Math 6345 Advanced ODEs
 Homework 2

1. Find $e^{A t}$ by (1) using the fundamental matrix method and (2) using the series definition for the following

$$
\text { (i) } A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \quad \text { (ii) } A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \text {. }
$$

2. Solve

$$
\frac{d \bar{x}}{d t}=\left[\begin{array}{rr}
1 & -1 \\
1 & 3
\end{array}\right] \bar{x}, \quad \bar{x}(0)=\overline{x_{0}}
$$

by calculating $e^{A t}$.
Hint. Show that matrix can be written as

$$
\left[\begin{array}{rr}
1 & -1 \\
1 & 3
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]+\left[\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right]
$$

and the fact that since they commute we can use the relation $e^{(A+B) t}=e^{A t} e^{B t}$.
3. Some properties of the matrix exponential
(i) If there exists a nonsingular matrix T such that

$$
A=T D T^{-1}
$$

where D is diagonal, prove that

$$
e^{A t}=T e^{D t} T^{-1}
$$

(ii) Prove

$$
\left(e^{A}\right)^{-1}=e^{-A}
$$

(iii) Prove

$$
\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr} A}
$$

(iv) If A is a 2×2 matrix with a repeated eigenvalue of r, show that

$$
e^{A t}=e^{r t}[\mathbb{I}+(A-r \mathbb{I}) t] .
$$

4. If $A(t)$ is an 2×2 matrix of continuous functions on $I=[a, b]$ and $\Phi(t)$ a matrix of differentiable functions such that

$$
\Phi^{\prime}(t)=A(t) \Phi(t)
$$

prove that for $t, t_{0} \in I$, then

$$
\operatorname{det} \Phi(t)=\operatorname{det} \Phi\left(t_{0}\right) e^{\int_{t_{0}}^{t} \operatorname{tr} A(s) d s}
$$

