, apron, goggles
Cut or puncture	Gloves and Apron
Chemicals - fumes and/or direct contact	Gloves, respirator, goggles
Heat/cold	Gloves
Harmful Dust and small particles	Mask and Goggles
Loud noises	Earplugs

- The following items will be present and available for team member use whenever they are working, constructing the vehicle or payload, or launching.
- Safety goggles
- Rubber gloves
- Protective aprons
- Ear Plugs
- Leather gloves
- Respirators / Dust Masks

Safety

Eye protection must be worn whenever there is a danger of:

- Dust, dirt, metal, or wood chips entering the eye. This can happen when sawing, grinding, hammering, or using power tools.
- Strong winds during a launch (common at Lucerne Dry Lake)
- Chemical splashes when using paints, solvents, or adhesives
- Objects thrown (intentionally or inadvertently) or swinging into a team member

These types of gloves must be worn to protect the team member's hands whenever there is danger of contact with a hazardous material:

- Latex or rubber gloves for possible contact with hazardous chemicals such as adhesive, paint, or thinners, or dangerous solid materials.
- Leather gloves to protect against impact, cuts, or abrasions (e.g. in the use of some power tools such as grinders)

Safety

Team members will always work in a clean, well-ventilated area. Protection for a team member's lungs (dust mask or respirator) must be used when:

- Working with chemicals emitting fumes (e.g. paints and solvents). In this case, the team member must wear a respirator.
- Working in an environment where there is dust (e.g. sanding and working with power tools). The team member must wear a dust mask.

Body protection, such as an apron must be worn whenever there is danger of:

- Splashes or spills from chemicals
- Possible impact from tools

Ear protection (plugs or ear muffs) must be worn whenever there are loud noises present, which include:

- Using loud power tools or hammers
- Launching larger rocket motors at launches

1. Risk - The engine does not ignite while conducting the launch of the rocket	4. Risk - The rocket body caves in, or collapses on itself.	7. Risk - The electronic matches fall ott of their designated place			
			1. Risk: $S D$ card is defective	4. Risk: SD card is not plugged in	T-Risk Ardumo fails to start
Nitigation - Prior to launch. multiple team members will check to make sure the igniter is properly inserted in the engine to its full length. ensuring ignition of the motor.	Mitigation - The team will use fiberglass for the body tube, a material capable of withstanding outside forces. Inside, flight boards, bulkheads, and centering rings will help to maintain the circular frame of the body tube.	Mitigation - Before placmg the shear pans, the matches will be checied to ensure that they bave been tightened Jown to remain in place. This task will be placed on a clectilis that members will go through while preparing the rocket for Launch.	Mitigation: Test run before the actual flight.	plugged in Mitigation: Double check that the SD card is properly placed in its socket.	Mitigation Program an LED light to blink when the Arduino is compected to the power supply
2. Risk - The engine does not fit (too loose or tight) in the motor casing	5. Risk - The quick links are not attached properly:	8. Risk Motor explodes	2. Risk: Batteries are not fully charged	5. Risk: Wires detach from the Teensy	8 Rusk Defective CO2 Sensor
Mitigation - The team will make sure the engine is inserted in the proper motor casing, and cannot be shaken or pulled out with ease. The team will also check when the motor casing is inserted into the motor mount.	Mitigation - The team will double check all connections to ensure that the rocket is assembled completely before preparing the rocket for launch. These tasks will be written on a checklist, which members who checked the task will sign off to take	step by step when bulding the motor Team members will be requred to matotain foctus and detall wiile putting together the motor	Mitigation: Charge the batteries to max before the flight.	Mitigation: Securely strap the wires to the circuit board using Velcro or other adhesives.	Mitigation Ter nim before the actral ffoght
3. Risk: Airbrakes do not function while in flight.	6. Risk - The shear pins do not shear due the ejection charge.	9. Parachute was not packed correctiy and does not deploy	3. Risk: The VCC is not connected to the sensor, so the sensor does not work	6. Risk: Batteries fail	9 Bisk: The supply and ground wires are swirched.
are activated at ground level, a test for airbrake function will be performed. The airbrake motors will checked prior to assembling the whole rocket.	Mitigation - When purchasing the pins, the team will note the force required to shear them. The team will perform black powder ground tests to make sure the ejection charges exert more force than the pins can withstand. To ensure shearing, the backup charge will have a greater amount of black powder.	check to make sure the parachuted is fitted correctly into the body of the rockef prior to laurch. Hotrever if the promary ejection charge does not separare the rocket, backup ejection charges with Ereater amounts of black powder will allow the parnchute to deploy.	Mitigation: Check if the supply wire is securely artached from the 5 volt pin of the teensy to the Sensor.	to check if the battery is fully charged before the flight.	Mingation Have two other people reep an eve on the Wire connections:

1. Risk: Backup ejection charges do not ignite.	4. Risk: Drogue chute flies at wrong altitude	7. Risk: Main chute doean I deploy
Mitıgation: Check to make sure the RRC3 is beeping in the specific sequence as denoted in the manual.	Mitigation: Double check that the Stratologger and RRC3 both are beeping in their specific sequences.	Nitugation. Backup Flight Computer and ejection charges should take care of this
2. Risk: The Batteries of Backup Electronics Fall out Mitigation Use battery holders and zip ties to ensure that the batteries do not fall out, and double check the sturdiness of these before every launch.	5. Risk: Airbrakes fail to close, interfering with recovery Mitigation: Double check that the LED light is blinking on the Arduino. Also, make sure the most recent code is uploaded in the Arduino.	8. Risk Stratologeger CF Fhght Computer 15 net tumed on Mitigation The feam will have three members check the Stratologger to see if it is beepmg in its specific sequence, and they will affirm its staths by signing ther mame in the checkist.
3. Risk: The Backup RRC3 Flight Computer is not turned on Mitigation: The team will have three members check the Flight Computer to see if it's beeping and affirm its status by signing their name in the checklist.	6. Risk: Drogue doesn't deploy Mitigation: Double check that the electronics are turned on and beeping, and have three people sign the checklist to affirm. Also, back up ejection charges will take care of this.	9. Risk NGain batreries fail Mitigation Use fresh batteries and make sure the electronits aill power ip first in a fest secoud before flazht.

Potential Issues Failure Mode	Potential Failure Effect5	$\begin{gathered} \text { Severity } \\ (1-10) \end{gathered}$	Potential Causes	Occurrence$(1-10)$	Mitigation	Potential Issues Failure Mode	Potential Failure Effects	$\begin{aligned} & \text { Severity } \\ & (1-10) \end{aligned}$	Potential Causes	Occurrence$(1-10)$	Mitigation
Battery for the CO2 Sensor (payload) explodes or fail.	The rocket can be damaged, forcing a complete redesign and new construction process.	9	Incorrect wiring or the battery cannot withstand certain malfunctions in the coding.	1	The team decided to switch to a 9 volt battery to better suit the payload. A checklist will be followed when constructing the rocket 50 no incorrect actions will occur.	Wind speeds are unsuitable for launching the rocket.	launched, rocket will fly in an unstable manner making it difficult for performing proper tasks.	6	Environmental conditions are not suitable and worsen as the day proceeds at Lucerne Dry Lake.	6	Launch rail can be tilted at an angle that is with the wind in correlation with the speed of the wind. If wind speeds are too strong, the team will wait for conditions to improve.
The CO2 Sensor fails to work during the launch.	Experiment cannot be conducted. Sparking could occur within the rocket.	5	Wiring is incorrect. Battery was not activated, or no connection in the circuit.	1	A checklist will be followed during construction and when preparing the rocket to launch.	Rain falls when the rocket is on the launch pad or in preparation.	Drag increases, resulting a possible lower altitude for the rocket. Stability also decreases.	5	Weather conditions are not suitable.	4	Rocket will be launched if rain is light, if rain is too strong, the team will wait for conditions to improve.
The rocket does not fly in a stable manner.	Altitude might not be met. Damage to the rocket can occur. The rocket will fly uncontrollably, possible hurting someone.	6	While constructing the rocket, mass change might have occurred. During the design proces5, stability margin might not have been considered. Weather conditions also influence instability.	3	Stability margin is always looked at when designing the rocket and when making any changes to that design. Weather conditions will be monitored, and the rocket will not be launched in unsafe conditions.	A fire can spread to the surrounding environment.	The launch site can catch on fire, resulting in damage to the nature.	9	Rocket can malfunction and once it lands, a fire can begin. Malfunction of the motor, sparks or ignition can set the rocket on fire.	0	If the rocket does catch on fire in any way, no parts of the environment will catch on fire. There is only dirt at Luceme Dry Lake for miles. No grass is near the launch site.
						The rocket will affect trees, power lines, buildings, or people not involved in the launch.	The rocket could hurt people near the launch site who are not aware. It may cause additional damage to the surrounding environment.	9	If the rocket is not stable, if may go off in the wrong path. Instability can be caused by the weather or rocket design.	1	There are no power lines, trees, or buildings within miles of the launch site. People nearby will be warned prior to the launching of the rocket. Stability margin of rocket will be made sure to be within safe limits during the design process.

Risk	Likelihood	Impact	Mitigation Technique
Time	M	H	If we do not have enough time, then there is nothing to do other than to work harder and reduce quality. To prevent this, we will create a coherent work schedule, divide the work evenly, and clearly delineate the formatting of the deliverables for uniformity in advance. Failing to meet deadlines in time may result in the termination of the SL team's participation.
Budget	M	M	If we run out of funds, we can either fundraise or gather money from within the team. The first method would guarantee a minimum \$100 profit. The second would guarantee a minimum \$700.
Functionality	L	H	If functionality within the project decreases, then we can mitigate this risk by providing clear work schedules and creating team activities to relax.
Resources	L	M	If we run out of resources, we can buy more and use our funds.

Key	
L	Low
M	Mediu m
H	High

Budget

Budget - Scale Vehicle

Description

Scale Vehicles and Engines
3" Fiberglass Frenzy XL
3" G12 Thin-Wall Airframe (12" length)
3" G12 Coupler (6" length)
3" G12 Coupler (9" length)
HS-7980TH
2-56 wire
1/4" Machine Closed Eye Bolt
Heavy unit easy connector
Iris Ultra 72" Compact parachute
12" Elliptical Parachute
Cesaroni J240RL

Unit Cost

$\$ 200.00$	1	$\$ 200.00$
$\$ 20.00$	1	$\$ 20.00$
$\$ 14.00$	2	$\$ 28.00$
$\$ 21.00$	1	$\$ 21.00$
$\$ 190.00$	1	$\$ 190.00$
$\$ 10.00$	1	$\$ 10.00$
$\$ 18.00$	4	$\$ 72.00$
$\$ 5.00$	1	$\$ 5.00$
$\$ 265.00$	1	$\$ 265.00$
$\$ 47.00$	1	$\$ 47.00$
$\$ 85.00$	1	$\$ 85.00$

Quantity Subtotal

$\$ 85.00$
Budget - Vehicle Cost

4" G12 Coupler (12" length)	\$31.00	3	\$93.00
4" G12 Coupler (8" length)	\$21.00	2	\$42.00
4" Fiberglass Frenzy XL	\$300.00	1	\$300.00
4" G12 Airframe (12" length)	\$23.00	1	\$23.00
75mm Aerotech K560	\$70.00	3	\$210.00
HS-7980TH	\$190.00	1	\$190.00
2-56 wire	\$10.00	1	\$10.00
Aero Pack 75mm Retainer (Fiberglass Motor Tubes)	\$44.00	1	\$44.00
Shock Cord Protector Sleeves of Kevlar	\$10.00	3	\$30.00
1 Inch Black Climbing Spec Tubular Nylon Webbing	\$12.00	2	\$24.00
3/8" Machine Closed Eye Bolt	\$30.00	4	\$120.00
4" G10 Airframe Plate	\$6.00	8	\$48.00
3" G10 Airframe Bulkplate	\$5.00	8	\$40.00
3" Aluminum Bulkplate	\$15.00	4	\$60.00
4" Aluminum Bulkplate	\$20.00	4	\$80.00
4" Coupler Bulkplate	\$4.00	4	\$16.00
3" Coupler Bulkplate	\$3.50	4	\$16.00
Electric Matches	\$1.50	60	\$90.00
Aero Pack 54mm Retainer (Fiberglass Motor Tubes)	\$29.00	1	\$29.00
Cesaroni K661	\$150.00	5	\$150.00

Budget - Recovery			
Recovery			
Iris Ultra 120" Compact Parachute	$\$ 504.00$	1	$\$ 504.00$
24" Elliptical Parachute	$\$ 60.00$	1	$\$ 60.00$
4F Black Powder	Kept by mentor		
Batteries (9v, 2 pack)	$\$ 7.00$	3	$\$ 21.00$
Battery Holder	$\$ 1.00$	5	$\$ 5.00$
Stratologger CF Flight Computer	$\$ 55.00$	1	$\$ 55.00$
RRC3 Flight Computer	$\$ 70.00$	1	$\$ 70.00$
PerfectFlite Pnut (2 units)	$\$ 55.00$	2	$\$ 110.00$

Budget - Payload

Payload
K30 CO2 Sensor$\$ 85.00$$\$ 35.00$
Arduino Uno kit (includes LED, resistors, regulators, etc)
SD card + Adapter
PerfectFlite Pnut Altimeter
Lithium Ion Batter (rechargable)
1
1 1 2

Budget - Payload and Educational Outreach

GPS System

Whistle GPS Dog Tracker Kit	$\$ 75.00$	1	$\$ 75.00$
Cellular Service Fee (3 months free, 5 months to pay)	$\$ 40.00$	1	$\$ 40.00$

Budget - Travel

Travel (7 Members)

Trips to Lucerne (\$2.80/gal, 112 mi ; $\$ 21.00$ per trip per car)

Huntsville, Alabama (roundtrip plane ticket)

Hotel (4 rooms, 6 days)

Hotel (2 people per room, 6 days)

Total Travel Cost (Estimated)

$\$ 332.00$	7	$\$ 2,324.00$
$\$ 130.00$	24	$\$ 3,120.00$
$\$ 25.00$	6	$\$ 1,050.00$

\$6,494.00

Timeline

The timeline is available here.

