Preface

Acknowledgments

Using the Protocols

INITIAL TREATMENT / UNIVERSAL PATIENT CARE

TRAUMA

<table>
<thead>
<tr>
<th>Condition</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe External Bleeding</td>
<td>6101</td>
<td></td>
</tr>
<tr>
<td>Selective Spinal Immobilization</td>
<td>6102</td>
<td></td>
</tr>
<tr>
<td>Chest Trauma</td>
<td>6104</td>
<td></td>
</tr>
<tr>
<td>Abdominal Trauma</td>
<td>6105</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal Trauma</td>
<td>6106</td>
<td></td>
</tr>
<tr>
<td>Head Trauma</td>
<td>6107</td>
<td></td>
</tr>
<tr>
<td>Hypoperfusion / Shock</td>
<td>6108</td>
<td></td>
</tr>
<tr>
<td>Traumatic Arrest</td>
<td>6109</td>
<td></td>
</tr>
<tr>
<td>Burns</td>
<td>6110</td>
<td></td>
</tr>
<tr>
<td>Eye Injuries</td>
<td>6111</td>
<td></td>
</tr>
</tbody>
</table>

CARDIAC

<table>
<thead>
<tr>
<th>Condition</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest Pain / ACS</td>
<td>6202</td>
<td></td>
</tr>
<tr>
<td>Cardiac Arrest</td>
<td>6205</td>
<td></td>
</tr>
<tr>
<td>Return of Spontaneous Circulation - ROSC</td>
<td>6214</td>
<td></td>
</tr>
</tbody>
</table>

RESPIRATORY

<table>
<thead>
<tr>
<th>Condition</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronchospasm</td>
<td>6302</td>
<td></td>
</tr>
<tr>
<td>Pulmonary Edema</td>
<td>6303</td>
<td></td>
</tr>
<tr>
<td>Inhalation Injury</td>
<td>6304</td>
<td></td>
</tr>
<tr>
<td>Airway Obstruction</td>
<td>6305</td>
<td></td>
</tr>
</tbody>
</table>

PEDIATRIC

<table>
<thead>
<tr>
<th>Condition</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Assessment</td>
<td>6401</td>
<td></td>
</tr>
<tr>
<td>Hypoperfusion / Shock</td>
<td>6402</td>
<td></td>
</tr>
<tr>
<td>Seizures</td>
<td>6403</td>
<td></td>
</tr>
<tr>
<td>Child Neglect / Abuse</td>
<td>6404</td>
<td></td>
</tr>
<tr>
<td>Sudden Infant Death Syndrome</td>
<td>6405</td>
<td></td>
</tr>
<tr>
<td>Cardiac Arrest</td>
<td>6406</td>
<td></td>
</tr>
<tr>
<td>Trauma Assessment</td>
<td>6408</td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>6409</td>
<td></td>
</tr>
<tr>
<td>Newborn Infant Care</td>
<td>6410</td>
<td></td>
</tr>
<tr>
<td>Allergic Reaction / Anaphylaxis</td>
<td>6412</td>
<td></td>
</tr>
<tr>
<td>Bronchospasm</td>
<td>6413</td>
<td></td>
</tr>
</tbody>
</table>
EMT Treatment Protocol

TABLE OF CONTENTS

ENVIRONMENTAL 6500
- Allergic Reaction / Anaphylaxis 6501
- Heat Exposure 6502
- Cold Exposure 6503
- Snake Bite 6504
- Near Drowning / Drowning 6505

MEDICAL 6600
- Hypoperfusion / Shock 6601
- Stroke / TIA 6602
- Seizures 6603
- Diabetic Emergencies 6604
- Unconscious / Altered Mental Status 6605
- Overdose / Ingestion / Poisoning 6606
- Behavioral Emergencies / Patient Restraint 6607
- OB/GYN Emergencies 6608
- Nausea / Vomiting 6609

CHILDREN WITH SPECIAL HEALTHCARE NEEDS 6700
- General Assessment 6701
- Central Venous Lines 6702
- CSF Shunt 6703
- Feeding Tubes 6704
- Apnea Monitors 6705
- Pacemaker / Defibrillator 6706
- Ventilator Support 6707

SPECIAL TREATMENT PROTOCOLS 6900
- Airway 6901

PROCEDURAL PROTOCOLS 7000
- Morgan Lens 7102
- CPAP 7301
- Stoma / Tracheostomy Suction Management 7403

SPECIAL OPERATIONAL POLICIES AND PROTOCOLS 9000
- Death in the Field 9101
- Cease Efforts 9102
- Field Trauma Triage 9103
- Ambulance Diversion Policy 9104
- Field Aeromedical 9105
- Medical Communication Policy 9106
EMT Treatment Protocol

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Patient Handoff</th>
<th>9107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerve Agent</td>
<td>9202</td>
</tr>
<tr>
<td>LVAD</td>
<td>9203</td>
</tr>
<tr>
<td>EtCO2</td>
<td>9204</td>
</tr>
<tr>
<td>Sports Venue Coverage: EMS Guide for Medical Time Out</td>
<td>9205</td>
</tr>
<tr>
<td>BLS Pre-established Treatment Monitoring</td>
<td>9206</td>
</tr>
</tbody>
</table>

APPENDIX

<table>
<thead>
<tr>
<th>Fibrinolytic Check Sheet</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversion Alert Status Form</td>
<td>B</td>
</tr>
<tr>
<td>Pediatric References</td>
<td>C</td>
</tr>
<tr>
<td>Assessment Mnemonics</td>
<td>D</td>
</tr>
<tr>
<td>Glasgow Coma Scale</td>
<td>E</td>
</tr>
<tr>
<td>Approved Abbreviations</td>
<td>F</td>
</tr>
<tr>
<td>Cincinnati Prehospital Stroke Scale</td>
<td>G</td>
</tr>
<tr>
<td>EMS Patient Care without Telecommunications</td>
<td>H</td>
</tr>
<tr>
<td>EMS Medication Formularies</td>
<td>I</td>
</tr>
<tr>
<td>WVOEMS Protocol Submission Policy</td>
<td>J</td>
</tr>
</tbody>
</table>
Preface

The first set of West Virginia EMS Statewide ALS protocols was a monumental event in the history of EMS in West Virginia. These protocols are the product of many years of discussion, collaboration, debate, revisions, and hard work on the part of a legion of dedicated professionals. They are evidence of the ongoing effort to continually improve emergency medical care in West Virginia.

Unified statewide protocols had been a dream of countless EMS providers, administrators, and medical directors for many years. The development of statewide protocols began in the mid-1990s with the early development of Statewide BLS protocols. The experience and lessons learned from that project led to the realization that the same could be accomplished with ALS protocols as well.

Over the last thirty years, Emergency Medicine has matured as a specialty. This has led to fewer and fewer localized variations in standards of emergency care. From a patient care perspective, these more uniform standards should be applicable to EMS on a statewide basis. To be sure, many individual providers who work in different regions of the state have faced the challenge of learning several different protocols for the treatment of a patient with the same condition.

In the spring of 2000, building on the success of the Statewide BLS Protocols, the State Critical Care Committee unanimously approved the concept to begin development of Statewide ALS protocols. Realizing the magnitude of this endeavor, the Regional Program Directors developed the early framework documents which combined the regional protocols into common state protocols. A list was developed and refined by the Medical Directors outlining the title to be used for each needed protocol.

In February 2001, a protocol work group composed of EMS representatives from every region of the state convened at Flatwoods for an intense two-day session. During this session, participants were instructed to use all available resources to construct a set of draft Statewide ALS Protocols. They were mandated to put old regional differences aside and cooperatively write the best patient care protocol possible. This effort produced the first draft of 54 ALS Protocols. This first draft was circulated across the state and reviewed by numerous personnel. Over 1,000 corrections and comments were received and reviewed. These comments were condensed into 13 pages of specific issues requiring discussion, debate, and action by the State Critical Care Committee. With input from the Medical Directors and providers in their region, the Regional Medical Directors discussed and debated these issues. The ultimate goal was consistent quality patient care and consensus was reached and the second draft was completed. Further refinement led to approval of the final version by the State Critical Care Committee in October and December of 2001. The West Virginia EMS Statewide EMS Protocols went into effect on February 15, 2002.

This was the beginning of unified protocols for EMS care in West Virginia and has led to additional protocols and modifications. The most recent revision began in December 2013. Forty-six representatives from the EMS community met in Flatwoods, WV. Five subcommittees were formed to review and update Trauma, Medical, Pediatric, Cardiac and Children with Special Needs protocols. The members were instructed to review and make changes, remove outdated material, or review and approve. Several meetings occurred during the first seven months of 2014. Protocols were developed and compiled into a new format. These revisions were submitted to the Regional Medical Directors and Medical Policy and Care Committee in July 2014. Multiple minor corrections were made over the following six months.

EMS personnel who use these protocols on a daily basis are encouraged to provide suggestions for improvement and feedback through their Agency Medical Director to their Regional Medical Director.

These protocols are a critical part of our quest to provide the citizens and visitors of the State of West Virginia the finest emergency medical care in the country.

Michael Mills, D.O., FACEP
West Virginia State EMS Medical Director
December 2014
Acknowledgments

Captain D. J. Weller
Emergency Medical Services Advisory Council Chairman
City of Martinsburg Fire Department

WV Medical Policy and Care Committee

Dr. Michael Mills, State Medical Director
Dr. Jennifer Auxier
Dr. David Seidler
Dr. Charles Bess
Dr. Jonathan Newman

WV Protocol Subcommittee Teams

Cardiac:

Mike Alt
John T. Considine
David Cutright
Jonathan Fink
Laura Forren
Kyle Hinzman

Medical:

John Darnell
Laura Forren
Elizabeth Hammonds
Marsha Knight
Shirley Morrison

Pediatric:

Sean Cantrell
Doug Goolsby
Beth Hammonds

Children with Special Health Care Needs:

Penny Burnside (retired)
Vicki Hildreth
Stacey Humphrey, M.D.
Debbie Kyle
Linda McQuaid
Nimish Mehta, M.D.

Trauma:

Randy Berry
Greg Burd
Chris Burge
Pete Formato

2021 EDITION
The West Virginia EMS Statewide Protocols are designed to enable EMS personnel to provide a wide variety of treatments to many types of patients. Understanding the organization and terminology of the protocols is important and will vastly improve the usability by the EMS provider.

Protocol Layout:

The following information is found at the top each protocol page contained in boxes:

- WVOEMS logo
- Type of Protocol
- Protocol Number
- Title of Protocol

Example:

![Paramedic Treatment Protocol 4101](image)

SEVERE EXTERNAL BLEEDING

The following information is found at the bottom each protocol page contained in boxes:

- Edition Date
- West Virginia Office of Emergency Medical Services - Statewide Protocols
- Number of pages within protocol

Example:

![2019 EDITION](image)

Protocol Numbering System:

Each Protocol is assigned a four (4) digit number. The first digit represents the level of care of the provider using the protocol. The second digit specifies the category of care. The last two digits indicate the specific protocol number.
Example:

Chest Pain Protocol 4202

4 - Level of Care = Paramedic
2 - Category of Care = Cardiac
02 - Specific Protocol Number = Chest Pain

Classifications of Levels of Care: (first digit)

1000 - CCT-RN
2000 - CCT-Paramedic
3000 - C3-IFT (Interfacility Transport Paramedic)
4000 - Paramedic
5000 - AEMT
6000 - EMT

Note: 7, 8 and 9 thousand series are used as follows:
7000 - BLS Procedural Protocols
8000 - ALS Procedural Protocols
9000 - Special Operational Policies and Protocols

Category of Care: (second digit)

4100 - Trauma
4200 - Cardiac
4300 - Respiratory
4400 - Pediatrics
4500 - Environmental
4600 - Medical
4700 - Special Healthcare Needs
4800 - Open
4900 - Special Treatment Protocols

Initial Treatment / Universal Patient Care:

The Initial Treatment / Universal Patient Care protocol is the first protocol within these guidelines. It is to be used universally on all patients as a starting point for assessment and treatment prior to moving on to a specific protocol. This protocol is designed to establish support at the beginning of patient care while identifying specific signs and symptoms that will direct the EMS provider to a more complaint specific protocol.
Special Shading and Icons:

The following shaded boxes with icons indicate that specific contact is required with Medical Command (red telephone) or the Medical Command Physician (physician) in order to perform specific treatments.

Examples:

Treatment requires consultation with medical command

Treatment requires consultation or direct contact with Medical Command Physician

Special Pediatric Notes:

For the purposes of these protocols, any patient under the age of 12 years will be considered a pediatric patient. Certain patients who are larger or smaller than the norms for their age may require modification of treatment. Providers should consult with Medical Command as needed in making this determination.
• Initial Treatment / Universal Patient Care protocol is designed to guide the EMS provider in the initial and ongoing approach to assessment and management of medical and trauma patients.

• The patient examination should focus on rapid assessment and interventions. On-scene management of high priority patients should be limited to stabilization of life-threatening problems. Other procedures should always be performed while en route to the hospital or a landing zone.

• The goal for on-scene time should not exceed ten minutes for high priority trauma and medical patients. Shorter scene times are desirable for high priority patients. Rescue efforts for patients that are entrapped or have access/egress problems should be coordinated to minimize scene time.

• Medical Command should be notified as soon as possible when applicable to prepare the receiving hospital for the patient.

• At any time a provider is uncertain of how to best manage a patient, on-line Medical Command must be contacted for instruction.

• Rarely are emergent transports (red lights and sirens) required once the patient has been evaluated and treated. It is important that the attendant in charge (AIC) carefully evaluate the risks and benefits of an emergency transport to the hospital. The time saved transporting in an emergent mode is frequently very short. Furthermore, the time saved is unlikely to affect patient outcome. Ultimately, the mode of transportation decision is the responsibility of the AIC.

A. SCENE SIZE-UP

1. Take appropriate standard precautions. Put on personal protective equipment as appropriate, including gloves, eye protection mask and gown.

2. Assess scene safety.

3. Assess mechanism of injury and/or nature of illness.
 a. Medical – determine nature of the illness from the patient, family, or bystanders. Why EMS was activated?
 b. Trauma – determine the mechanism of injury from the patient, family, or bystanders, and inspection of the scene.

4. Determine total number of patients. Initiate a mass casualty plan if necessary and initiate triage.

5. Summon additional resources as necessary to manage the incident. Additional resources include, but are not limited to: fire, rescue, advanced life support, law enforcement, utilities.
B. PRIMARY SURVEY

1. Form a general impression of the patient. Consider appearance, work of breathing, and circulation to skin. If a life-threatening condition is found, treat immediately.

2. Pediatric Patients may experience respiratory distress as a result of many different causes. A general impression should be established utilizing the Pediatric Assessment Triangle (PAT). Appearance, work of breathing, and circulation. (Appendix C)

3. Determine the Mechanism of Injury (MOI) or Nature of Illness (NOI)

4. Assess patient's mental status (maintain spinal immobilization if required)
 a. Assess using GLASGOW COMA SCALE. (Appendix E)
 b. If the victim is unresponsive with no breathing or abnormal breathing (i.e., only gasping), see Cardiac Arrest Protocol 4205 / 5202 / 6205 as applicable.
 c. Perform a Blood Glucose Reading on all patients exhibiting altered mental status

 a. For a complete airway obstruction, see AIRWAY MANAGEMENT protocol 4901 / 5901 / 6901 as applicable.

6. Assess the patient’s breathing.
 a. If respirations are inadequate, ventilate with 100% oxygen.
 i. If optional EtCO2 is available, maintain CO2 level at 35 - 45 mm/hg for patients without head trauma.
 ii. If signs of impending Central Nervous System herniation (increasing BP, bradycardia, decreasing GCS, dilation of one pupil, paralysis, and decerebrate or decorticate posturing) are present, then ventilate 12 - 20 breaths per minute to maintain EtCO2 at 30 - 35 mm/hg.
 b. If spontaneous respirations are adequate:
 i. Severe Distress – Administer Oxygen with a non-rebreather mask at 15 L/minute.
 ii. Mild to Moderate Distress – Administer Oxygen with a nasal cannula at 2
to 6 L/minute to maintain SpO2 at 94 - 99%.

iii. Do not use nasal cannula in infants and small children. Blow-by oxygen or mask to keep SpO2 at 94 - 99%.

7. Assess the patient’s circulation.
 a. Assess pulses at appropriate pulse points.
 b. Control major bleeding.
 c. Check perfusion by evaluating skin color, temperature, and moisture.
 d. Acquire 12 lead ECG and transmit if applicable.
 e. ALS providers – Establish IV/IO access and apply cardiac monitor if applicable.

8. Expose patient.

9. Identify the priority of the patient based on assessment findings.

10. Expedite transport for high priority patients

C. SECONDARY SURVEY
1. Obtain vital signs, including:
 a. Respirations
 b. Pulse
 c. Blood pressure
 d. Skin color, temperature, and condition

2. Obtain chief complaint.

3. Obtain history of present illness and past medical history

4. Conduct a physical examination (head-to-toe assessment) or focused exam

D. Perform Ongoing Exam and assess interventions.

E. Consider Patient Comfort Protocol 5902 / 4902 as applicable for ALS providers.

NOTE: Assessment Mnemonics can be found in Appendix D.
If Severe External Bleeding
Apply Direct Pressure to site while maintaining ABC’s

- Bleeding Controlled?
 - Yes
 - Extremity?
 - Yes
 - Apply appropriate pressure dressing, monitor for continued hemostasis and transport to appropriate facility
 - No
 - Apply commercial tourniquet proximal to bleeding site and tighten until bleeding stops
 - Bleeding Controlled?
 - Yes
 - Consider a second tourniquet (if available and bleeding is brisk).
 - No
 - Apply Hemostatic agent (if available). Packing the wound is appropriate and acceptable treatment.
 - Apply pressure dressing. Do not remove once applied

 - No
 - Ensure pressure is applied directly to site of bleeding
 - Open Chest or Abdominal Wound?
 - Yes
 - Continue direct pressure. Transport as soon as possible to appropriate facility
 - No
 - NO

- NO
 - YES
 - NO
Backboards are not the standard of care in most cases of potential spinal injury and have not been shown to provide any benefit for spinal injuries. Backboards may be appropriately utilized as an extrication device and/or tool to carry non-ambulatory patients. Neurological exam is mandatory in patients with potential spinal trauma.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Identify risk of spinal column and spinal cord injury/injuries.

C. Prevent and/or reduce further spinal column or spinal cord injury through application of appropriate evidenced-based immobilization.

D. Use Long Spine Board (or any of the multiple equipment devices) to TRANSFER patient to stretcher with minimal spinal movement, remove the device, and then secure patient to stretcher. Backboards used only to transport the patient to the ambulance gurney should be gently removed except in the following instances:

1. The backboard is being utilized as an element of the splinting strategy such as multiple long bone fractures.

2. The patient is at risk of vomiting but unable to protect their own airway and may need to be turned to provide airway protection.

3. Cases in which the patient is agitated or unresponsive.

4. Removal of the backboard would otherwise delay transport in a critical patient.

E. Extrication of a patient to a stretcher:

1. If patient does not meet criteria for c-spine immobilization and has no other injury, including thoracic or lumbar injury that would preclude standing or ambulating, patient may self-extricate with assistance to a waiting stretcher.

2. Patients who are on the ground with c-collar applied who have altered mental status with GCS < 15, neurological signs of injury, and are unable to stand from a sitting position should be positioned and immobilized to a long spine board or scoop stretcher for extrication to the stretcher.
F. Treatment and Interventions:

1. Apply cervical restriction if a patient is assessed and there is suspicion of cervical injury. If it does not cause increased agitation or pain, apply a properly fitted cervical collar. Suspicion of cervical injury includes:

 a. Patient complains of neck pain
 b. Tenderness upon palpation of the neck
 c. Abnormal mental status including agitation or neurological deficit
 d. Evidence of drug or alcohol ingestion

2. Apply full immobilization if the patient is assessed and exhibits with any of the following:

 a. Abnormal sensory/motor exam – abnormal findings such as paresthesia, loss of sensation in extremities, weakness or paralysis in extremities, or loss of urethral or sphincter control.
 b. Distracting injuries that produce pain that may distract the patient from the pain of a spine injury.
 c. Complaints of pain or tenderness on examination of the spine including palpation of the entire spine and range of motion (if appropriate).
 d. Patient reliability is questioned such as the following examples: intoxicated, elderly, young, altered mental status, chemically altered, or those patients that you cannot adequately perceive or communicate with.

G. Exclusion Criteria

1. No history of injury consistent with spinal injury

2. Patients with penetrating trauma to the chest, abdomen, head, neck, or back. These patients may be harmed by immobilization on a spine board.

3. Patients with non-traumatic back or neck pain related to movement, position, or heavy lifting.

H. Precautions and Considerations:

1. Caution should be exercised in high risk patients >65 years of age and patients <3 years of age as spinal assessments may be less sensitive in these age groups. This criteria in and of itself is not a factor in the providers decision making process to immobilize or not.
SELECTIVE SPINAL IMMOBILIZATION

2. Consider airway adjuncts if needed to maintain an adequate airway.

3. There is no evidence that the “standing backboard” technique is beneficial or appropriate. Ambulatory patients should simply be eased to a sitting position on the stretcher without the use of a backboard.

4. Use care with patients that have spinal abnormalities such as kyphosis. Padding or other alternatives may be required for patient comfort.
Twenty-five percent of all motor vehicle deaths are due to thoracic trauma. Rapid recognition and immediate treatment of chest injuries can prove to be life-saving.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Perform the following, if indicated:
 1. Stabilize flail segment of chest.
 2. Seal any open chest wounds by taping three (3) sides with an occlusive dressing or use an optional commercial chest seal.
 3. Stabilize any impaled objects.

If signs of a tension pneumothorax are present, (absent breath sounds and BP < 80 mm Hg) and patient has altered mental status, expedite transport and meet ALS en route.

C. Transport immediately and consider ALS backup.

D. Notify Medical Command.

Note:
 1. Chest pain after trauma could be a sign of significant injury and not cardiac chest pain. Nitroglycerin should not be used without MCP order.
 2. If tension pneumothorax develops in a patient with a sealed sucking chest wound, attempt to resolve by releasing air from the seal.
Prehospital care is directed toward rapid stabilization and transport to an appropriate medical facility for definitive surgical intervention and treatment.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Treatment:

C. Penetrating trauma:
 1. Stabilize impaled objects with bulky dressings.
 2. Control external bleeding.
 3. Search and locate exit wounds, when applicable.

D. Eviscerating trauma:
 1. Cover eviscerations with moist, sterile dressings.
 2. Apply occlusive bandage over dressings.

E. Blunt trauma:
 1. Recognize and reassess.
 2. Rapid transport.
 3. If patient is in shock, perform Shock Protocol 6108.

4. Contact Medical Command.
Isolated musculoskeletal and extremity injuries are rarely a first priority. Pelvic injuries are high risk for serious internal bleeding. Total or partial amputations require special treatment procedures.

A. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocol for medical management based on clinical presentation.

B. Treatment:
 1. Treat all painful, swollen, or deformed areas as fractures.
 2. Determine patient priority status:
 a. Stable patients - splint before transporting.
 b. Unstable patients - immobilize completely on long spine board and "load and go".
 3. Evaluate injury site(s):
 a. Visualize injured areas and remove clothing and jewelry.
 b. Check pulse, motor, and sensory before and after immobilization.
 c. Cover open wounds with dressing prior to immobilization.

C. Pelvic injury:
 1. Splint with sheet or other circumferential immobilization device.
 2. Immobilize on backboard.
 3. If signs of shock:
 a. Treat per **Shock Protocol 6108**
 b. Consider ALS backup or aeromedical evacuation without delaying transport and meet en route.

D. Extremity injuries:
 1. Support any injury site:
MUSCULOSKELETAL TRAUMA

a. Attempt to straighten severely angulated fractures by applying slow, gentle and steady axial traction. Stop if resistance is met.

b. Splint joint injuries in position found.

2. Apply splinting device, as appropriate, for the injury and situation.

3. Elevate extremity.

4. Apply cold packs to injury site.

5. Consider ALS assistance for pain management.

E. Total amputations:

1. Dress remaining part of limb.
 a. Wrap limb with sterile compress dressing just tight enough to control bleeding.
 b. Do NOT place clamps on arteries or veins.
 c. If bleeding is excessive, apply a tourniquet just proximal to the amputation.

2. Care for severed part:
 a. Wrap severed part in sterile gauze slightly dampened with normal saline and place in sealed container (waterproof bag) immersed in ice water.

F. Partial amputations:

1. Dress injury with a sterile compress dressing just tight enough to control bleeding.

2. If bleeding is excessive, apply a tourniquet just proximal to the injury site.

3. Splint the area.

4. Apply ice to injury site.

G. In consultation with Medical Command, determine best mode of transport and most appropriate destination.
The goal of pre-hospital treatment of head injuries is to prevent further neurological deterioration until definitive care can be provided. This is best done by maintaining an adequate airway, oxygenation, prevention, and treatment of hypotension combined with smooth, rapid transport to an appropriate facility with minimal on-scene time.

A. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocol for medical management based on clinical presentation.

B. Maintain airway as indicated by **Airway Management Protocol 6901** with the following special considerations in patients requiring assisted ventilation:
 1. If signs of impending Central Nervous System herniation (increasing BP, bradycardia, decreasing GCS, dilation of one pupil, paralysis, and decerebrate or decorticate posturing) are present, then ventilate 12 - 20 breaths per minute to maintain end tidal CO2 at 30 mm/Hg.
 2. If no signs of CNS herniation, ventilate 10 - 12 breaths per minute to maintain end tidal CO2 at 35 - 40 mm/Hg.

C. Transport and continue treatment en route. Consider ALS backup or aeromedical evacuation without delaying transport and meet en route.

D. **Contact Medical Command**

E. Elevate head of bed 30° above horizontal if patient is not hypotensive.

F. Perform and document neurological status checks every five (5) minutes.

G. If patient is confused or unconscious, consider checking serum glucose treat as indicated in **Diabetic Protocol 6604**. **DO NOT** delay treatment or transport to check serum glucose but this should be done as soon as possible.

H. If patient develops seizure activity, refer to **Seizure Protocol 6603**.

I. Monitor airway, vital signs, and level of consciousness repeatedly at scene and during transport, **status changes are important**.

Note:

1. When head injury patients deteriorate, first check for proper airway, adequate oxygenation, and adequate blood pressure.

2. Avoid hypoxemia and hypotension.
Shock, or hypoperfusion, is decreased effective circulation causing inadequate delivery of oxygen to tissues. Signs of early (compensated) shock include tachycardia, poor skin color, cool/dry skin, and delayed capillary refill. Systolic blood pressure is normal in early shock. In late (decompensated) shock, perfusion is profoundly affected. Signs include low blood pressure, tachypnea, cool/clammy skin, agitation, and altered mental status.

Shock may be the result of several mechanisms including internal/external bleeding, fluid loss from burns, vomiting, diarrhea, severe infection, and other non-traumatic causes.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Manage airway and oxygenation per Airway Management Protocol 6901.

C. Control external bleeding.

D. Prevent heat loss.

E. Consider ALS backup or aeromedical evacuation without delaying transport and meet en route.

F. Immobilize trauma patients as indicated per Spinal Trauma Protocol 6103.

G. If anaphylaxis or allergic reaction, refer to Allergic Reaction/Anaphylaxis Protocol 6501.

H. Consider elevating lower extremities.

I. Transport and continue treatment en route.

J. Contact Medical Command
Patients who are found in full cardiac arrest as a result of trauma have an essentially zero chance of survival. If upon arrival of EMS personnel, the patient has any signs of life (pulse or respirations), rapid transportation and treatment offer the only hope for survival. Trauma patients who have a witnessed cardiac arrest require rapid treatment and transportation.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. If patient is found pulseless and apneic, contact MCP directly for consultation on not beginning resuscitation. Follow Death in the Field Protocol 9101.

C. If patient has any pulse or respirations or has arrest witnessed by EMS personnel; begin CPR with C-spine protection.

D. Establish and secure airway according to Airway Management Protocol 6901.

E. Full immobilization.

F. On scene time should be less than five (5) minutes, if possible.

G. If patient is entrapped, consider Cease-Efforts Protocol 9102 per direct MCP order.

H. Consult MCP for further treatment orders.
Burns can be caused by direct thermal injury, exposure to caustic chemicals, and contact with electrical sources. Factors to be considered when treating burn patients include the nature of the burn, whether the patient was in an enclosed space, the source of the burn, the patient’s history, the duration of the contact, and the temperature of the thermal agent. Always protect providers from exposures to hazardous materials. NEVER ATTEMPT TO REMOVE PATIENT FROM AN IMMEDIATELY DANGEROUS TO LIFE AND HEALTH (IDLH) ENVIRONMENT UNLESS TRAINED, CERTIFIED, AND PROPERLY EQUIPPED. NEVER PLACE YOURSELF OR YOUR CREW IN DANGER. Decontamination, if necessary, should be done by appropriate certified personnel.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Stop the burning process:
 1. **Thermal burns**: Irrigate the burned area with tepid water (sterile, if possible) to cool skin. **DO NOT** attempt to wipe off semisolids (grease, tar, wax, etc.). **DO NOT** apply ice. Dry the body when the burn area is ≥ 10% BSA to prevent hypothermia.
 2. **Dry chemical burns**: Brush off dry powder and irrigate with copious amounts of tepid water (sterile, if possible) for 20 minutes. Continue en route to the hospital.
 3. **Liquid chemical burns**: Irrigate the burned area with copious amounts of tepid water (sterile, if possible) for 20 minutes. Continue en route to the hospital.

C. If signs of respiratory involvement are present, such as facial burns, singed face or nasal hairs, swollen, sooty, or reddened mucous membranes, or patient was in a confined space and/or unconscious, assume inhalation injury and treat per Inhalation Injury Protocol 6304.

D. Remove clothing from around burned area, but **DO NOT** remove/peel off skin or tissue. Remove and secure all jewelry and tight fitting clothing.

E. Assess the extent of the burn using the **Rule of Nines** and the degree of burn severity.

F. **Minor Burns**:
 1. Cover with clean dressing.
2. Consider application of cool/moist compress.

3. Notify Medical Command and transport.

G. Major Burns:

1. Cover with clean dry dressing.

2. In consult with medical command, establish transport mode (ground vs. air) considering transport to burn center.

H. Thermal Burns:

1. Cool water immersion of minor localized burns may be effective if accomplished in the first few minutes after a burn.

2. Cover extensive partial and full thickness burns with a dry, sterile dressing. Keep the patient warm and treat per Shock / Hypoperfusion Protocol 6108.

3. Use soft, non-adherent dressings between areas of full thickness burns, such as between the fingers and toes, to prevent adhesion.

I. Electrical Injuries:

1. Assure scene safety and notify appropriate agencies to mitigate the hazard.

2. Commonly occurring with electrical injuries are long bone fractures, cardiac dysrhythmias, and neurological deficits. Victims of lightning strikes may be in cardiac arrest, but frequently can be resuscitated quickly after intubation and assisted ventilations.

3. Assess for multiple entrance and exit wounds.

4. Cover wounds with clean dressings as required.

5. In consultation with Medical Command, establish mode (ground vs. air) and destination of transport, including consideration of transport to a burn center.
J. **Chemical Burns:**

1. Attempt to identify substance from labels, data sheets, or other personnel on-scene, but **DO NOT** delay treatment or transport during this process.

2. Request additional resources, as needed (ERG, Haz Mat Team, etc.).

3. **Contact Medical Command** with the nature of the substance. Medical Command shall notify WV Poison Control for further information as required.

4. Avoid self-contamination by using protective clothing and gloves.

5. Decontaminate grossly by removal of excess chemical.

6. Common chemicals that cause burns:

 a. **Phenol** is a gelatinous caustic used as an industrial cleaner. It is difficult to remove because it is insoluble in water. Use alcohol, which may be found in areas where Phenol is regularly used, to dissolve the product. Follow removal with irrigation using large volumes of cool water.

 b. **Dry Lime** is a strong corrosive that reacts with water. It produces heat and subsequent chemical and thermal injuries. Brush dry lime off the patient gently, but as completely as possible. Then rinse the contaminated area with large volumes of cool to cold water.

 c. **Sodium** is an unstable metal that reacts destructively with many substances, including human tissue and water. Decontaminate the patient quickly with gentle brushing.

 d. **Riot Control Agents** (Mace, Pepper Spray, etc.) cause intense irritation of the eyes, mucous membranes, and respiratory tract. Treatment is supportive and most patients recover in 10 - 20 minutes of exposure to fresh air. If necessary, irrigate the patient’s eyes with Normal Saline if you suspect the agent remains in the eyes.

 e. **Hydrofluoric Acid** is a common corrosive that reacts with water. It produces heat and subsequent chemical and thermal injuries resulting in extreme pain to the affected areas. Cover the wound and avoid contact with water.
7. Flush with large amounts of water. Precaution: Certain substances such as heavy metals may cause further burning if flushed with water. If in doubt about flushing, contact Medical Command. If eyes are involved, flush for at least 20 minutes.

<table>
<thead>
<tr>
<th>Minor Burns Criteria</th>
<th>Major Burns Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Superficial and partial thickness:</td>
<td>1. Superficial and partial thickness:</td>
</tr>
<tr>
<td>Adult <18%, Child <9%</td>
<td>Adult >18%, Child >9%</td>
</tr>
<tr>
<td>2. Full thickness <2%</td>
<td>2. Full thickness >2%</td>
</tr>
<tr>
<td>3. Does not meet major burn criteria 3 thru 6.</td>
<td>3. Partial or full thickness of: face, neck, hands, feet, genitalia</td>
</tr>
<tr>
<td></td>
<td>4. Suspected or positive airway involvement.</td>
</tr>
<tr>
<td></td>
<td>5. Electrical burns.</td>
</tr>
<tr>
<td></td>
<td>6. Circumferential burns or associated injuries.</td>
</tr>
</tbody>
</table>
A. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocol for medical management based on clinical presentation.

B. Penetrating trauma to globe:
 1. Observe for bleeding and leakage of iris material or clear fluid.
 2. Do not palpate globe or apply any pressure to the eye.
 3. Shield injured eye and patch the non-injured eye.
 4. Stabilize impaled objects in place.
 5. Avoid unnecessary movement. Advise patient not to cough, sneeze, or move.

C. Ultraviolet light exposure (i.e., arc welder or sun lamp burns):
 1. Symptoms may be delayed 3 - 10 hours after exposure.
 2. Place cool compresses lightly over both eye lids.

D. Sudden, painless loss of vision:
 1. May be due to central retinal artery occlusion, stroke, or other embolic event.
 2. Administer oxygen 2 – 6 LPM via nasal cannula.
 3. Transport supine.

E. Foreign Bodies in the eye that require irrigation:
 1. Administer **Tetracaine (optional)**, 2 drops per eye being irrigated.
 2. Attached saline bag to IV tubing.
 3. Turn patients head injured eye down and flush continuously throughout transport.

 NOTE: Tetracaine is a single use medication. Repeated doses will predispose the cornea to ulceration and destruction of the superficial layer of the cornea.

F. Transport and continue treatment en route.

G. Contact **Medical Command** for further treatment options.
A. Indications for this protocol include one or more of the following:

1. The classic symptom associated with an Acute Coronary Syndrome (ACS) is chest discomfort, but symptoms may also include discomfort in other areas of the upper body, shortness of breath, sweating (diaphoresis), nausea, vomiting, and dizziness. Many patients complain of substernal chest pain, pressure, or discomfort unrelated to an injury or other readily identifiable cause.

2. History of previous ACS/AMI with recurrence of similar symptoms.

3. Any patient with a history of cardiac problems who experiences light headedness or syncope.

4. Patients, of any age, with suspected cocaine abuse and chest pain.

5. Atypical or unusual symptoms (other than chest discomfort) are more common in women, the elderly and diabetic patients.

B. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

C. If patient has no history of allergy to aspirin and has no signs of active bleeding (i.e., bleeding gums, bloody or tarry stools, etc.), then administer four (4) 81 mg chewable aspirin orally (324 mg total).

D. Obtain 12 lead ECG and transmit a copy or computer interpretation to the receiving facility or Medical Command if optional 12 lead ECG is available and is does not significantly delay treatment and transport.

E. If blood pressure > 100 mm/Hg systolic and patient has not taken Viagra or Levitra within last 24 hours (or Cialis within the last 72 hours), then contact Medical Command for the following orders:

1. Administer Nitroglycerine 0.4 mg SL.

2. Repeat every five (5) minutes until pain is relieved or three (3) doses administered.

3. Recheck blood pressure between each Nitroglycerine dose administered. If blood pressure falls below 100 systolic, discontinue dosing and contact Medical Command Physician to discuss further treatment.
F. If blood pressure is < 100 systolic and patient has not taken nitroglycerine within past 30 minutes, this is a potential life-threatening emergency.

1. Position with head elevated no more than 15°.
2. **Do not administer Nitroglycerine (NTG).**
4. Transport and continue treatment en route.

Note: If patient has respiratory distress with fluid in their lungs as suggested by crackling or bubbly lung sounds, and/or frothy sputum, and have inadequate respirations, they should have their ventilation assisted with 100% oxygen, positive pressure Bag Valve Mask (BVM), even if patient remains conscious. Also evaluate the patient for possible treatment with Continuous Positive Airway Pressure per **CPAP Protocol 8301**, if agency is approved for optional CPAP Protocol, and contact **Medical Command**.
Assess need for ALS and request as appropriate
Follow Initial Treatment Protocol, start CPR hard and fast (rate of 100), and attached AED

A

- “Shock Advised”
 - Rhythm Shockable?
 - NO
 - “No Shock Advised”
 - CPR 2 Min.
 - Consider Advanced Airway: Supraglottic and Capnography (if available)
 - Rhythm Shockable?
 - NO
 - CPR 2 Min.
 - Consider Advanced Airway: Supraglottic and Capnography (if available)
 - Rhythm Shockable?
 - YES
 - CPR 2 Min.
 - Assess Reversible Causes
 - Prepare for transport if ALS arrival is not eminent
 - NO
 - SHOCK per AED Guidelines
 - YES
 - SHOCK per AED Guidelines
 - CPR 2 Min.
 - Consider Advanced Airway: Supraglottic and Capnography (if available)

B

- OFFICE OF EMERGENCY MEDICAL SERVICES
- WEST VIRGINIA – STATEWIDE PROTOCOLS

- “Shock Advised”
 - Rhythm Shockable?
 - YES
 - CPR 2 Min.
 - Treatment Reversible Causes
 - NO
 - “No Shock Advised”
 - CPR 2 Min.
 - Consider Advanced Airway: Supraglottic and Capnography (if available)
 - Rhythm Shockable?
 - YES
 - CPR 2 Min.
 - Treatment Reversible Causes
 - NO
 - Prepare for Transport
 - NO
 - SHOCK per AED Guidelines

Assess for Reversible Causes

- Hypoxia
- Hydrogen Ion
- Hypothermia
- Hypovolemia
- Hypo/Hyperkalemia
- Hypoglycemia
- Toxins
- Tension Pneumothorax
- Cardiac Tamponade
- Thrombus (cardiac)
- Thrombus (pulmonary)
- Trauma

- If no ROSC – Go to B
- If ROSC – Proceed to ROSC Protocol 6214

Contact Medical Command for additional post cardiac arrest care orders
This protocol should be followed for all adult cardiac arrests with ROSC. If it is unknown whether the arrest is traumatic or medical, continue with this protocol.

A. Follow Initial Treatment / Universal Patient Care Protocol.

B. If ventilation assistance is required, ventilate at 10 - 12 breaths per minute. DO NOT hyperventilate.
 1. Avoid excessive ventilation. *If capnography available:* titrate to target ETCO2 of 35 - 40 mm/Hg.
 a. Titrate oxygen to minimum necessary to achieve SpO2 at 92 - 98%.
 b. Start with 100% oxygen during the CPR phase.

C. Consider Advance Airway: Supraglottic (Combitube or King Airway).

D. If patient is unresponsive, consider initiating therapeutic cooling measures (if available) with icepacks in axillae, groin neck, and around head wrapped in a light towel.

E. Reassess patient. If patient becomes pulseless, begin CPR and follow appropriate protocol.

F. Continue to monitor ABC’s.

G. Prepare for transport if ALS arrival is not eminent.

H. Contact Medical Command for additional treatment options.
Bronchospasm may be the manifestation of several disease processes, most commonly asthma, chronic bronchitis, and emphysema (COPD). Physical examination reveals wheezing and prolonged expiratory phase of breathing. Respiratory Distress is categorized as follows:

- **Minimal Distress:** A slight increase in work of breathing with no wheezing or stridor evident.
- **Moderate Distress:** A considerable increase in work of breathing with wheezing and/or abnormal breath sounds evident.
- **Severe Distress:** Extreme work of breathing (retractions) with decreased lung sounds or decreased lung compliance, inability to speak in full sentences, and/or lethargy.

A. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocol for medical management based on clinical presentation.

B. If patient is in moderate distress and heart rate is <130:

1. Administer **Albuterol** 5.0 mg combined with **Ipratropium Bromide (Atrovent®)** 0.5 mg (Combi-Vent / Duo-Neb) with oxygen 8 - 10 LPM. If **Ipratropium Bromide (Atrovent®)** is contraindicated, administer **Albuterol** only.

2. Reassess vital signs and lung sounds.

3. If distress is unrelieved and patient appears severe (tripod, semi-Fowler's):

 a. Expedite transport and consider ALS backup.

 b. Administer a second dose of **Albuterol** 5.0 mg combined with **Ipratropium Bromide (Atrovent®)** 0.5 mg (Combi-Vent / Duo-Neb) with oxygen 8 - 10 LPM per Medical Command. If **Ipratropium Bromide (Atrovent®)** is contraindicated, administer **Albuterol** only.

 c. If distress continues and patient is less than 35 years of age and has no history of cardiac disease or hypertension, consider administration of **Epinephrine** 1:1000, 0.3 mg IM per MCP order.

4. If distress is relieved:

 a. Monitor vital signs and transport.

 b. Notify **Medical Command**.
C. If patient is in severe distress and heart rate is < 130:

1. Confirm that patient's tachycardia appears to be from respiratory distress and not from other causes.
 a. Proceed with treatment as in “B” above.
 b. Monitor patient's symptoms and vital signs very closely.
 c. If any signs of increasing chest pain or cardiac symptoms develop, stop nebulizer, and treat per appropriate protocol.
 d. Apply CPAP with in-line nebulizer if indicated. CPAP may be useful in lowering the work of breathing in severe episodes.
 e. **Contact Medical Command** for further treatment options.

2. If patient heart rate is > 130:
 a. Confirm that patient’s tachycardia appears to be from respiratory distress and not from other causes.
 b. Treat as outlined in “B” above.
 c. Monitor patient's symptoms and vital signs closely.
 d. If any signs of increasing chest pain or cardiac symptoms develop, stop nebulizer, and treat per appropriate protocol.
 e. **Contact Medical Command** for further treatment options.
Patients experiencing pulmonary edema will have rales or crackles on lung exam and may exhibit with JVD and/or peripheral edema and/or frothy sputum. Patients in severe pulmonary edema may benefit from assistance with positive pressure ventilation.

A. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocol for medical management based on clinical presentation.

B. Consider ALS back up.

C. If patient is in severe respiratory distress, consider CPAP if available per **CPAP Protocol 7301**. CPAP should be initiated for a minimum of five (5) minutes prior to administration of nitroglycerine.

D. If patient has rales and initial blood pressure is > 110 systolic; administer nitroglycerin 0.4mg sublingual. Repeat doses require MCP order. Obtain a manual BP between doses of Nitroglycerine and assess the patient’s response prior to administering subsequent doses.

NOTE: If patient has taken Sildenafil (Viagra®) or Vardenafil (Levitra®) within last 24 hours, or Tadalafil (Cialis®) within the last 72 hours, treat per E - I of this protocol.

E. If wheezing is present, administer **Albuterol** 2.5 mg combined with **Ipratropium Bromide (Atrovent®)** 0.5 mg (Combi-Vent / Duo-Neb) with oxygen 8 - 10 LPM. If **Ipratropium Bromide (Atrovent®)** is contraindicated or the patient is a pediatric, administer **Albuterol** only.

F. May repeat **Albuterol** 2.5 mg combined with **Ipratropium Bromide (Atrovent®)** 0.5 mg (Combi-Vent / Duo-Neb) per order of **Medical Command**. If **Ipratropium Bromide (Atrovent®)** is contraindicated or the patient is a pediatric, administer **Albuterol** only.

G. Transport with **further orders per MCP**.

H. If blood pressure < 90 systolic and patient has rales:

 a. Expedite transport and monitor vital signs closely.

 b. Contact **Medical Command** for further orders per MCP.

I. If blood pressure is < 90 systolic, refer to **Shock Protocol 6108**.
Inhalation injury may be caused by toxins or thermal burns. In either case, the patient should be removed from the environment. **NEVER ATTEMPT TO REMOVE PATIENT FROM AN IMMEDIATELY DANGEROUS TO LIFE AND HEALTH (IDLH) ENVIRONMENT UNLESS TRAINED, CERTIFIED, AND PROPERLY EQUIPPED. NEVER PLACE YOURSELF OR YOUR CREW IN DANGER.** Decontamination, if necessary, should be done by appropriate certified personnel.

Note: Obtain *Data Sheets* for inhalant and/or refer to *DOT Emergency Response Guide* for direction. Contact *Medical Command* which may consult with WV Poison Control Center.

A. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocol for medical management based on clinical presentation.

B. Specific history and physical exam:

1. Type and amount of toxin, if known.
2. Duration of exposure.
3. History of loss of consciousness.
4. If thermal injury, assess nares and oropharynx for singeing and soot.
5. Assess lung sounds; if wheezing, refer to *Bronchospasm Protocol 6302*.
6. If burns are present, treat per *Burn Protocol 6110*.

C. Transport.

D. **Notify Medical Command.**

E. Consider ALS Backup without delaying transport and meet en route.
A. Conscious Patient:

1. Able to talk or cough:
 a. Reassure victim and encourage coughing.
 b. Oxygen 15 LPM via nonrebreather mask.
 c. Transport immediately and notify Medical Command.

2. Unable to talk, cough, or has weak ineffective cough:
 a. Deliver repeated abdominal thrusts until obstruction relieved or victim becomes unconscious. For patients <1 year of age, do alternating 5 back blows and 5 chest thrusts.
 b. Chest thrusts are preferred on advanced pregnancy and marked obesity.
 c. Transport immediately and notify Medical Command.

B. Unconscious:

1. Open Airway and attempt ventilation.
2. Reposition airway, if necessary, and attempt ventilation.
3. Begin CPR starting with compressions.
4. Finger sweep for foreign body if visualized. DO NOT perform finger sweep on patients < 8 years of age.
5. Repeat steps 1 - 5 above.
6. If unsuccessful, transport immediately. Repeat steps 1 - 5 en route.
7. Request ALS backup without delaying transport and meet enroute.
8. If further airway management is required refer to Airway Management Protocol 6901.
9. Contact Medical Command.
The initial procedures needed to assess and manage pediatric medical patients are similar. Primary cardiac problems are rare in children. Pediatric patients may experience respiratory distress as a result of many different causes.

A. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocol for medical management based on clinical presentation.

1. General impression using **Pediatric Assessment Triangle (PAT)**: Appearance, work of breathing, and circulation of skin.

2. Hands on physical assessment using **Pediatric ABCDE’s**: Airway, breathing, circulation, disability, and exposure.

3. **DO NOT** use nasal cannula in infants and small children. Use blow-by oxygen or mask to keep pulse oximeter at 94 - 99%.

4. Perform focused history, more detailed physical exam, and ongoing assessment at the appropriate time before or during transport.

B. Provide immediate resuscitation, as needed, and immediately make transport decision.
Shock, or hypoperfusion, is decreased effective circulation causing inadequate delivery of oxygen to tissues. Signs of early (compensated) shock include tachycardia, poor skin color, cool/dry skin, and delayed capillary refill. Systolic blood pressure is normal in early shock. In late (decompensated) shock, perfusion is profoundly affected. Signs include low blood pressure, tachypnea, cool/clammy skin, agitation, and altered mental status.

Shock may be the result of several mechanisms including internal/external bleeding, fluid loss from burns, vomiting, diarrhea, severe infection, and other non-traumatic causes.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Manage airway and oxygenation per Airway Management Protocol 6901.

C. Control external bleeding.

D. Prevent heat loss.

E. Consider ALS backup without delaying transport and meet en route.

F. Immobilize trauma patients as indicated per Spinal Trauma Protocol 6103.

G. If anaphylaxis or allergic reaction, refer to Allergic Reaction/Anaphylaxis Protocol 6501.

H. Transport and continue treatment en route.

I. Contact Medical Command.
A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Protect patient from injury and place on left side.

C. Obtain history to help determine origin of seizure:
 1. Febrile – Refer to Fever Protocol 6409
 2. Trauma – Refer to Initial Treatment / Universal Patient Care Protocol
 3. History of seizures in the past and is patient taking any anti-seizure medications.

D. If child is actively seizing:
 1. Protect airway. DO NOT attempt insertion of airway adjuncts.
 2. Calm caregiver’s fears.
 3. Obtain key information and prepare for transport.
 4. Quickly assess serum glucose and treat per Diabetic Emergencies Protocol 6604.
 5. If glucose level is < 60 mg/dl or cannot be determined, contact MCP to consider administration of oral glucose.
 6. Expedite transport and contact Medical Command.
 7. If seizure lasts longer than five (5) minutes or two (2) or more episodes of seizure activity occur between which the patient does not regain consciousness, request ALS backup without delaying transport and meet en route.

8. If seizure continues, further treatment as ordered by Medical Command.

E. If child is not actively seizing:
 1. Monitor vital signs closely and be alert for recurrence of seizure.
 2. Transport.
 3. Perform remaining assessment as indicated and contact Medical Command
PEDIATRIC SUSPECTED CHILD ABUSE / NEGLECT

Pediatric patients require the same skills and techniques as adult patients; however, unless you are calm and professional, the emotional reaction of the patient and others on the scene may become more intense. Use extreme tact and professionalism. DO NOT let emotions or prejudices interfere with appropriate patient care.

A. Assure that scene is safe for both rescuers and patient.

B. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

C. Provide appropriate emergency medical treatment for all injuries found (refer to appropriate trauma protocols).

D. Obtain history from all available sources including child, parent/caregiver, and other witnesses.

E. Alleged sexual abuse:
 1. Discourage patient from going to bathroom.
 2. Do not allow patient to change clothes or wash.
 3. Give nothing by mouth.

F. Transport.

G. Contact Medical Command.

H. Upon arrival at the hospital, inform the receiving medical personnel of your findings and/or suspicions. Document the call carefully and thoroughly. Use the telephone to relay pertinent information to Medical Command.

Note: Current WV law sets forth that as mandated reporters of child abuse and neglect, EMS providers are required to report the circumstances of child abuse/neglect or cause a report to be made to the WV Department of Health and Human Resources (WVDHHR) within 48 hours after suspecting abuse. Additionally, they are required to report the circumstances to the person in charge of the receiving institution or a designated person thereof. That person is then required to make the report or cause a report to be made. While EMS providers may report the circumstances to WVDHHR themselves, they must always make a report to the person in charge of the receiving institution, or a designated person thereof, who then has a statutory duty to report.
Sudden Infant Death Syndrome (SIDS) is the unexpected, sudden death of a seemingly normal, healthy infant that occurs during sleep with no physical evidence of disease or injury.

A. Begin resuscitation immediately unless rigor mortis, severe lividity, or tissue breakdown is evident. If any doubt, resuscitate. Refer to Pediatric Emergencies Cardiac Arrest Protocol 6406.

B. Note the position and condition of the victim and the surroundings.

C. Use extreme tact and professionalism. Do not let emotions or prejudices interfere with carrying out appropriate patient care or family support.

 1. **DO NOT** make judgments concerning the situation.

 2. **DO NOT** add to the parent’s sense of guilt or helplessness.

 3. Remember, people react differently to stressful situations.

D. If resuscitation is begun:

 1. Transport immediately.

 2. Request ALS backup.

 3. Continue treatment en route per appropriate protocol.

E. If resuscitation has **not begun**:

 1. **Contact Medical Command** immediately for confirmation of decision not to begin efforts by direct MCP order and follow Death in the Field Protocol 9101.
EMT Treatment Protocol

PEDIATRIC CARDIAC ARREST

Cardiac arrest in infants and children is rarely a primary event. It is usually a result of deterioration of respiratory function resulting in decreased cardiac function. Cardiac arrest can be prevented if the symptoms of respiratory failure and/or shock are recognized and quickly treated.

Prior to arrival at a confirmed or suspected cardiac arrest, request ALS backup.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.
 1. Assess breathing and pulse.
 2. If no pulse, complete five (5) cycles or approximately two (2) minutes of CPR.

B. If child is >1 year old:
 1. Attach AED and analyze rhythm:
 a. Use anterior / posterior pad placement if using adult electrodes.
 b. Use standard placement if using pediatric electrodes.
 2. Administer one (1) shock, if advised.
 3. Check pulse.
 4. If no pulse present:
 a. Continue CPR.
 3. Re-analyze rhythm after every five (5) cycles of CPR.
 i. Repeat an additional single shock, if advised.
 ii. If no shock indicated, continue CPR.
 5. If pulse present:
 a. Assess vital signs and continuously monitor pulse.
 b. Leave AED attached to patient.
C. If child is <1 year old:
 1. If no pulse, perform CPR.
 2. Ventilate with 100% oxygen via bag valve mask.

D. Transport and continue treatment en route:
 1. Request ALS backup, if not previously requested.
 2. Contact Medical Command.
In the trauma patient, time is critical. Only initial assessment and treatment of life-threatening injuries should be performed on scene. For severely injured patients, after appropriate airway management, “load and go” is more appropriate.

If dispatch information gives the responding ambulance reason to suspect the possibility of a significant accident situation (multiple vehicles, etc.), alert Medical Command prior to arrival at scene and consider aeromedical standby.

A. Scene evaluation:
1. Note potential hazard to rescuers and patient.
2. Identify number of patients and organize triage operations, if needed.
3. Observe patient position and surroundings.
4. Consider need for ALS and/or aeromedical evacuation.

B. Consider mechanism of injury:
1. Cause, precipitating factors, and weapons used.
2. Trajectories and forces involved to patient.
3. For vehicular trauma: condition of vehicle, windshield, steering wheel, compartment intrusion, car seat, type and use of seatbelts. Specific description of mechanism (i.e. auto-pole, rollover, auto-pedestrian, etc.).
4. Helmet use?

C. Patient assessment:
1. Determine responsiveness.
 a. Establish and maintain airway.
 b. Maintain C-spine.
 c. Perform Airway Management Protocol 6901, as indicated.
2. Breathing:
 a. If adequate, oxygen 15 LPM nonrebreather mask to maintain SpO2 at 94 - 99%.
 b. If inadequate, ventilate with 100% oxygen and perform Airway
EMT Treatment Protocol 6408

PEDIATRIC TRAUMA ASSESSMENT

Management Protocol 6901, as indicated.

3. Circulation:
 a. Control bleeding.
 b. Assess perfusion status.

4. Neurological status:
 a. Determine level of consciousness using AVPU or GCS.
 b. Check pupils.

5. Limit on-scene time. Unless unusual circumstances, the goal should be:
 a. Not trapped: 10 minutes or less.
 b. Entrapped: within five (5) minutes of extrication.

6. In consultation with Medical Command, establish mode (ground vs. air) and destination of transport.

D. Treatment:

1. Immobilize patient on long spine board or as indicated in Spinal Trauma Protocol 6103.

 Note: All multiple trauma patients are considered to have a significantly distracting, painful injury. Infants and toddlers with minor injuries or no apparent injury may be left in child safety seats and immobilized, provided the seat is undamaged.

2. Transport.

3. Monitor vital signs and continue treatment en route.

4. If any signs of shock such as tachycardia, tachypnea, cool/clammy skin, low blood pressure, or high suspicion of major blood loss refer to Pediatric Hypoperfusion / Shock Protocol 6402.

5. Prevent heat loss.

6. Request ALS backup if needed and not already completed and contact Medical Command.
Fever is defined as a temperature of 100.4° F (38° C) or greater. Fever is a sign of infection rather than a problem itself. Body temperature < 105° F is not harmful in and of itself. Emergency management of the febrile child involves an assessment to determine if any associated problems are present which require emergent treatment.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. If child appears acutely ill, DO NOT delay transport to check temperature. Transport and treat associated problems per appropriate protocol.

C. Check temperature. If temperature is >102° F:
 1. Facilitate passive cooling by removing excess clothing and blankets.
 2. If child has not been given Acetaminophen (Tylenol®) in the last four (4) hours, administer Acetaminophen (Tylenol®) at 15 mg/kg per MCP order with the assistance of the parent or legal guardian to calm child.

D. If child has temperature >105° F:
 3. Treat as in “C” above and also facilitate active cooling by applying wet towels with tepid water to trunk and head.
 4. Do not submerge in water or use ice or rubbing alcohol.

E. Notify Medical Command.

F. Transport.
A. Temperature Control: Whether infant is full term or premature, avoid “cold stress.”
 1. Dry quickly.
 2. Keep the infant as warm as possible.
 3. Turn ambulance heater on high to reduce radiant heat loss.
 4. Cover head and body with dry blankets.
 5. Maintain axillary temperature at 97°F. Check temperature every 15 minutes.

B. Airway and Breathing:
 1. Position supine with head in sniffing position. Suction only if there is believed to be an airway obstruction while being cognizant of bradycardia and hypoxia. If copious secretions are noted, place infant on his/her side with neck slightly extended, continue intermittent suctioning.
 2. Assess breathing rate (normal 30 - 60 per minute):
 a. If adequate respirations, proceed to circulation.
 b. If inadequate respirations, cyanosis, or gasping/grunting respirations, apply 100% oxygen via non-rebreather mask at 15 LPM held firmly on infant’s face. If no response/improvement after 5 - 10 seconds, begin positive pressure ventilations by bag valve mask with supplemental oxygen at rate of 40 - 60 per minute.

C. Circulation:
 1. If heart rate is within normal ranges (normal heart rate > 100 per minute at apical or umbilical sites): assess skin color, continue treatment, and transport as in “D” below.
 2. If heart rate is < 100 per minute, apply 100% oxygen by positive pressure ventilation with bag valve mask and ventilate at 40 - 60 per minute.
 3. Reassess after 30 seconds.
 4. If no improvement and heart rate remains 80 - 100 bpm, continue ventilation.
NOTE: Neonates with heart rates < 80 per minute are in eminent danger of cardiac arrest.

5. CPR should be started if the heart rate drops below 60 or persists between 60 and 80 beats per minute despite adequate ventilation with 100% oxygen ventilation by bag valve mask.

6. Treat per Pediatric Cardiac Arrest Protocol 6406, as required.

7. Notify Medical Command

D. Transportation:

1. Assure infant remains warm.

2. Maintain airway and oxygenation.

3. Transport.

E. The APGAR Scoring Chart

<table>
<thead>
<tr>
<th>THE APGAR SCORE</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Appearance</td>
<td>Body and extremities blue, pale</td>
<td>Body pink, extremities blue</td>
<td>Completely pink</td>
</tr>
<tr>
<td>(Skin color)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse rate</td>
<td>Absent</td>
<td>Below 100/minute</td>
<td>100/minute or above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grimace</td>
<td>No response</td>
<td>Grimace</td>
<td>Cough, sneeze, cry</td>
</tr>
<tr>
<td>(Irritability)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Limp</td>
<td>Some flexion of extremities</td>
<td>Active motion</td>
</tr>
<tr>
<td>(Muscle tone)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory effort</td>
<td>Absent</td>
<td>Slow and irregular</td>
<td>Strong cry</td>
</tr>
</tbody>
</table>

TOTAL SCORE =
Anaphylaxis is an acute allergic reaction characterized by varying degrees of respiratory distress, hypotension, wheezing, hives, non-traumatic edema, and tachycardia. It may be precipitated by a bite or sting or from exposure to certain drugs or allergens. Respiratory Distress is categorized as follows:

- **Minimal Distress**: A slight increase in work of breathing with no wheezing or stridor evident.
- **Moderate Distress**: A considerable increase in work of breathing with wheezing and/or abnormal breath sounds evident.
- **Severe Distress**: Extreme work of breathing (retractions) with a decreased LOC.

A. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocol for medical management based on clinical presentation.

B. If reaction is secondary to a sting, remove injection mechanism, if present.

C. If patient is in minimal distress with hives or itching but no or minimal respiratory distress (no wheezing or stridor):
 1. Reassess for improvement or worsening of reaction.
 2. Transport without delay and contact **Medical Command**.

D. If patient is in moderate distress with severe hives and/or moderate respiratory distress (wheezing), contact **Medical Command**:
 1. Patient has prescribed **Epinephrine** auto-injector (EpiPen® or EpiPen JR®):
 a. Has patient taken dose?
 b. Administer pre-loaded **Epinephrine** (EpiPen®) per **Medical Command**.
 2. No prescribed **Epinephrine** auto-injector (EpiPen® or EpiPen JR®):
 a. Pediatric < 30 kg: Administer pre-loaded **Epinephrine** (EpiPen JR®) or administer **Epinephrine** 0.3 mg IM injection per **Medical Command**.
 3. Expedite transport if not already in transport.
 4. Reassess and contact **Medical Command**.
5. If the patient is still wheezing, administer Albuterol 2.5 mg with oxygen 8-10 LPM per MCP order.

6. If patient is still in moderate distress, consider repeating Epinephrine one time per MCP order.

7. Further treatment per order of Medical Command and MCP.

8. Reassess and expedite transport.

E. If shock continues, treat per Pediatric Shock Protocol 6402.

Note:

1. If the patient only has hives and no respiratory distress or shock, Epinephrine is not indicated.
Pediatric Bronchospasm is a manifestation of several disease processes. In children, the most common are reactive airway disease (asthma), viral bronchiolitis, pneumonia, bronchopulmonary dysplasia, and foreign body obstructions. Physical examination reveals wheezing with a prolonged expiratory phase of breathing. Cough and dyspnea are often present. Respiratory Distress is categorized as follows:

- **Minimal Distress**: A slight increase in work of breathing and respiratory rate with minimal wheezing or stridor evident.
- **Moderate Distress**: A considerable increase in work of breathing and respiratory rate with wheezing and/or abnormal breath sounds evident. Nasal flaring and mild intercostal retractions are present.
- **Severe Distress**: Extreme work of breathing with nasal flaring and intercostal, subcostal, and suprasternal retractions. Additional accessory muscle use (sternocleidomastoid) may be evident. The expiratory phase becomes prolonged and may be silent. Wheezes may be absent as airflow is significantly compromised.

A. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocol for medical management based on clinical presentation.

B. If patient is in moderate distress and:

1. Heart rate is < 180:
 a. Administer Albuterol
 - 5.0 mg with oxygen 8 - 10 LPM for children 6 – 12 years of age.
 - 2.5 mg with oxygen 8 - 10 LPM for children < 6 years of age.

 b. Administer Ipratropium Bromide (Atrovent®) *(may be nebulized with the albuterol)*
 - 0.5 mg with oxygen 8 - 10 LPM for children 6 – 12 years of age.
 - 0.25 mg with oxygen 8 - 10 LPM for children > 1 - < 6 years of age.
 - *Contraindicated in children <1 year of age.*

 c. Reassess vital signs and lung sounds.

2. If distress is unrelieved and patient appears severe (tripod, semi-Fowler's):
 a. Expedite transport and consider ALS backup.
b. Administer a second dose of **Albuterol per MCP Order**
 - 5.0 mg with oxygen 8 - 10 LPM for children 6 – 12 years of age.
 - 2.5 mg with oxygen 8 - 10 LPM for children < 6 years of age.

c. Administer a second dose of **Ipratropium Bromide (Atrovent®)** *(may be nebulized with the albuterol) per MCP Order*
 - 0.5 mg with oxygen 8 - 10 LPM for children 6 – 12 years of age.
 - 0.25 mg with oxygen 8 - 10 LPM for children > 1 - < 6 years of age.
 - *Contraindicated in children <1 year of age.*

d. Reassess vital signs and lung sounds.

3. If distress is relieved:
 a. Monitor vital signs and transport.
 b. Notify **Medical Command.**

C. If patient is in severe distress and heart rate is < 180: Treat as in “B” above.

D. If Heart Rate is > 180:
 1. Confirm that patient’s tachycardia appears to be from respiratory distress and not from other causes.
 2. Proceed with treatment as in “B” above.
 3. Monitor patient’s symptoms and vital signs very closely.
 4. If any signs of increasing chest pain or cardiac symptoms develop, stop nebulizer, and treat per appropriate protocol.

E. **Contact Medical Command** for further treatment options.
Anaphylaxis is an acute allergic reaction characterized by varying degrees of respiratory distress, hypotension, wheezing, hives, non-traumatic edema, and tachycardia. It may be precipitated by a bite or sting or from exposure to certain drugs or allergens. Respiratory Distress is categorized as follows:

- **Minimal Distress:** A slight increase in work of breathing with no wheezing or stridor evident.
- **Moderate Distress:** A considerable increase in work of breathing with wheezing and/or abnormal breath sounds evident.
- **Severe Distress:** Extreme work of breathing (retractions) with a decreased LOC.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. If reaction is secondary to a sting, remove injection mechanism, if present.

C. If patient is in minimal distress with hives or itching but no or minimal respiratory distress (no wheezing or stridor):
 1. Reassess for improvement or worsening of reaction.
 2. Transport without delay and contact Medical Command.

D. If patient is in moderate distress with severe hives and/or moderate respiratory distress (wheezing), contact Medical Command:
 1. Patient has prescribed Epinephrine auto-injector (EpiPen® or EpiPen JR®):
 a. Has patient taken dose?
 b. Administer pre-loaded Epinephrine (EpiPen®) per Medical Command.
 2. No prescribed Epinephrine auto-injector (EpiPen® or EpiPen JR®):
 a. Adult: Administer pre-loaded Epinephrine (EpiPen®) or administer Epinephrine 0.3 mg IM injection per Medical Command.
 3. Expedite transport if not already in transport.
 4. Reassess and contact Medical Command.
5. If the adult patient is still wheezing, administer Albuterol 2.5 mg combined with Ipratropium Bromide (Atrovent®) 0.5 mg (Combi-Vent / Duo-Neb) with oxygen 8-10 LPM per MCP order. If Ipratropium Bromide (Atrovent®) is contraindicated or the patient is a pediatric, administer Albuterol only.

6. If patient is still in moderate distress, consider repeating Epinephrine one time per MCP order.

7. Further treatment per order of Medical Command and MCP.

8. Reassess and expedite transport.

E. If shock continues, treat per Adult Shock Protocol 6108.

Note:

1. Epinephrine should be used with caution in patients > 65 year of age or with history of hypertension or cardiac disease.

2. If the patient only has hives and no respiratory distress or shock, Epinephrine is not indicated.
Heat exposure can cause various types of heat illness. Heat cramps, heat exhaustion, and heat stroke are the most often encountered. Heat cramps are often associated with heat exhaustion. Initial treatment for all heat illness is similar. Secondary treatment may differ after the signs and symptoms are specifically identified. Heat stroke is a serious life-threatening condition requiring rapid treatment and transport.

A. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocol for medical management based on clinical presentation.

 1. Remove patient from hot environment and place in cool environment.
 2. Loosen or remove clothing.

B. If patient has warm, moist skin, with general weakness, dizziness, nausea, or occasionally syncope (heat exhaustion):

 1. If patient has normal level of consciousness and is not nauseated, encourage patient to drink oral fluids (cool water or electrolyte replenisher).
 2. Cool by fanning without chilling the patient. Watch for shivering.
 3. If patient experiences muscle cramps, apply moist towels over cramped muscles.
 4. Transport and notify **Medical Command**.

C. If patient has very hot, dry skin with rapid pulse, rapid shallow breathing, and/or altered mental status or unconsciousness (heat stroke):

 2. If signs and symptoms of shock continue, treat **per Shock Protocol 6108**.
 3. Cover patient with moist sheet.
 4. Apply ice packs to axilla, neck, ankles, and wrists. Do not overcool. Watch for shivering.
 5. Monitor vital signs and temperature closely.

D. If no change in patient condition seek further treatment options **per order of Medical Command**.
When cold exposure affects the entire body: hypothermia or general cooling develops. When cold exposure affects a particular body part: local cooling or frostbite occurs. Frostbite most commonly affects the ears, nose, face, hands, feet, and toes.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.
 1. Place patient in warm environment.
 2. Treat with warm humidified oxygen.
 3. Remove all wet clothing.
 4. Insulate core (head, neck, and trunk) with warm blankets.
 5. Rapid smooth transport.

B. If patient is hypothermic, alert, and responding appropriately:
 1. Keep the patient still and handle very gently.
 2. Actively rewarm the patient by applying heat packs, hot water bottles, or electric heating pads to neck, chest, and abdomen.
 3. Allow patient to slowly drink warm fluids, but do not allow patient to drink stimulants.
 4. In consultation with Medical Command, establish mode (ground vs. air) and destination of transport.
 5. Monitor vital signs closely during transport.

C. If patient is hypothermic and unconscious or not responding appropriately:
 1. Handle patient as gently as possible and expedite transport.
 2. Wrap patient in insulated blankets for passive rewarming only.
 3. Give nothing by mouth.
 4. If patient has no pulse, perform CPR with the following cautions:
 a. Check pulse for at least 60 seconds.
5. Expedite transport.

6. In consultation with Medical Command, establish mode (ground vs. air) and destination of transport.

7. Further treatment per order of Medical Command.

D. Frostbite.

1. Remove constrictive clothing and jewelry and cover with dry dressing.

2. **DO NOT** rub or massage area or break blisters. **DO NOT** apply direct heat. **DO NOT** allow patient to use affected area. **DO NOT** re-expose to cold.

3. Transport and notify Medical Command.
West Virginia has two native venomous snakes. These are the timber rattlesnake and copperhead. Both are hemotoxic. Not all venomous snakebites involve envenomation. Envenomed patients will have one or more fang marks with ecchymosis, progressive edema, severe burning pain, and/or non-clotted oozing blood.

A. Upon arrival, make sure the patient and snake are not in close proximity. Retreat well beyond striking range. Persons are often bitten again while trying to capture or kill the snake.

B. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

C. Keep patient calm. Movement can increase venom absorption.

D. Remove all jewelry and constrictive clothing on affected extremity.

E. Locate fang puncture(s) and mark the progression of erythema (redness around bite mark) at the initial assessment and every five (5) minutes thereafter.

F. Immobilize the extremity at the level of the heart. DO NOT apply ice.

G. Transport and notify Medical Command.

H. Contact Medical Command for further treatment options

Note:

1. Do not bring a live snake to ER. If experienced personnel are available to properly kill and transport snake, then do so.

2. Patients previously envenomated are at risk of anaphylactic reaction. Be prepared to treat per Anaphylaxis Protocol 6501.
With near-drowning or drowning, always look for associated problems such as airway obstruction, cardiac arrest, heart attack, hypothermia, or substance abuse. Also be alert to associated injuries especially to the head and neck. **DO NOT** attempt a rescue in which you must enter deep water or swim unless trained to do so.

A. Remove patient from water as rapidly as possible while protecting C-spine.

B. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocol for medical management based on clinical presentation.

C. If cold water drowning (less than 70°F at recovery depth), refer to **Cold Exposure Protocol 6503**.

D. Expedite transport and notify **Medical Command**. Request ALS backup.

Note:

1. If patient is unconscious, assume spinal injury and fully immobilize patient on long backboard.

2. If confirmed cold water drowning, **Cease-Efforts Protocol 9102** should not be instituted unless patient has been rewarmed as **per MCP order**.
HYPOPERFUSION / SHOCK

Shock, or hypoperfusion, is decreased effective circulation causing inadequate delivery of oxygen to tissues. Signs of early (compensated) shock include tachycardia, poor skin color, cool/dry skin, and delayed capillary refill. Systolic blood pressure is normal in early shock. In late (decompensated) shock, perfusion is profoundly affected. Signs include low blood pressure, tachypnea, cool/clammy skin, agitation, and altered mental status.

Shock may be the result of several mechanisms including internal/external bleeding, fluid loss from burns, vomiting, diarrhea, severe infection, and other non-traumatic causes.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Manage airway and oxygenation per Airway Management Protocol 6901.

C. Control external bleeding.

D. Prevent heat loss.

E. Consider ALS backup or aeromedical evacuation without delaying transport and meet en route.

F. Immobilize trauma patients as indicated per Spinal Trauma Protocol 6103.

G. If anaphylaxis or allergic reaction, refer to Allergic Reaction/Anaphylaxis Protocol 6501.

H. Consider elevating lower extremities.

I. Transport and continue treatment en route.

J. Contact Medical Command
A patient experiencing a Cerebrovascular Accident (CVA or stroke) may have a variety of presentations. Most commonly, the patient will experience a new onset of unilateral weakness (hemiparesis), paralysis (hemiplegia), difficulty speaking (aphasia), or a combination of these. The pre-hospital goal is to recognize stroke symptoms, determine the severity of the stroke using a stroke severity screening tool and quickly notify medical command and receiving hospital in order to mobilize important time-sensitive intervention. Prior to hospital arrival, goals are to maintain stable vital signs, increase oxygen delivery if saturation is < 95%, protect the patient’s airway, and provide psychological support as well as immediate transport to the most appropriate stroke center.

A. **Perform Initial Treatment / Universal Patient Care Protocol.** If neurologic symptoms are evident, proceed with this protocol.

B. **Check a serum glucose level with a glucometer.** If the serum glucose is < 60 mg/dL, refer to **EMT Treatment Protocol 6604 - Diabetic Emergencies.** If after treatment, there is no resolution of the patient’s neurological symptoms, proceed with the remainder of this protocol.

C. Determine and document when the patient was Last Known Well (LKW) and the Time of Symptoms Onset (TSO) if known. Family or bystanders are often the best source of this information.

D. **Determine the Cincinnati Pre-hospital Stroke Score (CPSS)**
 1. Speech disturbances (abnormal speech).
 2. Facial weakness or paralysis (facial droop).
 3. Extremity weakness or paralysis (arm drift).

E. If the patient is positive for any of the items in D, the CPSS is **positive** and a pre-hospital stroke severity score should be performed. The FAST-ED© free mobile app (available under the JoinTriage© app for Apple iOS or Android devices - see **Notes** below) is recommended to help determine the possibility of a large vessel occlusion (LVO). LVOs are clots, in the neck or brain, which may be able to be removed at certain interventional facilities.

F. **FAST-ED© is POSITIVE -** If the FAST-ED© app indicates the potential for a LVO, the patient may benefit from being transferred directly to a Comprehensive Stroke Center (CSC) or a Primary Stroke Center with interventional capabilities (thrombectomy-capable or PSC-I are, in this protocol, interchangeable terms) rather than a Primary Stroke Center (PSC) or Acute Stroke Ready (ASR) facility. **Contact Medical Command** for possible diversion to a CSC or thrombectomy-capable PSC-I if the following criteria are met:
1. The LKW is < 24 hours.

2. Diversion to a CSC/PSC-I will add no more than 45 minutes transport time to the nearest PSC or ASR or will not preclude TPA administration, if applicable. That is, if transport to the CSC/PSC-I will take the patient out of the TPA window, transport to the nearest PSC or ASR where the patient can receive TPA prior to transfer to an interventional facility (the patient must receive that within 4.5 hours of the LKW, a LKW > 3.5 hours makes it unlikely this will occur).

3. Establish Transport Mode (ground vs. air) and destination in consultation with Medical Command if transport time is > 30 minutes.

G. If the above criteria are not met or LVO is not likely according to FAST-ED®, transport directly to the nearest PSC or ASR. Notify Medical Command.

H. Initiate immediate transport with head elevated at least 30 degrees and on left side if there is a decreased level of consciousness.

I. Obtain 12 lead EKG while in transport as not to cause delay.

Notes:

1. If possible, transport a witness, family member, or caregiver with the patient to verify the time of onset or last know well. If this cannot be accomplished provide the receiving hospital with a cell phone number to reach such a witness.

2. It is preferred that you bring the patient’s medications to the receiving ED but if unable to do so, a list will suffice.

3. The priority of transfer facilities for patient’s determined to have a possible LVO (by FAST-ED®) should be CSC first, then a PSC-I, and lastly a PSC or ASR when no CSC or PSC-I meets the above criteria in F.

4. To acquire and access FAST-ED®:
 a. From the App Store of either Apple iOS or Android devices, download JoinTriage®
 b. Open JoinTriage®, create an account - email address is ID, choose a password
 c. Open JoinTriage® and choose FAST-ED® from the options in opening screen
 d. You may stay signed in to JoinTriage®. Subsequent opening of the app won’t require your email and password.

5. Regional Medical Command Centers with the consultation of the Regional
Medical Directors in their areas of coverage, will maintain a list of hospitals and their capabilities to treat stroke patients (whether or not specifically designated) in the interest of best directing pre-hospital care or destination decisions.
A. Perform Initial Treatment / Universal Patient Care Protocol.

B. Protect patient from injury and place on left side if decreased level of consciousness.

C. Obtain history to help determine origin of seizure:
 1. Trauma.
 2. Suspected overdose: refer to Ingestion/Poisoning/Overdose Protocol 6606.
 3. History of seizures and is patient taking anti-seizure medications.

D. If patient is actively seizing:
 1. Protect airway. **DO NOT** attempt placement of airway adjuncts during convulsions.
 2. Calm bystanders and family.
 3. Obtain key information and prepare for transport.
 4. Quickly assess serum glucose and treat per Diabetic Emergencies Protocol 6604.
 5. Expedite transport and contact **Medical Command**.
 6. If seizure lasts longer than five (5) minutes or two (2) or more episodes of seizure activity occur between which the patient does not regain consciousness, request ALS backup without delaying transport and meet en route.
 7. If seizure continues, further treatment as **ordered by Medical Command Physician**.

E. If patient is not actively seizing:
 1. Monitor vital signs closely and be alert for recurrence of seizure.
 2. Transport.
 3. Perform remaining assessment, as indicated.
 4. Notify **Medical Command**.
Hypoglycemia, or low blood sugar, is a common emergency faced by diabetic patients. Rapid recognition and treatment by EMS personnel is important. Confusion and altered mental status are the most common symptoms of hypoglycemia; however, diabetic patients may have various complaints and are at risk for a multitude of medical problems. Diabetic patients may also become ill from hyperglycemia or high blood sugar, which may lead to diabetic ketoacidosis.

A. Perform **Initial Treatment / Universal Patient Care Protocol**.

B. Assess level of consciousness and blood glucose level.

C. **Hypoglycemia Treatment**:

1. If patient is awake and alert OR awake and confused with a blood glucose level <60 mg/dl:
 a. Administer 15 gm of oral glucose and recheck blood glucose level.
 b. If blood glucose level remains <60 mg/dl, administer a second dose of oral glucose 15 gm and reassess blood glucose level.

2. If patient is unconscious or cannot maintain airway with blood glucose level <60 mg/dl:
 a. Secure airway.
 b. Request ALS backup and contact **Medical Command**.

D. Transport and continue treatment en route.

E. If patient is unconscious with a blood glucose level >60 mg/dl consult **Medical Command** and consider treatment per **Unconscious Patient Protocol 6605**.
To use this protocol, a patient must have a current Glasgow coma scale total <12. This protocol is intended to guide the management of patients with a decreased level of consciousness who have no history of trauma.

A. Perform Initial Treatment / Universal Patient Care Protocol.

B. Maintain airway as indicated by Airway Management Protocol 6901 with the following special considerations in patients with decreased level of consciousness.

1. Reassess that there is no history of even remote trauma which could have resulted in a cervical spine injury. If in doubt, protect spine by performing Spine Trauma Protocol 6103.

2. If a readily treatable cause is suspected, such as hypoglycemia or narcotic overdose, and ventilation can be maintained without intubation, consider assisting ventilation until treatment is administered and condition reassessed.

3. Possible causes of unconsciousness or altered mental status (AEIOU-TIPS):
 - A Acidosis, alcohol
 - E Epilepsy
 - I Infection
 - O Overdose
 - U Uremia (kidney failure)
 - T Trauma, tumor
 - I Insulin
 - P Psychosis
 - S Stroke

C. Assess blood glucose level.

D. If blood glucose level is <60 mg/dl, then:

 1. Treat per Diabetic Emergencies Protocol 6604.

E. If blood glucose level is >60 mg/dl, administer Naloxone (Narcan®) 2 mg intranasal (IN) via atomizer.

F. Expedite transport and notify Medical Command.
There are numerous agents and drugs which produce toxic effects in patients. This protocol is designed to provide the general guidelines for treatment. Specific treatments or antidote therapy may be appropriate as directed by the Medical Command Physician in consultation with the WV Poison Control Center. Providing as much information as possible to Medical Command will allow more accurate evaluation, treatment, and coordination of medical care.

A. Perform Initial Treatment / Universal Patient Care Protocol.

B. Routes:

1. **Ingested Poisons:**
 a. Protect airway.
 b. **DO NOT** induce vomiting.
 c. Transport the patient with all containers, bottles, and labels from the substance, if safe to do so.

2. **Inhaled Poisons:**
 a. Immediate removal from hazardous environment.
 b. Maintain airway and support respirations.
 c. Transport the patient with all containers, bottles, and labels from the substance, if safe to do so.

3. **Absorbed Poisons:**
 a. Remove the poison using procedures described in *Burn Protocol 6110*.
 b. Transport the patient with all containers, bottles, and labels from the substance, if safe to do so.

4. **Injected Poisons:**
 a. See treatment guidelines for specific substance.

C. After decontamination procedures have been completed, **do not** delay transport.

Note: Remember that a toxic exposure poses a significant risk to both the rescuer and patient; appropriate scene management and decontamination are critical. Decontamination requires personnel that have proper training and certification to do so.
D. Determine the following:

1. What?
2. When?
3. How much?
4. Over what period of time?
5. Were any actions taken by bystanders, family members, and/or patient prior to EMS arrival?

E. Overdose / Toxic Ingestion / Poisoning Emergencies:

1. **Alcohol**:

a. Emergencies involving alcohol can range from acute intoxication to alcohol withdrawal and delirium tremens (DT's).

 b. Assess the patient and follow the proper protocol for medical management based on clinical presentation.

 i. Consider hypoglycemia. Perform rapid glucose determination. If glucose <60 mg/dL or clinical signs and symptoms indicate hypoglycemia, refer to the Diabetic Emergencies Protocol 6604.

 ii. For signs and symptoms of hypovolemic shock or dehydration, follow the Hypoperfusion Shock Protocol 6108.

 iii. For seizures due to alcohol withdrawal, refer to the Seizures Protocol 6603.

2. **Narcotics / Opiates**:

 a. Support respirations, as necessary, with a BVM and supplemental O2. *Defer consideration of advanced airway management until after administration of Naloxone, if BVM ventilation is adequate.*

 b. Consider hypoglycemia. Perform rapid glucose determination. If glucose is <60 mg/dl or clinical signs and symptoms indicate hypoglycemia, refer to the Diabetic Emergencies Protocol 6604.
c. For a suspected narcotic overdose complicated by respiratory depression:
 i. Administer Naloxone (Narcan®) 2 mg intranasal (IN) via atomizer.

3. **Tricyclic Antidepressants**:
 a. Support respirations, as necessary, with a BVM and supplemental O2.

 Tricyclic Antidepressants include: Amitriptyline (Elavil®), Doxepin (Sinequan®, Adepin®), Imipramine (Tofranil®).

4. **Cholinergics**:
 a. Support respirations, as necessary, with a BVM and supplemental O2.

 Pesticides (Organophosphates, Carbamates) and nerve gas agents (Sarin, Soman) are the most common exposures.

<table>
<thead>
<tr>
<th>S – Salivation</th>
<th>L – Lacrimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>U – Urination</td>
<td>D – Defecation</td>
</tr>
<tr>
<td>G – Gastrointestinal cramping</td>
<td>E – Emesis</td>
</tr>
</tbody>
</table>

5. **Calcium Channel Blockers**:
 a. Support respirations, as necessary, with a BVM and supplemental O2.

6. **Beta Blockers**:
 a. Administer oxygen via non-rebreather mask at 12 - 15 lpm, as necessary. Support respirations with a BVM.

7. **Stimulants**:
 a. Assess the patient and follow the proper protocol for medical management based on clinical presentation.

 b. Support respirations, as necessary, with a BVM and supplemental O2.

 c. Serious signs and symptoms (seizures, tachydysrhythmias):
 i. For patients that are severely agitated or combative, follow the **Behavioral Emergencies Protocol 6607**.
A. Assure scene safety. Do not engage patient unless risk of harm is minimized by law enforcement.

B. Implement SAFER mnemonic:
 - Stabilize the situation by containing and lowering the stimuli.
 - Assess and acknowledge the crisis.
 - Facilitate the identification and activation of resources.
 - Encourage patient to use resources and take actions in his/her best interest.
 - Recovery or referral: leave patient in care of responsible person or professional.

C. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

D. For altered mental status, perform rapid glucose determination.

E. Control environmental factors and attempt to move patient to a private area free of family and bystanders. **MAINTAIN ESCAPE ROUTE.**

F. Attempt de-escalation and utilize an empathetic approach. Ensure patient safety and comfort. **AVOID CONFRONTATION.**

G. **Physical Restraint:** (Commercially available soft restraints are permitted)

 1. Consider restraining patient, as needed, to protect life or prevent injury **per MCP order** with the following considerations:
 a. Restrain patient in the supine position or left lateral recumbent position only.
 b. Ensure method of restraint does not affect breathing or circulation.
 c. Use the least restrictive or invasive method of restraint which will protect the patient and others. In many instances, full restraints will be appropriate to ensure patient and provider safety during transport.

 2. Continually monitor the restrained patient’s airway, circulatory, respiratory, and mental status frequently.
H. Transport as soon as possible.

I. If patient is medically stable, in consultation with Medical Command, consider transporting to a facility with advanced psychiatric care capability.
Obtaining a detailed history can be very important in treating the pregnant or potentially pregnant patient. The following questions should be asked to the obstetric patient:

- Length of gestation?
- Number of prior pregnancies (gravidia)?
- Number of prior pregnancies carried to term (para)?
- Previous cesarean sections?
- History of gynecologic or obstetric complications?
- Is there pain or contractions?
- Does patient feel the urge to push or have a bowel movement?
- Is there vaginal bleeding or discharge?
- Prenatal care?
- Multiple births anticipated?

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Transport pregnant patients on left side unless in active labor.

C. If vaginal bleeding is present, attempt to determine amount.

D. If patient is in late stages of pregnancy and shows signs of preeclampsia and/or eclampsia (toxemia) such as edema, hypertension, and hyper-reflexes:
 1. Transport, as smoothly and quietly as possible, and monitor closely for signs of seizure activity.
 2. If seizures occur, treat per Seizure Protocol 6603.

E. Normal delivery:
 1. Determine timing and duration of contractions, and observe for crowning.
 2. Transport on left side, if time permits.
 3. If delivery is imminent, proceed with delivery:
 a. Prevent explosive delivery by supporting head and perineum.
 b. Suction only if there is believed to be an airway obstruction while being cognizant of bradycardia and hypoxia.
 c. If cord is around neck and is loose, slip over head out of way. If cord is tight, place two clamps and cut in between and unwind.
d. Hold and support infant during delivery. Refer to Newborn Infant Care Protocol 6410.

4. APGAR score at 1 and 5 minutes (see chart in “I”).

5. When cord ceases pulsating, clamp at 6 and 8 inches from navel, cut cord between clamps.

6. Resume transport and continue treatment en route.

7. Notify Medical Command and prepare to deliver placenta.

8. Massage the fundus after placenta is delivered.

F. Breech Delivery:

1. Expedite transport and notify Medical Command.

2. Allow spontaneous delivery with support of presenting part at the perineum.

3. If head is not delivered within four (4) minutes, insert a gloved hand into the vagina to form a “V” airway around infant’s nose and mouth.

G. Prolapsed cord:

1. Place mother in knee-chest position or on hands and knees with knees to chest.

2. Ask mother to pant during contractions and NOT bear down.

3. Insert gloved hand into vagina to push presenting part of baby off the cord to insure continued circulation through the cord. Continue until relieved at hospital.

4. Expedite transport and notify Medical Command.

H. Limb presentation:

1. Rapid transport.

2. Notify Medical Command.
I. APGAR Scoring Chart:

<table>
<thead>
<tr>
<th>Element</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance (Skin color)</td>
<td>Body and extremities blue, pale</td>
<td>Body pink, extremities blue</td>
<td>Completely pink</td>
</tr>
<tr>
<td>Pulse rate</td>
<td>Absent</td>
<td>Below 100/minute</td>
<td>100/minute or above</td>
</tr>
<tr>
<td>Grimace (Irritability)</td>
<td>No response</td>
<td>Grimace</td>
<td>Cough, sneeze, cry</td>
</tr>
<tr>
<td>Activity (Muscle tone)</td>
<td>Limp</td>
<td>Some flexion of extremities</td>
<td>Active motion</td>
</tr>
<tr>
<td>Respiratory effort</td>
<td>Absent</td>
<td>Slow and irregular</td>
<td>Strong cry</td>
</tr>
</tbody>
</table>

Total Score =
A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Presentation:
 1. Gastrointestinal symptoms
 2. Respiratory infection
 3. Heat-related illness
 4. Diabetes
 5. Cardiac-related signs and symptoms

C. Place patient in position of comfort.

D. Assess and treat for shock, if indicated.

E. Cardiac monitor (12 lead EKG as indicated).

F. Administer Ondansetron Hydrochloride (Zofran®) 4 mg ODT Tablet PO dissolved in mouth. Repeat doses require Medical Command order.

G. The administration of Ondansetron Hydrochloride (Zofran®) is contraindicated in the first trimester of pregnancy and requires MCP Order.
Children with Special Health Care Needs (CSHCN) can present unique challenges for providers. Listen to the caregiver and respect their guidance regarding the child’s treatment. The caregiver is your best source of information as they care for the child on a daily basis.

Before leaving the scene, ask the caregiver if they have a “go bag” and carry it with you. “Go Bags” or diaper bags contain supplies to use with the child’s medical technologies and additional equipment such as extra tracheostomy tubes, adapters for feeding tubes, suction catheters, etc. are often maintained by the caregivers of special needs children. Treat a CSHCN as you would any other patient – ABC’s first.

A. Perform Initial Treatment / Universal Patient Care Protocol.

1. General impression using Pediatric Assessment Triangle (PAT): Appearance, work of breathing, and circulation of skin. (Appendix C)

2. Hands on physical assessment using Pediatric ABCDE’s: Airway, breathing, circulation, disability, and exposure.

3. Suction through the nose, mouth, or tracheostomy tube, as needed.

4. Obtain a complete medical history for the patient, including history of the present illnesses and past medical history.

B. Consider ALS backup or the necessity of aero medical transport.

C. Bring all of the child’s medical charts or medical forms that the caregiver may have, the child’s “go bag” or other similar bag and any supplies that the caregiver may have.

D. Transport to the nearest appropriate facility as soon as possible.

E. Perform additional assessment and treatments as required following general guidelines as outlined in the Initial Treatment / Universal Patient Care Protocol with the following special notes for the pediatric patient.

1. Do not use nasal cannula for infants and small children. Use blow-by oxygen or mask to keep pulse oximetry at 94 - 99%.
2. Perform focused history, more detailed physical exam, and ongoing assessment at the appropriate time before or during transport.

F. Reassess the child at least every 3 - 5 minutes, more frequently as necessary and possible.
A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. If signs of hypovolemia, tachycardia, altered perfusion or mental status, call for ALS.

C. Treatment:

1. If breathing is adequate, place the child in a position of comfort and administer high flow oxygen to maintain a SPO2 at 94 - 99%.

2. Monitor and maintain adequate airway and breathing during transport.

3. Bring all of the child’s medical charts or medical forms that the caregiver may have, the child’s “go bag” or other similar bag and any supplies that the caregiver may have.

4. Transport to the nearest appropriate facility as soon as possible.

5. Reassess the child at least every 3 - 5 minutes or more frequently as necessary and possible.
CSF (Cerebrospinal fluid) shunt is a special catheter to drain cerebrospinal fluid from the brain. It runs under the skin from the skull to the chest or abdomen or any tissue with enough epithelial cells to absorb the incoming CSF.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Provide immediate resuscitation, as needed, and make immediate transport decision.

C. Assess for signs and symptoms of shunt obstruction or shunt infection.
 1. Fever.
 2. Bulging Fontanel.
 3. Altered Glasgow Coma Scale.

D. If signs of increased intracranial pressure (C above) call for ALS.

E. Elevate the child’s head keeping it in the midline position.

F. Bring all of the child’s medical charts or medical forms that the caregiver may have, the child’s “go bag” or other similar bag and any supplies that the caregiver may have.

G. Transport to the nearest appropriate facility as soon as possible.

H. Reassess the child at least every 3 - 5 minutes, more frequently as necessary and possible.
Feeding tubes are used in the home care setting to provide feedings for children usually due to impaired or insufficient oral intake. They can be placed in the stomach or jejunum (upper part of the small intestine) through the nose, mouth or abdomen. These tubes may be positioned through the nasal orifice, mouth, or percutaneously.

Note: Caregivers are the best resource for tube care and troubleshooting malfunctions. Some percutaneous tubes continue on into the jejunum, therefore, DO NOT TRY TO REPLACE OR REMOVE TUBE.

There can be many reasons for leaking catheters such as balloon deflation, coughing, constipation, bowel obstruction, and seizures. Treat any medical problem according to the appropriate protocol.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Stabilize tube in place.

C. If there are fluids infusing through the feeding tube, prior to transport:
 1. Stop all infusing fluids.
 2. Have family members flush the tube with water and clamp the tube.

D. Transport child in semi-fowlers sitting position with head of cot in 30 - 45 degree elevated position unless contraindiated (i.e., trauma, etc).

E. Bring all of the child’s medical charts or medical forms that the caregiver may have, the child’s “go bag” or other similar bag, and any supplies that the caregiver may have.
A. Perform **Initial Treatment / Universal Patient Care Protocol**

 1. Suction through the nose, mouth, or tracheostomy tube, as needed.

B. Consider ALS backup.

C. Provide immediate resuscitation, as needed, and immediately make transport decision.

D. Leave Apnea monitor on.

E. Apnea monitors should be transported with the child to the hospital. Most monitors contain a computer chip that records information that can be downloaded into a computer at the home hospital to determine the origin of the monitor alarms (high or low heart rate, apnea or artifact).

F. Bring all of the child’s medical charts or medical forms that the caregiver may have, the child’s “go bag” or other similar bag, and any supplies that the caregiver may have.

G. Transport to the nearest appropriate facility as soon as possible.

H. Perform additional assessment and treatments as required following **Initial Treatment / Universal Patient Care Protocol**
An **internal pacemaker** is a medical device placed under the skin connected with wires to the heart to regulate the heart rate. An **internal defibrillator** is an electronic device implanted under the skin to monitor the heart rhythm and deliver shocks, as necessary, to treat extremely fast heart rates that originate in the ventricles.

A. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocol for medical management based on clinical presentation.

B. Assess and maintain airway patency.

C. Check pulse.
 1. If no pulse is present begin chest compressions and follow the appropriate algorithm.
 2. Determine if the child has a pacemaker or defibrillator.
 a. The internal pacemaker can easily be felt near the clavicle or in the abdomen in younger children.
 3. If defibrillation or pacing is needed, do not place the treatment pads directly over the internal pacemaker or defibrillator generator.

D. Treat shock as indicated.

E. Consider ALS backup.

F. Try to determine if the cause of the emergency is related to a malfunction of the pacemaker or defibrillator.

G. Contact **Medical Command** for additional instructions.

H. The child's medical charts, forms and the "go bag" that the parents may have should accompany the patient.
Ventilators and BiPAP are medical devices designed to assist with ventilation of the special needs patient. Symptoms of failure of the ventilator or BiPAP machine may include: apnea and/or cyanosis, medication or environmental reactions, nasal flaring, and altered levels of consciousness. BiPAP machines are used to augment patient breathing and do not ventilate them.

Patients with home medical devices have caregivers that are well educated as to their usage. If they are calling EMS it is usually because they are in trouble and have tried everything to get things back to normal, or they are having a problem with the equipment but the child is sick and they need help transporting the equipment and the child to the hospital.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. If not breathing:
 1. Disconnect the ventilator tubing from the patient.
 2. Attach the bag-valve device to the patient and begin manual ventilation.
 a. If chest rise is shallow, adjust the patient’s airway position and check to see that the bag valve device is securely connected to the tracheostomy.
 b. Assess the airway for obstruction. Follow tracheostomy protocol to open the airway.
 3. Assess for equal chest rise and breath sounds bilaterally.
 4. Assist caregiver in trouble shooting the equipment to check for problems.

C. Obtain a complete history of the present illness, past medical history and interventions taken to the correct the emergency before EMS arrival.
Airway management is an essential part of the care of all patients. It is an ongoing process which requires assessment of many different signs and symptoms. Evaluating and recognizing respiratory distress, respiratory failure, and respiratory arrest are critical in determining what level of intervention is required to properly treat the patient. The key areas to be assessed include: general impression, patency of airway, presence or absence of protective reflexes, and adequacy of breathing.

A. Assess airway for patency and protective reflexes.

B. Determine adequacy of breathing by assessing the rate, depth, effort, and adequacy of ventilation by inspection and auscultation.

C. If airway is patent and spontaneous breathing is adequate, and:
 1. No or mild to moderate distress, administer oxygen at 2 - 6 LPM nasal cannula to maintain SpO2 at 94 - 99%.
 2. Severe distress, administer oxygen at 15 LPM non-rebreather mask to maintain pulse oximeter at 94 to 99%.

D. If airway is not patent, request ALS backup, then:
 1. Attempt to open airway by using head tilt/chin lift if no spinal trauma is suspected, or modified jaw thrust if spinal trauma is suspected.
 2. If foreign body obstruction of airway is suspected, then refer to Airway Obstruction Protocol 6305.
 3. If anatomical obstruction is occurring and airway cannot be maintained with positioning and the patient is unconscious, consider placing an oropharyngeal or nasopharyngeal airway adjunct.

E. If breathing is inadequate, ventilate with 100% oxygen.

F. If airway cannot be maintained by the above means, including attempts at assisted ventilations, prolonged assisted ventilation is anticipated, or protective mechanisms are absent:
 1. Insert size appropriate supraglottic airway (Combitube or King Airway) per manufacturer’s recommendations.
AIRWAY MANAGEMENT

2. Secure and confirm supraglottic airway placement using clinical assessment and end-tidal CO2 monitoring.

G. Continue ventilation with 100% oxygen.

H. Contact Medical Command.

Note: Any patient with suspected spinal trauma needs in-line stabilization with any airway procedure.
A. Purpose:
 1. Provide irrigation to one eye.

B. Application:
 1. Administer Tetracaine, 2 drops per eye being irrigated.
 2. Attach mixed saline bag to IV tubing.
 3. Attach Morgan Lens to IV tubing.
 4. Run fluid to check that attachments are working properly, then pause fluid.
 5. Instruct patient to look towards patient’s feet.
 6. Retract upper eyelid and insert Morgan lens under upper lid.
 7. Release upper lid and instruct patient to look up.
 8. Retract lower lid and insert Morgan lens under lower lid.
MORGAN LENS - OPTIONAL

10. Tape tubing to patient’s forehead to prevent accidental removal.

11. Irrigate eye(s).

Note: DO NOT RUN DRY; FLUIDS MUST ALWAYS BE RUNNING

C. Removal

1. Continue flow of fluids.

2. Instruct patient to look up and retract lower lid.

4. Terminate flow.

NOTE: Tetracaine is a single use medication. Repeated doses will predispose the cornea to ulceration and destruction of the superficial layer of the cornea.
Continuous Positive Airway Pressure (CPAP) has been shown to rapidly improve vital signs, gas exchange, work of breathing, decrease the sense of dyspnea, and decrease the need for endotracheal intubation in certain patients who suffer respiratory distress from CHF, pulmonary edema, asthma, COPD, or pneumonia. In patients with CHF, CPAP can improve hemodynamics by reducing preload and afterload, however it may cause hypotension.

A. INDICATIONS: Any patient who is in respiratory distress and who has signs and symptoms consistent with at least one of the following: CHF, pulmonary edema, asthma, COPD, or pneumonia AND must meet all five of the following criteria:

1. Patient is awake and oriented.
 a. Exception to this would be if you had the optional ability to continuously monitor and trend ETCO2 values and waveform and MUST remain with the patient at all times.
 b. If the patient has an altered LOC caused from hypercapnia then CPAP may be applied and patient continually reassessed for a decrease in the ETCO2 and improvement in oxygenation as evidenced by an increase in the SPO2, level of consciousness and decrease in the ETCO2.
 c. If after 3 to 5 minutes the patient does not respond or their condition worsens then the CPAP will be disconnected and patient will receive PPV or BVM. Refer to protocol 6901 (Airway Management)

2. Is over 12 years old and is able to fit the CPAP mask.

3. Has the ability to maintain an open airway (GCS >10).

4. Has a systolic blood pressure > 90 mm/Hg.

5. Has at least two (2) or more of the following:
 a. Retractions or accessory muscle use.
 b. Respiratory > 24 per minute.
 c. Inability to speak in full sentences due to dyspnea.
CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP)

B. CONTRAINDICATIONS: Do not use if any are present.

1. Respiratory arrest.
2. Hypotension (Blood pressure < 90 systolic).
3. Suspected pneumothorax.
4. Patient has a tracheostomy.
5. Foreign body airway obstruction.
6. Facial deformity or trauma causing inability to achieve mask seal.
7. Actively vomiting.
8. Recent facial, neurological, or gastric surgery.
9. Chest, head, or face trauma.

C. COMPLICATIONS:

1. Tension pneumothorax
2. Hypotension
3. Aspiration
4. Gastric distention
5. Severe anxiety / combativeness due to mask intolerance.

D. PROCEDURE:

1. Explain the procedure to the patient.
2. Continuously monitor patient.
 i. Check and document vital signs every five (5) minutes.
 ii. Observe for decrease in level of consciousness.
 iii. Observe for gastric distention.
3. Continuously monitor pulse oximeter.

4. Ensure adequate oxygen supply to the CPAP device.

5. Turn CPAP device on.

6. Have the patient sit up as much as possible.

7. Apply the device as per manufacturer’s directions.

8. Initially assist the patient in holding the mask tightly to their face and evaluate their tolerance of the mask.

9. Reevaluate patient’s condition and tolerance of the mask:

 i. Coach the patient to keep mask in place and readjust, as needed.

 ii. If respiratory status or level of consciousness deteriorates, then remove device, assist ventilations, and utilize appropriate airway management modality as per protocol.

 iii. If patient tolerates mask and condition does not deteriorate then secure the mask with straps.

10. Check for air leaks.

11. Continue to monitor the patient during transport.

12. Contact Medical Command, as early as possible, so the receiving hospital can be prepared for the patient.

13. Consider ALS intercept or mutual aid, if available.

E. REMOVAL: CPAP should be continuous and should not be removed in the prehospital setting unless:

1. Patient cannot tolerate the mask.

2. Patient begins to vomit.

3. Patient’s mental or respiratory status deteriorates.

4. Patient becomes hypotensive (Systolic blood pressure < 90 or drops 20 mm/Hg).
CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP)

Notes:

1. CPAP should continue upon arrival at the emergency department until patient care is transferred to the emergency department staff. **DO NOT** remove CPAP until hospital emergency therapy is ready to be placed on the patient.

2. This procedure may be performed on a patient with a *Do Not Resuscitate* order.

3. CPAP pressure should be started at 3 - 5 cm of H2O. Most patients will only require 5 cm H2O. Pressure may be slowly titrated upward depending on patient response, **BUT NEVER ABOVE 10 cm H2O**.

4. CPAP should be used with caution with portable oxygen systems due to limited amounts of oxygen available to operate the device (if CPCP device is oxygen powered).

5. **DO NOT** delay other emergency interventions to establish CPAP. CPAP should be delivered as an adjunct to treatments indicated by the primary protocol.

6. Most patients will improve in 5 - 10 minutes. If no improvement within this time, consider additional treatment options per primary protocol.

7. Do not force CPAP use on patients who have failed at past attempts to utilize noninvasive ventilation techniques, and request that it not be applied.
The majority of adults and children with tracheostomies are dependent on the tube as their primary airway. Cardio-respiratory arrest most commonly results from tracheostomy obstructions. Obstruction may be due to thick secretions, mucous plug, blood clot, foreign body, or kinking or dislodgement of the tube. Work expeditiously and deliberately to reestablish airway patency and support oxygenation/ventilation.

Early warning signs of obstruction include tachypnea, tachycardia, and desaturation. Cyanosis, bradycardia, and apnea are late signs. DO NOT wait for these to develop before intervening.

A. Complications

- Airway obstruction
- Aspiration
- Blocked tube
- Bleeding
- Tracheal trauma
- Pneumothorax
- Subcutaneous and mediastinal emphysema
- Respiratory and cardiovascular collapse
- Dislodged tube
- Tracheo-esophageal fistula
- Infection

B. Endotracheal Suctioning

1. Endotracheal suctioning is necessary to remove mucus, maintain a patent airway, and avoid tracheostomy tube blockages. Indications for suctioning include:
 a. Audible or visual signs of secretions in the tube.
 b. Signs of respiratory distress.
 c. Suspicion of blocked or partially blocked tube.
 d. Inability to clear the tube by coughing out the secretions.
 e. Increases in required ventilation pressures (in ventilated patients).
 f. Request by patient.

2. Tracheal suctioning should be carried out regularly for patients with a tracheostomy. The frequency varies between patients and is based on
individual assessment.

3. Tracheal damage may be caused by suctioning. This can be minimized by using the appropriate sized suction catheter and only suctioning within the tracheostomy tube.

<table>
<thead>
<tr>
<th>Tracheostomy tube size (in mm)</th>
<th>3.0 mm</th>
<th>3.5 mm</th>
<th>4.0 mm</th>
<th>4.5 mm</th>
<th>5.0 mm</th>
<th>6.0 mm</th>
<th>7.0 mm</th>
<th>7.5 mm</th>
<th>8.0 mm</th>
<th>9.0 mm – 10mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended suction catheter size (Fr)</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10-12</td>
<td>14</td>
<td>14-16</td>
<td>14-16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

4. The suction depth is determined by the estimated length of the tracheostomy tube.

5. The depth of insertion of the suction catheter needs to be determined prior to suctioning to avoid trauma.

6. Using the patient’s spare tracheostomy tube of the same size (if available) to estimate needed depth of suctioning.

7. The pressure setting for tracheal suctioning (suction machine pressure for small children is 50 - 100 mm/Hg, for older children/adults is 100 - 120 mm/Hg) to avoid tracheal damage.

8. In most circumstances, it is best to limit the duration of suctioning (including passing the catheter and suctioning the tracheostomy tube) to 5 - 10 seconds.

9. Routine use of normal saline is not necessary although there is anecdotal evidence it may thin secretions. In situations where this may be of benefit, only 1 - 2 mL is usually needed.

C. Tracheal Suctioning Procedure:

1. Inform patient of intended action.

2. Maintain appropriate PPE throughout procedure.

3. Assemble needed suction equipment and power on suction device.

4. Instill small volume of sterile normal saline into the tracheostomy tube, if needed, for thick or dry secretions. Excessive use of saline is not recommended. Use saline only if the mucus is very thick, hard to cough up, or difficult to suction.
5. Gently insert catheter into the tracheal tube without applying suction, passing to the previously estimated needed depth.

6. Put thumb over opening in catheter to create suction and use a circular motion (twirl catheter between thumb and index finger) while withdrawing the catheter so that the mucus is removed well from all areas. Avoid suctioning longer than 10 seconds because of oxygen loss. Suction normal saline from a container if needed to clear catheter.

7. For tracheostomy tubes with cuffs, it may be necessary to deflate the cuff periodically for suctioning to prevent pooling of secretions above tracheal cuff.

8. Let patient rest and breathe, then repeat suction, if needed, until clear (trying to allow about 30 seconds between suctioning).

9. Oxygenate/ventilate, as needed.
This protocol is designed to be used when EMS personnel encounter patients who are dead at the time of arrival in which resuscitation is medically inappropriate or for use immediately after the Cease-Effort Protocol 9102 has been performed.

A. Perform initial assessment as per any patient.

B. Determine history.

C. Criteria: The decision to not begin resuscitation may occur under the following circumstances if ordered in consultation with MCP.

1. When there are changes to the body which indicate a prolonged postmortem interval (i.e. decomposition, rigor in normo-thermic body).

2. Injuries incompatible with life such as decapitation or transection of torso.

3. Pulseless, apneic patients in multiple casualty situations where resources are required to maintain living patients and those resources are unavailable.

4. Proper “Do Not Resuscitate” documentation has been discovered or clarified by family, Medical Command Electronic Registry (End of Life Registry), or power of attorney.

5. Resuscitation efforts pose a danger to the health and/or safety of the rescuers and/or the scene is judged unsafe for rescuers to continue providing care.

D. Criteria: The decision to not begin resuscitation may occur under the following circumstances by order of MCP.

1. Victims of trauma who are pulseless and apneic at the time of arrival of first responders or EMS personnel.

2. Blunt trauma patients, who become pulseless and apneic, cannot be extricated quickly, and the entrapment precludes medically effective resuscitation efforts.

3. Circumstances where beginning or continuing resuscitation is not medically appropriate as determined by EMS personnel and direct contact with the Medical Command Physician.

4. Proper “Do Not Resuscitate” documentation has been discovered or clarified by family, Medical Command Electronic Registry (End of Life Registry), or power of attorney.
E. Procedure:

1. Contact **Medical Command** immediately and **consult with MCP** as required in “C” and “D” above. Discuss situation and **obtain confirmation that no resuscitation is indicated**.

2. Protect and preserve the scene until jurisdictional authority has been determined as in #4 below.

3. Notify the Medical Examiner Authority (County or State) on all out-of-hospital deaths **including** those registered with and receiving hospice care.

4. If the county authority is unavailable or does not call back within 10 minutes, then contact the State Medical Examiner’s Office at 1-877-563-0426

5. Check with your county dispatch to ensure that Law Enforcement has been notified.

6. EMS personnel are not required to transport the body, but may do so if instructed and this is standard practice as a courtesy to the local community.

7. EMS personnel should document carefully the signs, symptoms, and vital signs which confirmed and allowed the declaration of death. These facts should be recorded in the patient care record.

8. For Medical Examiner cases, the hospital copy of the patient care record should be completed and given to the Medical Examiner Authority (County or State) if they are on-scene or left with the body at the morgue if transport is made.
This protocol is designed to be used when in direct consultation with the Medical Command Physician (MCP), the medical decision is made to discontinue resuscitation efforts in the field and proceed to the Death in the Field Protocol 9101.

A. Criteria: EMS personnel may request orders to cease resuscitation efforts on a patient in the field when any of the following are present:

1. Resuscitation initially started by first responders, family members, etc. is determined to have been medically inappropriate (i.e. terminal cancer or traumatic arrest).

2. A full cycle of ALS treatment has been unsuccessful and one (1) of the following criteria are met:
 - Patient remains in PEA or Asystole > 20 minutes with no rhythm change confirmed in two (2) leads.
 - EtCO2 < 10 mmHg with high quality CPR for greater than ten (10) minutes (if available).

3. Proper "Do Not Resuscitate" documentation has been discovered or clarified by family, Medical Command Electronic Registry (End of Life Registry), or power of attorney.

4. BLS resuscitation has proved unsuccessful and no ALS is available > thirty (30) minutes or the patient has been confirmed pulseless and apneic for > twenty (20) minutes with NO shocks delivered from an AED at any time during the resuscitation effort.

5. Physical exhaustion of available providers to provide care.

6. The scene environment is judged to be unsafe for rescuers to continue resuscitation.

7. Extremely remote areas where evacuation may require hours or days.

B. Procedure:

1. EMS personnel will contact Medical Command and speak directly to the MCP.

2. Specific history and details of care will be discussed and MCP will make final decision, give final order to cease resuscitation, and note exact date and
time.

3. Proceed immediately to **Death in the Field Protocol 9101**.

C. Exceptions: The following situations may necessitate transport of patients and continued resuscitation efforts *per direct MCP order*:

1. Volatile or potentially dangerous situations where movement of the patient and exit from the scene is required for the safety of the rescuers.

2. Hypothermic patients: Treat per **Cold Exposure Protocol 4503**.

3. Pediatric patients less than 12 years of age.

Note: If patient is removed from scene and resuscitation continued, the resuscitation efforts should be continued until arrival at the hospital.
Field triage of critically injured trauma patients and their transport to an appropriate level trauma center is often vital to their survival. Recognition of these patients should be assisted by the Priority 1 (P1) and Priority 2 (P2) criteria recommended by the State Trauma and Emergency Medical System. Patients meeting P1 or P2 criteria should generally be transported to the highest level trauma center within 30 minutes transport time using the algorithm below:

Immediate Transport Criteria
Patient has an immediate life-threatening condition (lack of airway, uncontrollable massive hemorrhage, etc.)

Category A. Assess for P1 Criteria
1. Respiratory compromise or intubated
2. Blood Pressure < 90 at any time in adults, or age specific hypotension in children
3. GCS<9
4. GSW to neck, chest, abdomen or extremities proximal to the elbow/knee

Category B. Assess for P2 (Physiologic or Anatomy) Criteria
1. Respiratory Rate <10 and >29 Infants with RR<20 if <1 year old.
2. GCS ≥9 and <14
3. Penetrating injuries to head, neck, torso or extremities proximal to elbow or knee (other than GSW to neck, chest, abdomen or proximal to the elbow/knee)
4. Chest wall instability (e.g. flail chest)
5. Two (2) or more proximal long-bone fractures
6. Crush, degloved, or mangled extremity
7. Amputation proximal to wrist or ankle
8. Pelvic fracture
9. Open or depressed skull fracture
10. Paralysis
11. Time sensitive extremity injury

En route to scene, consider aeromedical standby alert as per Field Aeromedical Protocol 9105

Contact Medical Command:
Consider immediate aeromedical evacuation, or transport the patient to the nearest facility capable of definitive resuscitation, regardless of trauma center designation status.

Contact Medical Command:
Consider immediate aeromedical evacuation, or transport the patient to the highest level trauma center within 30 minutes transport via ground or air. If time is >30 minutes to a designated trauma center, transport the patient to the nearest facility capable of resuscitation and stabilization.

Request Priority 1 Trauma Team activation.

Contact Medical Command:
Consider immediate aeromedical evacuation, or transport the patient to the highest level trauma center within 30 minutes transport via ground or air. If time is >30 minutes to a designated trauma center, transport the patient to the nearest facility capable of resuscitation and stabilization.

Request Priority 2 Trauma Team activation.
Category C. **Assess for P2 (Mechanism) Criteria**

1. Falls:
 - Adults > 20 feet; Children >10 feet or 2-3 times the height of the child.
2. High Risk Auto Crash:
 - Ejection
 - Intrusion, including roof: >12 inches, occupant site >18 inches, any site
 - Death in same passenger compartment
 - Vehicle telemetry data (if available) consistent with high risk of injury
3. Auto vs. Pedestrian/Bicyclist thrown, run over, or with significant impact (≥ 20 mph)
4. Motorcycle or ATV crash > 20 mph

Contact Medical Command:
Transport the patient to the highest level trauma center within 30 minutes transport. If time is >30 minutes to a designated trauma center, transport the patient to the nearest facility capable of resuscitation and stabilization.

Request Priority 2 Trauma Team activation.
The purpose of this policy is to establish common, acceptable guidelines for Medical Command Centers, hospitals, and EMS personnel under which diversion of ground ambulances transporting patients from the field may occur. This policy DOES NOT supersede a hospital’s or EMS personnel’s obligation to provide care should a patient require emergency stabilization or in the event that a patient desires to be transported to and treated at a specific facility. Any unstable patient should be transported to the closest appropriate facility regardless of the facility’s alert status. Additionally, ambulances should not bypass a hospital on red alert if transport time will be lengthened by more than 15 minutes.

A. Definitions of diversion alert status system:

1. **Red Alert Status**: Notification from a hospital to Medical Command that said hospital has identified a strain in operational ability due to any two (2) of the criteria listed below and that such hospital is requesting that affected EMS personnel make the condition known to all patients and/or patients’ families requesting transportation to said hospital.

2. **Yellow Alert Status**: Notification from a hospital to Medical Command that said hospital has identified a temporary lack of ability to provide a particular type of service or specialty support that they normally and routinely provide. Said hospital is requesting that affected EMS personnel make this condition known to all patients and/or patients’ families requesting transport to said hospital. Yellow alert status may place the facility on red alert if criteria #1 is also met and, in consultation with Medical Command, it is determined with reasonable certainty that the patient in question may require the services affected by the yellow alert.

3. **Mini-Disaster Alert**: Notification from a hospital that a physical incapacitation of a necessary functional component of the hospital has occurred making further patient care untenable (i.e. fire, flood, gas leak, bomb scare, etc). The facility has, in effect, suspended operation and can receive absolutely no patients. Unless the situation is isolated to the Emergency Department, all other means of patient admissions must be halted prior to a mini-disaster alert being implemented.

B. Diversion Criteria: The determination to place a hospital on red alert status and consider diversion of ambulances from any hospital emergency department can only be made when two (2) of the following criteria are met. **Criteria #1 must always be one of the two criteria prompting the red alert.**

1. The emergency department is overloaded (i.e. filled to capacity with patients whose conditions do not allow for extended delay in treatment); or, there is
already an overwhelming number of critical patients and any additional critical patients would exceed the care capability of the facility.

2. There are no monitored beds available in the emergency department.

3. There are no monitored beds available in the entire facility.

4. The entire facility is full to capacity with no beds available.

5. A particular service is on yellow alert and Medical Command has determined with reasonable certainty that the particular patient in question may require that specific service on an urgent basis.

C. Override: A red alert will be automatically disregarded if any of the following conditions occur:

1. A patient is unstable and requires immediate stabilization as determined by EMS personnel in consultation with Medical Command.

2. The diversion of the patient would add an additional 15 minutes to the transport time. This may frequently occur in the more rural areas.

3. The patient or patient’s family, after explanation of risks and consultation with the MCP, still insist on transport to the red alert facility, and the MCP has determined that this decision poses no immediate danger to the patient. Patient or legal guardian must sign refusal of appropriate care section of patient care record.

D. Each hospital will pre-determine a representative position which will be the sole communicator with Medical Command. The designated position must be provided in writing to Medical Command.

1. The designated hospital representative will notify Medical Command when requesting a particular diversion alert status. The representative will report to Medical Command the criteria met to qualify for the diversion alert status, first by phone and then by faxing the Diversion Alert Status Form (Appendix B) directly to Medical Command. The requesting hospital will maintain the information as contained in Section “F” below on file for one year following the request for diversion.

2. Medical Command will notify affected EMS agencies when a particular hospital is on a diversion alert. EMS personnel will inform the patient and/or patient’s family of possible extensive delays in treatment at the hospital.
which is on diversion status. However, the patient or patient’s family has the final destination decision unless there is a concern by the EMS personnel that the patient will be adversely affected by the requested destination. In the case of that concern, consultation with the Medical Command Physician should occur to determine the final destination of the patient.

3. It is the designated hospital representative’s responsibility to notify Medical Command when the diversion status changes. Red alert status will automatically terminate after two (2) hours unless the hospital notifies Medical Command and requests an additional 2 hour extension. If after four (4) hours the operational deficits have not been corrected, then the hospital may request an additional two (2) hour extension, but hospital administration must explain in writing within 24 hours what measures have been taken to assure that this situation does not reoccur. At no time may a facility be on red alert status for more than six (6) hours in a 24 hour period beginning at 12 midnight.

4. In the event that all hospitals within a catchment area meet criteria for red alert status, then Medical Command will notify those hospitals that red alert status is automatically suspended and patients are transported to the usual closest appropriate facility.

5. Yellow alert status must be updated by the hospital representative to Medical Command every six (6) hours.

E. Compliance Monitoring: Medical Command will maintain the data base on all alert status diversions and report them to the regional medical director for review.

1. In the event that non-compliance with this policy is identified, the Regional Medical Director will notify the hospital in question and request in writing an explanation for the variance.

2. If non-compliance continues to be an issue, then the Regional Medical Director will notify in writing the WVOEMS State EMS Medical Director for further action, including possible site visit by the Bureau for Public Health.

** Diversion Alert Status Form (Appendix B).
Field access to aeromedical transport may enhance the probability of survival of a select, small percentage of patients. The objective of a field response to the scene of injury by an EMS helicopter is to utilize the speed of the helicopter or the advanced skills of the medical crew to supplement patient care.

All requests for scene helicopter responses will come through Medical Command. Inappropriate requests for a helicopter subject the flight crew and the patient to needless risk. Medical Command shall deny inappropriate requests for a helicopter. EMS personnel considering the need for a helicopter are encouraged to discuss their situation with Medical Command. If the drive time to a designated Level I or II Trauma Center is less than 30 minutes and there is no extrication delay at the scene, aeromedical transport is rarely indicated. Appropriate requests for a helicopter include the following:

A. Trauma Criteria:
 1. Patient meets Field Trauma Triage Protocol 9103 Immediate Transport: \textit{OR}
 2. Patient meets Field Trauma Triage Protocol 9103 A (P1 Criteria); \textit{OR}

 \textbf{Note:} Patients meeting only Field Trauma Triage Protocol 9103 C. P2 (Mechanism Criteria) \textit{may} need a helicopter, but require that you discuss the details with MCP for approval.

B. Medical Criteria:
 1. Some non-trauma patients with life-threatening medical conditions and far from definitive care, may benefit from air evacuation. Such circumstances may include:
 a. Acute stroke patients within the window of opportunity for thrombolytic or endovascular intervention at an appropriate hospital.
 b. Acute myocardial infarction patients needing thrombolytics or angioplasty.
 c. Major overdose patients with coma.
 d. Major burns > 20% TBSA (second or third degree) needing flown directly to a Burn Center.

C. Environmental Criteria:
 1. Patients in remote locations inaccessible by ground EMS.
2. Mass casualty incidents that totally overwhelm local agency capabilities (industrial accidents, multi-vehicle crashes, hazmat incidents, etc.)

D. Procedure:

1. **Contact Medical Command.** If radio communication or cell phone service is not available, contact your local dispatch or 911 communications center to contact Medical Command. Discuss clearly the need for the helicopter based on the above criteria with Medical Command. Saying “I need a helicopter” is inadequate.

2. Identify agency, unit number, incident location, description of incident, and any other information requested.

3. Request either response or standby alert. Request can be made for helicopter to be placed on standby alert even before arrival on scene, which may shorten the helicopter’s lift-off time if air transport is deemed necessary. Request response as soon as criteria is identified.

4. Give a brief description of incident and GPS coordinates if available, or an accurate location, including names of roadways, cross streets, and other pertinent landmarks. Names of nearby towns and your location in reference to them is helpful.

5. Advise Medical Command of the agency and radio frequency of the ground contact for the helicopter.

6. Remain in contact with Medical Command for information concerning availability of aircraft, estimated flight time, and/or other special landing zone or scene requirements.

7. Medical Command will coordinate dispatch of the closest appropriate helicopter based on location of incident and will coordinate destination notification.

8. Landing zone preparation:

a. Secure a level 100' X 100' area clear of power lines, trees, debris, and other obstructions.

 b. Ensure all bystanders and personnel remain at least 100 feet from aircraft at all times.
c. At night, use of flashing blue, green, or amber lights is encouraged to mark the landing area since they interfere less with night vision technology. Red lights of an emergency vehicle may be used; but use only the red lights on the vehicle (NO white lights or flood lights). Do not shine any lights at the aircraft either on approach or while on the ground. High intensity light sticks may be used but NO flares.

d. After landing, do not approach the aircraft.

9. Communications:

a. Designate one (1) individual to monitor ground contact radio frequency and communicate with the aircraft. Do not change frequency unless instructed to do so by aircraft or Medical Command.

b. Establish radio and visual contact with the aircraft and give a quick update of any LZ changes, hazards, and patient update information.

c. When aircraft is making final approach to land, keep radio traffic to a minimum so as not to distract the pilot. Alert pilot immediately if new hazard or situation develops. Follow directions given by pilot.

10. Use of hospital based landing sites

a. EMS shall be permitted to utilize hospital based landing sites in cases where it is more practical and safer to do so verses a field based landing site created at or near an incident scene.

b. EMS shall develop an MOU with the facility prior to utilizing section 10 of this protocol.

c. The hospital shall be contacted prior to use and permission granted by the facility to utilize the hospital based landing site. This shall assure that the landing site is clear and there are no other inbound flights due to arrive.

d. EMS shall not be required to enter the emergency room when simply utilizing the landing site for EMS field operations subject to the following:

1) Medical Command has been contacted and given a detailed patient assessment

2) The Hospital has been contacted and permission granted to utilize the facility
3) The patient has been determined to be stable for continued transport evidenced by:
 • An easily maintained, patent airway with or without an advanced airway adjunct
 • Vascular access via IV or IO
 • A perfusing cardiac rhythm

11. Should aeromedical not be at the landing site upon arrival of EMS, contact should be made with the flight team to verify an ETA. If communication with the flight team verifies an extensive delay in arrival of the aircraft; earnest consideration should be given to divert the patient to the Emergency Room.
The West Virginia OEMS protocols are designed to allow EMS personnel the ability to provide a wide variety of treatments to many types of patients by utilizing off-line protocols. However, since protocols cannot cover all situations, on-line medical direction is essential to a quality EMS system.

EMS personnel are expected to contact Medical Command for on-line or off-line medical direction as outlined in the protocols, transporting to an emergency department, or anytime additional consultation is needed by the provider. This provides hospital’s early notification, provider’s legal protection, and protocol guidance if needed. Additionally, EMS personnel should notify Medical Command on inter-facility transports being transferred to the ED not less than fifteen (15) minutes prior to arrival. In order to provide for the most efficient and accurate communication between the provider and the Medical Command Operator, the following procedures will be used when communicating with Medical Command.

A. Patient Hand Off / Transfer of Care: Formal exchange of information between receiving healthcare providers/facilities and EMS providers pertaining to the overall scene, patient presentation, care rendered, and response to care rendered prior to arrival has proven to alleviate repeated services, confusion, and medication errors. EMS shall adhere to following for all patients:

1. EMS Time Out Report – This report constitutes a verbal exchange of information to provide continuity of patient care. WVOEMS recognizes the “MIST” format to meet this need.

 a. M - Mechanism of injury/Medical Complaint
 • Name, Age, and Sex
 • Location of patient when found (Home, nursing home, assisted living facility, road, freeway, rural area)
 • Onset of injury/symptoms (For Stroke last time known normal)
 • Description of cause of injury (MVC, Fall, Weapon, Assault)
 • Details of injury (Vehicle’s involved, Speed, Position in/on vehicle, Pertinent damage to the vehicle, Restraint use, Helmet use, Height)

 b. I - Injuries or illness
 • Pain, deformities, Injury patterns, new disabilities (Loss of Airway, Movement, Sensory, Speech, Sight)
 • Results of tests ECG, Stroke neuro assessment, Blood glucose (BG)

 c. S - Signs and Symptoms
 • Duration of symptoms, Location of symptoms, Any modifiers of the symptoms (movement, eating, medications taken).
Special Operational Policies and Treatment Protocols

MEDICAL COMMUNICATION POLICY

- Age of patient. Pertinent Medical History.
- Vital Signs - First set, Lowest BP, Current Set (Include HR, BP, RR, SPO2, ETCO2, BG, ECG Monitor rhythm and Normal and current responsiveness - GCS or AVPU)

d. T – Treatment
- Tubes, Lines (Location and size), Fluids (type and amount), Oxygen delivery description
- Medications administered, stabilization applied Dressings applied, Tourniquet applied (when was it applied)
- Defibrillation, Pacing, and other treatments.
- Response to treatments: Symptoms resolved, improved, worse, or no change.

2. Hand Off Report – The patient hand off report shall be written documentation of a minimal set of data and shall be provided to the receiving facility prior to EMS departure. This does NOT take the place of an EPCR which may be required by the receiving facility at a later time. The minimal data that must be provided is as follows:

 a. Agency name and name of care providers
 b. Patient’s name
 c. Chief complaint and history of the chief complaint
 d. Vital signs, level of consciousness, and pertinent physical findings
 e. Pertinent past medical history, medications, and allergies
 f. Treatment rendered

B. **Initial Call-in Procedure:** In order to quickly and effectively identify the level of interaction required to properly manage the patient, the following procedure will be used:

1. **Initial Call Requirements:** *Call 9 and Channel “C” Charlie are the initial call frequencies.*
 a. Squad and Unit Number
 b. Destination and ETA
 c. Situation: *(What you have/What you need)*
 - BLS
 - ALS
 - Trauma
 - Stroke
 - STEMI
 - Aeromedical request
 - MCP orders request
2. Communication Example:

 a. Cabell County unit 41 contacting Huntington MedCom on call 9 with a BLS report, ETA 10 min to Cabell Huntington Hospital.

 b. Berkeley County Medic 971 contacting WVU MedCom on C with an ALS STEMI, ETA 12 minutes to Berkeley Medical Center.

C. Methods for contacting Medical Command: There are two (2) general methods for contacting Medical Command:

 1. UHF, VHF, or IRP Radio: Direct radio contact with Medical Command is the preferred method of contact while responding to a call, transporting a patient, or on the scene of an MVC or other non-residential incident. Depending on the area of the state, this may best be accomplished by UHF, VHF, or IRP Radio frequencies. Call 9 and Channel “C” Charlie are the initial call frequencies.

 2. Phone (landline or cellular): Should be used whenever the patient’s location and condition permit. Phones, both landline and cellular, provide a great amount of security for discussion of sensitive patient information. However, when in a mobile unit, phones are not a substitute for radio contact if the coverage is available. Providers may use the local number of the Medical Command Center or the toll free 800 number of the specific center.

D. Detail Call Requirements: When providing a detailed report to Medical Command the following procedures should be followed:

 1. After Medical Command has answered the EMS initial call and assigned a frequency to take a full report, provide the following information:

 a. Age and sex of patient
 b. Chief Complaint/ Mechanism of Injury
 c. Brief history of present illness
 d. Pertinent past medical history
 e. Pertinent medications
 f. Allergies (only if requesting medications)
 g. Vital signs
 h. GCS (if applicable)
 i. Stroke score (if applicable)
 j. ECG findings
k. Assessment
l. Treatment administered
m. Orders requested (if applicable)
n. Updated ETA and destination (if it has changed since initial call)

2. If the patient’s condition changes or new complaints develop, Medical Command shall be contacted with updated findings and treatment.

3. It is understood that not all information listed in D-1 is required for every patient. Providers shall make every effort to provide a complete and thorough report reflective of patient presentation.

E. Performance Improvement: EMS field providers and Medical Command operators shall have the ability to identify performance improvement opportunities. These may manifest in recognition of a job well done or as an opportunity to improve.

1. EMS providers may, at any time, request a call to be flagged for review. The MedCom operator will do so and follow up will be provided to the EMS provider and administrator.

2. Anytime a requested order is denied, the call will be automatically flagged for review and follow up will be provided to the EMS provider and administrator.

3. The MedCom operator may, at any time, flag a call for review. Follow up will be provided to the EMS provider and administrator.

F. Inability to contact Medical Command: If the provider is unable to contact Medical Command by any of the above means, properly authorized EMS personnel may continue to follow the appropriate protocol(s) in the best interest of the patient. However, the provider must then:

1. Immediately upon arrival at the receiving facility, contact Medical Command by phone and provide a full patient report and the method, time, and location of the unsuccessful efforts to reach Medical Command.

2. If this report is made prior to leaving the receiving facility, no further reporting is required by the provider.

3. If Medical Command is not contacted prior to leaving the receiving facility, by law, the provider must submit a report (Appendix H) to the State Office of Emergency Medical Services on the appropriate form within 48 hours. Failure to do so may be grounds for suspension or even legal action.
BREAK
• Treatment given and in progress (include protocol # (s))
• Treatment and orders requested
• Updated ETA and destination

9. If the patient’s condition changes or new complaints develop, Medical Command shall be recontacted with updated findings and treatment.
The “hand-off” or transfer of patients, between EMS providers, (Emergency Medical Responders, EMT-Basic, and Paramedic) represents one of the most important elements of successful pre-hospital patient care.

Transferring patient care involves the transfer of patient rights and duty to provide care, from one person, or one team, to another. This transfer of care may be from a higher level provider to a lower level provider, from a lower level provider to a higher level, or between the same levels of provider. The term Provider, refers to the level of Certification. The importance of transferring patient information including history and plan of treatment cannot be overemphasized. The providers must communicate events, treatments, and ongoing plan of care during the “transfer of care” process. This provides a smooth transition for continued continuity of treatment.

This protocol addresses transfer of care involving any level of EMS provider.

A. Care involving Emergency Medical Responders (EMR):

1. Any provider with a higher level of certification may not transfer care (handoff) to an EMR.

2. An EMR shall provide a verbal transfer of care report when handing off a patient to a higher level provider.

3. An EMR may continue to assist in the care of the patient during transport to a medical facility, but may not function as the primary care provider in the patient compartment of an ambulance.

4. This protocol addresses, but is not limited to:
 a. CCT Squad to CCT Aeromedical Unit.
 b. ALS Squad to ALS or CCT Aeromedical Unit.
 c. ALS Squad transferring care to a different ALS Squad.
 d. Situations when ALS and BLS squads are on scene and it is determined the BLS Squad is appropriate to transport.
 e. ALS Squad intercepts a BLS squad and determines the patient is appropriate for BLS transport.
 f. An ALS crew consisting of an ALS level provider and EMT determine the patient is appropriate for BLS transport and the EMT
serves as the primary attendant in the patient compartment.

B. When a higher level provider (certification), transfers care to a lower level provider (certification), the following criteria must be met:

1. The lower level provider must agree to the transfer of care.

2. In the event the higher level provider chooses to drive, there must be another EVOC certified crew member present on the vehicle to drive in case the higher level provider needs to resume patient care.

3. The higher certified provider must evaluate and, if needed, provide initial treatment prior to handoff.

4. Anticipated additional treatment may not exceed the scope of practice of the level of certification assuming the patient care, or the level of licensure of the EMS vehicle and EMS Agency.

5. Prior to the transfer of care, a history and physical examination (H&P) must be performed by the higher level provider. This H&P must be documented and the higher level provider must affix their signature to the report. This H&P may be documented on the patient care record of the transporting unit, or on a separate PCR. If documented on a separate PCR, the H&P must be forwarded to the receiving medical facility.

6. With any transfer of care, the provider transferring care must interface directly with the receiving provider and ensure all pertinent information is conveyed.

7. Any transfer of care between EMS providers must be documented in the patient care record.

8. Any level of provider accepting transfer of patient care must be continuously alert for changes in patient condition and be prepared to provide immediate medical intervention and potentially call for a higher level intercept.

C. Transfer of care decision should be a joint decision reached by all involved providers. If transfer to lower provider (certification) the higher level provider will determine who remains in the patient compartment, drives, or allow a lower certified crew to transport the patient.
D. If the Lower Certified provider is not comfortable accepting responsibility for primary care, and the providers cannot agree, contact Medical Command for further direction and resolution.
Nerve agents are very toxic organophosphorus compounds that have biological activity similar to that of many insecticides. They cause biological effects by inhibiting acetylcholinesterase and, thereby, allowing acetylcholine to accumulate. Initial effects from small amounts of a nerve agent differ, depending on the route of exposure. There is usually an asymptomatic interval of minutes after liquid exposure before these occur. Effects from vapor occur almost immediately.

A. Perform **Initial Treatment / Universal Patient Care Protocol** and follow the proper protocols for medical management based on clinical presentation.

B. The patient should be removed from the environment.
 1. Never attempt rescue unless trained, certified, and properly equipped.
 2. Never place yourself or your crew in danger.

C. Mild to moderate signs and symptoms (including dyspnea and nausea/vomiting):
 1. Administer one (1) MARK I Kit IM or **Atropine** 2 mg IM or IV (Adult: 2 mg / Peds: 0.02mg/kg) and **Pralidoxime** 600 mg IM or IV (Peds 25 - 50 mg/kg). **Atropine** should be repeated every five (5) minutes until improvement is noted.
 2. Oxygen should be administered at 15 LPM via non-rebreather.
 3. Do not treat for isolated miosis (unless eye pain is severe) or rhinorrhea (unless severe).

D. Severe signs and symptoms (including loss of consciousness, seizures, or apnea):
 1. Administer three (3) MARK I Kits IM or **Atropine** 6 mg IM or IV and **Pralidoxime** (if available) 1800 mg IM or 2 grams slow IV drip over 20 minutes. Repeat **Atropine** 2 mg IM or IV every five (5) minutes until:
 a. secretions diminish; **or**
 b. airway resistance is less or is normal.
 2. Secure airway. Refer to **Airway Management Protocol 4901**.
 3. In patients with seizure activity administer **Midazolam** 2 mg IV/IO/IM or 5 mg (IN) via atomizer.
E. Monitor patient via pulse oximeter and cardiac monitor.

F. Decisions regarding the transportation of patients should be made in consultation with Medical Command and the on-scene incident management system.

Note: EMT-Bs may administer MARK I Kits [up to total of three (3) kits] to symptomatic public safety personnel or when directed to do so by an ALS provider based on signs and symptoms in a mass casualty incident (MCI) or on-site chemical testing, confirming nerve or organophosphate agent presence in a mass casualty incident. Medical Command consultation is not required in these situations.
A. Assessing andTreating an LVAD Patient:

1. Recognize that you have a patient with an LVAD.
2. Determine if your patient has an LVAD problem, an unrelated illness, or injury.
3. A completely stable patient may have NO palpable pulse or measurable blood pressure.
4. Mental status and skin color must be used to determine patient stability.
5. CPR should rarely be performed on an LVAD patient.
6. Patients with an LVAD should almost never be pronounced dead at the scene.
7. Call the Emergency Contact Number located on the LVAD control unit.

B. Overview of an LVAD:

The LVAD or Left Ventricular Assist Device is a mechanical device that takes over some or all of the pumping function of the heart's left ventricle. This device is used for patients of any age or gender with advanced heart failure who would not otherwise survive without this device.

Some LVAD patients will have an LVAD while they are waiting for a heart transplant (called Bridge-to-Transplant). Other LVAD patients, who are not eligible for a heart transplant for some reason, will live with the device for the rest of their lives (called Destination Therapy or Lifetime use).

1. How the Heart Works versus How LVADs Work:

The normal pumping function of the heart is achieved by the contraction of the left ventricular muscle which pushes a bolus of blood forward in the cardiovascular system with each contraction. This contraction is what we feel when checking a pulse, and what we hear when taking a blood pressure.

If the heart is not contracting, blood is not moving forward in the system, and we do not feel or hear a pulse. The LVAD, in contrast, flows constantly and, therefore, creates no "pulse" to feel or hear.

The LVAD is a tube that is about one (1) inch in diameter with a pump in the middle. One end of the tube (inflow) is surgically inserted into the left ventricle,
and the other end (outflow) is sewn into the aorta, just above where it exits the heart.

The pump on the LVAD spins constantly. The right side of the heart still pushes blood through the lungs and back to the left ventricle, but then the LVAD pump pulls the blood out of the left ventricle and pumps it out to the body, taking over most or all of the failed pumping action of the left ventricle.

NOTE: The important part to EMS providers is that the pump is a constant flow pump. There is no rhythmic pumping as there is with the ventricle, and therefore there is little to no pulse. This means you can have a perfectly stable and healthy looking person who has no palpable pulse and whom you may or may not be able to take a blood pressure.

C. Assessing the LVAD Patient:

1. Recognize you have an LVAD patient.
 a. The LVAD patient has a control unit attached to their waist or in a shoulder bag.
 b. The control unit will be attached to batteries mounted to the belt, in shoulder holsters, or in a shoulder bag. At home, it could be attached to a long cord that connects to a large power unit.

2. Decide if you have a patient with an LVAD problem or a patient with a medical problem who just happens to have an LVAD. Patients with LVADS will have all the same illnesses and injuries as any other patient you see. Their LVAD may have nothing to do with the reason you were called.

3. LOOK:
 a. Alarms on the control unit will most likely indicate an LVAD problem. Follow resource guides with the patient to trouble shoot.
 b. Skin color and mental status are the most reliable indicators of patient stability for the LVAD patient.

4. LISTEN:
 a. Listen over the LVAD pump location to make sure you can hear it running. This will be just to the left of the epigastrium, immediately below the base of the heart.
b. The patient and their family are experts on this device. Listen to what they have to say about any problems with the LVAD.

5. FEEL:
 a. Feel the control unit. A hot control unit indicates the pump is working harder than it should and often indicates a pump problem such as a thrombosis (clot) in the pump.
 b. The use of pulse and blood pressure to assess stability can be unreliable in an LVAD patient, even if they are very stable.

6. VITALS:
 a. Pulse: Generally you will be unable to feel a pulse.
 b. Blood Pressure: You may or may not be able to obtain a BP. Standard readings are unreliable and may vary from attempt to attempt.
 c. Pulse Oximetry: Readings seem to be fairly accurate and consistent, according to data, despite the manufacturer stating that pulse oximetry often does not work.
 d. Quantitative Continuous Waveform Capnography: This should remain accurate as it relies on respiration, not pulse.
 e. Temperature: Infection and sepsis are common. Check temperature!

NOTE: LVAD patients can remain stable and experience a range of ECG rhythms that could be dangerous or fatal in another patient. Remember blood sugar and stroke assessment, particularly for an altered mental status.

D. Treating the LVAD Patient:

1. Generally, treatments for an LVAD patient will follow the current WVOEMS Protocols. However, there are a few special considerations to keep in mind. Do not let the LVAD distract you from treating the patient!

2. The best medical resource available to you for LVAD related problems is the patient's VAD coordinator. The patient will have a contact sheet for the VAD coordinator with them at all times. **Contact the VAD coordinator as soon as possible.**
3. If you are assisting patient to change batteries or power source, **never** remove both batteries at the same time. This will cause the LVAD pump to immediately stop.

4. Sepsis and stroke are leading causes of death for LVAD patients.

5. Treating ECG changes:
 a. Many LVAD patients already have an implanted defibrillator and/or a pacemaker in place.
 b. The continuous flow of the LVAD means changes in ECG rhythms, including atrial fibrillation, SVT, ventricular tachycardia, and even ventricular fibrillation may have minimal to no short-term effect on the cardiac output and stability. Treat ECG changes according to protocol.
 c. Use of external pacing or defibrillation is unchanged for LVAD patients.
 d. Use of ACLS education is unchanged for LVAD patients. Follow standard AHA and protocol guidelines, as appropriate.

6. LVAD patients are always on anticoagulant medications. Even minor appearing chest or abdominal trauma, such as a seatbelt mark, could be hiding a very serious injury.

7. LVAD manufacturers currently recommend against CPR, especially if there is any evidence the pump is still functioning. There currently are no published studies or published consensus statements regarding whether and under what circumstances to perform CPR on a deceased LVAD patient. LVAD devices are not all the same and, if at all possible, clinical decisions regarding LVADs should be made in consultation with the patient’s VAD coordinator. The decision to perform CPR should be made based upon best clinical judgment of the provider in consultation with the patient’s family and the VAD coordinators or Medical Command. In any event, CPR should be initiated only where:
 a. You have confirmed the pump has stopped (by listening for pump sounds) AND all trouble shooting efforts to restart it (connect wires, batteries, new control unit, etc.) have failed, AND;
 b. The patient is unconscious, unresponsive, and has no detectable signs of life (no pulse, no blood pressure, no pulse oximetry reading or wave form capnography reading, AND;
c. The patient does not have a valid DNR in place.

8. Patients should not be pronounced dead if LVAD continues to function, unless they have obvious factors of death such as decapitation, rigor mortis, or dependent lividity.

E. Transporting the LVAD Patient:

1. Patients without an LVAD problem should be transported to the closest appropriate hospital for their condition.

2. When in doubt, transport to the closest hospital to access more transport resources and support.

3. Always bring the patient's resource bag with you. It should have spare batteries, possibly a spare control unit, contact sheets for the VAD coordinator, and directions for equipment and system alarms.

4. Always bring spare batteries for the LVAD with the patient, even if it is not an LVAD problem. Fresh batteries generally last 3 - 5 hours. Dead batteries mean a dead patient.

5. If you have a long transport or expect that the patient may be away from home for more than 4 - 5 hours, then try and bring the patient's power base unit.

6. Use your patient and their family as a resource. They are experts about this device and can help you assist the patient.

Recommended Unit Resource: Print EMS Guide for Mechanical Circulatory Support and place in all ambulances (20 pages). This guide has excellent information and "trouble shooting" guidance for the five (5) LVAD devices that EMS providers may encounter. Access the resource guide at: http://www.mylvad.com/assets/
EtCO2 monitoring is evaluated in a numerical reading and waveform reading. This protocol uses the understanding of the tool, physiology, and interpretation of EtCO2 to help the provider assess and treat patients appropriately. This tool gives the provider the ability to support a physical exam and confirm the ventilation process. Normal EtCO2 is 35 - 45 mm/hg.

A. Perform Initial Treatment / Universal Patient Care Protocol and follow the proper protocols for medical management based on clinical presentation.

B. If EtCO2 is available it may be evaluated in a moving vehicle.

C. Waveform EtCO2 numerical readings can be utilized to assess the following:
 1. Confirm breathing is present
 2. Confirm the airway is open and patent
 3. Confirm the physiology of ventilation is normal or abnormal

D. Non-Intubated patients; EtCO2 readings can be utilized to assess the following:
 1. Rapid assessment of the patient’s respiratory status
 2. Monitor critically ill patients to alert providers to impending respiratory arrest
 3. Assist in managing patients with ICP by verifying and maintaining levels of EtCO2 at 30 - 35 mm/hg

E. Intubated patients; EtCO2 readings can be utilized to assess the following:
 1. Verification of Tube placement
 2. Proper titration of respiratory assistance to maintain proper EtCO2.
 3. Evaluate cardiac output during CPR. (perfusion efforts and early detection of ROSC)
 4. Assist in managing patients with ICP by verifying and maintaining levels of EtCO2 at 30 - 35 mm/hg
<table>
<thead>
<tr>
<th>EVENT</th>
<th>EVIDENCE</th>
<th>TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apnea</td>
<td>No EtCO2 number. No waveform, No RR</td>
<td>O2, Ventilate</td>
</tr>
<tr>
<td>Obstruction</td>
<td>No waveform, No or decreased LS, impedance</td>
<td>O2, alignment maneuvers, remove obstruction</td>
</tr>
<tr>
<td>Laryngospasm</td>
<td>No waveform, No LS, Impedance, does not respond to alignment maneuvers</td>
<td>O2, Ventilate</td>
</tr>
<tr>
<td>Bronchospasm</td>
<td>Waveform abnormality</td>
<td>O2, breathing tx, CPAP</td>
</tr>
<tr>
<td>COPD</td>
<td>Abnormal EtCO2 level</td>
<td>O2, possibly Nitro / possibly breathing tx, CPAP</td>
</tr>
<tr>
<td>Hypoventilation</td>
<td>Low EtCO2, short wave form</td>
<td>O2, Ventilate</td>
</tr>
<tr>
<td>Tube Displacement</td>
<td>Short or no waveform, low or no EtCO2 number</td>
<td>Intubate</td>
</tr>
<tr>
<td>ROSC</td>
<td>Increase EtCO2 number, waveform, impedance</td>
<td>O2, Assist Ventilations</td>
</tr>
<tr>
<td>ICP</td>
<td>If signs of ICP</td>
<td>Maintain EtCO2 at 30 - 35 mm/hg</td>
</tr>
</tbody>
</table>
High school sporting venues are high profile community events with an inherent risk of sports trauma or spectator illness or injury. Emergency Medical Services (EMS) coverage of West Virginia inter-scholastic Friday night football has been documented to occur in over 94% of contests. Similar to other rural states, physician and certified athletic trainers (NATA) are present in less than 50% of events. The Medical Time Out protocol promotes pre-game organization for response to athlete and spectator injury.

These guidelines provide a rationale and structure for EMS entry to the sports trauma arena with the focus on pre-game preparation and communication with medical staff for participating schools. The guidelines in this protocol provide procedures for catastrophic injury recognition and response. This encourages direct participation and venue awareness with EMS positioning to promote precision of response. EMS event coverage is a valued community service with a component of unique high visibility "fish-bowl arena" and deserves a component of protection for adverse outcomes.

EMS Squad education and implementation for a Medical Time Out prior to providing coverage for scholastic sporting events is consistent with new legislation for sports concussion in all 50 states.

Medical Time Out education and checklist should be monitored by the Squad Training Officer and Squad Medical Director.

A. The pre-game checklist should be initiated 15-30 minutes prior to the event and should document cell phone contacts for all participants - Team Medical Staff, EMS, Police, and School Officials.

B. The checklist should include hand signals for EMS response to the field of play with need for sport concussion, backboard, ACLS support, and spectator response. Event sideline and press box radio communication is recommended but optional.

C. AED locations in the venue should be recorded with documentation of Sentinel Seizure awareness in athlete sudden cardiac arrest.

D. Procedures for head and neck injury should be reviewed with the captain assigned for C-spine control, face mask removal equipment, and agreed technique for boarding (log roll or 8 person lift).
Special Operational Policies and Treatment Protocols

Sports Venue Coverage: EMS Guidelines for Medical Time Out

E. Additional information included in the checklist depending on the sport venue may include **cheerleading injury response** and in geographically isolated locations designated **aero-medical landing zone coordinates**, and back-up EMS when game coverage is limited to a single unit.

F. **Check List Items:**

1. Phone Contacts
2. Hand Signals
3. AED Locations
4. Head and Neck Injury
5. Technique for Boarding
6. Cheerleading Injury Response
7. Aero-medical Landing Zone Coordinates

G. **Sports Concussion**

1. West Virginia 2013 legislation on sports concussion return to play requires mandatory removal from contest in all cases of suspected head injury identified by sideline physician, athletic trainer or coach. Return to play guidelines require a 5 day progression after symptom resolution and neuropsychological testing with physician involvement.

2. EMS intervention is typically requested in cases with loss of consciousness or worsening symptoms. During transport a symptom checklist should be recorded and provided to the receiving Emergency Department. (Sports Concussion Checklist Tools can be found online).
H. Heat Illness

1. Heat stress is common in high school football. Exertion Heat Stroke with rectal temperature above 104 F and altered mental status requires rapid cooling with ice bath immersion prior to transport. Heat exhaustion with temp above 100 F should include IVF with normal saline bolus (1 liter). Athletes with known or suspected sickle cell trait (SCT) are at increased risk for heat stress and may progress to explosive rhabdomyolysis and deterioration to PEA cardiac arrest from acute renal failure induced hyperkalemia. SCT athletes with heat stress require cardiac monitoring for development of peaked T waves or QRS prolongation.

I. Athlete Sudden Cardiac Arrest (SCA)

1. Intense exercise is a trigger for Sudden Cardiac Arrest in athletes with unrecognized Hypertrophic Cardiac Myopathy (HCM), Coronary Artery Anomalies, Arrhythmogenic Right Ventricular Dysplasia (ARVD), and Long QT Syndrome.

2. **Sudden collapse during sports play should be considered cardiac in origin.** Athlete collapse with seizure (Sentinel Seizure) and/or agonal respirations require chest exposure for AED placement or cardiac monitor with high index of suspicion for cardiac etiology.
This protocol applies specifically to BLS providers who are transporting patients with pre-established treatment modalities to home or extended care facilities. **This protocol DOES NOT apply to interfacility transports.** BLS pre-established treatment monitoring is limited to Jackson-Pratt (JP) drain tubes, chest tubes, and IV therapy.

A. Perform Initial Treatment/Universal Patient Care Protocol and follow the proper protocol for medical management based on clinical presentation.

B. Make sure the patient has been provided discharge information that details how to utilize the device when they are home.

C. **Jackson Pratt (JP) drains**

1. Jackson Pratt drains are most often used after surgery to remove drainage from the surgical site.

2. Jackson Pratt drains are often used before surgery to drain infected areas.

3. Jackson Pratt drains are round or grenade in shape and made of flexible plastic that is attached to a tube that remains in the patient.

4. **BLS Monitoring:**

 a. Note the length of exposed tubing outside the patient. Take caution not to manipulate the patient in a manner to pull on this device. The length noted initially should **NOT** change during transport.

 b. Monitor any patient complaint that is related to the area the JP drain is located. This should not change during the transport.

 c. If new discomfort occurs, the normal discomfort increases, the tube becomes dislodged contact Medical Command.

Jackson-Pratt drain
D. **Chest Tubes**

1. Chest tubes vary in diameter and are plastic tubes that have been inserted through the chest wall.

2. Chest tubes remove air, fluid, or pus from the intrathoracic space.

3. **BLS Monitoring:**

 a. Note the length of the exposed chest tube outside the patient. Take caution not to manipulate the patient in a manner to pull on this device. The length noted initially should **NOT** change during transport.

 b. The attached drainage tubing should never be placed above the insertion site at any time.

 c. Monitor the patient's breathing and note if it remains normal and any changes during the transport.

 d. If the patient's breathing becomes labored or the chest tube becomes dislodged contact **Medical Command** and transport the patient to the nearest emergency department.

E. **IV Fluids**

1. BLS monitoring of IV therapy patients is intended for IVs that have been established and running but whose medical condition is not dependent on fluid resuscitation. It is not intended to be an interfacility transport protocol for the patient needing IV fluids as a medical treatment to prevent deterioration of their condition.

2. **IV Monitoring applies to ADULTS ONLY.**

3. **BLS Monitoring:**

 a. IV fluids MUST be clear non-medicated Normal Saline 0.9%; however, Lactated Ringers may be utilized due to the Normal Saline shortage.

 b. IV fluid must be gravity fed ONLY. IV pumps are not allowed.

 c. The IV must be established by the initiating facility staff - **venous peripheral only - arm only.**
Cardiac Thrombolytic Therapy Screening:

Person filling out form: ________________________________

Patient Name: ______________________________________ Age: ______

Duration of symptoms: ___/___ hrs./mins. Yes No

1. S-T segment elevated or depressed at least 0.1 mv? ___ ___
2. History of bleeding problems, i.e. nose, gums, etc? ___ ___
3. History of bleeding ulcers? ___ ___
4. History of bleeding hemorrhoids? ___ ___
5. Any surgery in last 6 months? ___ ___
6. Any dental procedures in last 6 months? ___ ___
7. History of stroke (including family)? ___ ___
8. History of sudden/temporary weakness/numbness of face or extremities, dizziness or unsteadiness? ___ ___
9. History of difficulty with speech or visions? ___ ___
10. History of headaches or mental status changes? ___ ___
11. Any recent falls or injuries? ___ ___
12. History of high blood pressure? ___ ___
13. History of diabetes? ___ ___
14. History of hemorrhagic retinopathy? ___ ___
15. Pregnant? ___ ___
16. Receiving oral anticoagulants? ___ ___
17. CPR performed recently? ___ ___
18. IM injections recently? ___ ___
19. Known cardiac arrhythmias? ___ ___
20. Liver dysfunctions? ___ ___
Diversion Alert Status Form: To be completed by designated hospital representative and faxed to Medical Command immediately after phone notification.

<table>
<thead>
<tr>
<th>Date:</th>
<th>Hospital:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Initiated:</td>
<td>Time Cancelled:</td>
</tr>
<tr>
<td>Charge Physician:</td>
<td>Charge Nurse:</td>
</tr>
<tr>
<td>Representative Requesting Diversion:</td>
<td></td>
</tr>
<tr>
<td>Alert Status Requested and Criteria: (i.e. Red Alert, Yellow Alert, Criteria 1-5)</td>
<td></td>
</tr>
<tr>
<td>Medical Command Operator:</td>
<td></td>
</tr>
<tr>
<td>Number of Patients in ED:</td>
<td>Number of Critical Patients:</td>
</tr>
<tr>
<td>Number of Monitor Beds in ED:</td>
<td>Number in Use:</td>
</tr>
<tr>
<td>Number of Monitor Beds In-House:</td>
<td>Number in Use:</td>
</tr>
<tr>
<td>Number of Beds In-House:</td>
<td>Number in Use:</td>
</tr>
<tr>
<td>Signature of Designated Representative:</td>
<td></td>
</tr>
</tbody>
</table>

West Virginia Office of Emergency Medical Services – Statewide Protocols
Pediatric Vital Signs

<table>
<thead>
<tr>
<th>Age</th>
<th>Heart Rate</th>
<th>Respiratory Rate</th>
<th>Minimum Systolic BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant (less than 1 year)</td>
<td>100 – 160</td>
<td>30 – 60</td>
<td>greater than 60</td>
</tr>
<tr>
<td>Toddler (1 to 2 years)</td>
<td>90 – 150</td>
<td>24 – 40</td>
<td>greater than 70</td>
</tr>
<tr>
<td>Preschooler (3 to 5 years)</td>
<td>80 – 140</td>
<td>22 – 34</td>
<td>greater than 75</td>
</tr>
<tr>
<td>School-aged child (6 to 10 years)</td>
<td>70 – 120</td>
<td>18 – 30</td>
<td>greater than 80</td>
</tr>
<tr>
<td>Adolescent (11 to 18 years)</td>
<td>60 – 100</td>
<td>12 – 16</td>
<td>greater than 90</td>
</tr>
</tbody>
</table>

Pediatric Airway Management Supplies

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Laryngoscope Blade</th>
<th>ET Tube</th>
<th>ET Tube Length</th>
<th>Stylet</th>
<th>Suction Catheter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn 3-5 kg</td>
<td>0-1 straight</td>
<td>3.0-3.5 uncuffed</td>
<td>10-10.5</td>
<td>6 Fr</td>
<td>6-8 Fr</td>
</tr>
<tr>
<td>Infant 6-9 kg</td>
<td>1 straight</td>
<td>3.5 uncuffed</td>
<td>10-10.5</td>
<td>6 Fr</td>
<td>8 Fr</td>
</tr>
<tr>
<td>Toddler 10-11 kg</td>
<td>1 straight</td>
<td>4.0 uncuffed</td>
<td>11-12</td>
<td>6 Fr</td>
<td>8-10 Fr</td>
</tr>
<tr>
<td>Small Child 12-14 kg</td>
<td>2 straight</td>
<td>4.5 uncuffed</td>
<td>12.5-13.5</td>
<td>6 Fr</td>
<td>10 Fr</td>
</tr>
<tr>
<td>Child 15-18 kg</td>
<td>2 straight or curved</td>
<td>5.0 uncuffed</td>
<td>14-15</td>
<td>6 Fr</td>
<td>10 Fr</td>
</tr>
<tr>
<td>Child 19-22 kg</td>
<td>2 straight or curved</td>
<td>5.5 uncuffed</td>
<td>15.5-16.5</td>
<td>14 Fr</td>
<td>10 Fr</td>
</tr>
<tr>
<td>Large Child 24-30 kg</td>
<td>2-3 straight or curved</td>
<td>6.0 cuffed</td>
<td>17-18</td>
<td>14 Fr</td>
<td>10 Fr</td>
</tr>
<tr>
<td>“Adult” greater than or equal to 32 kg</td>
<td>3 straight or curved</td>
<td>6.5 cuffed</td>
<td>18.5-19.5</td>
<td>14 Fr</td>
<td>12 Fr</td>
</tr>
</tbody>
</table>
Wong-Baker FACES Pain Rating Scale

Explain to the person that each face is for a person who feels happy because he has no pain (hurt) or sad because he has some or a lot of pain. Face 0 is very happy because he doesn’t hurt at all. Face 1 hurts just a little bit. Face 2 hurts a little more. Face 3 hurts even more. Face 4 hurts a whole lot. Face 5 hurts as much as you can imagine, although you don’t have to be crying to feel this bad. Ask the person to choose the face that best describes how he is feeling.

Rating scale is recommended for persons age 3 years and older.
ENAME
A checklist for first tasks on scene of a motor vehicle collision.

- Environmental hazards
- Number of patients
- Additional resources
- Mechanism of injury
- Extrication?

PENMAN
A different checklist for first tasks at an MVC.

- Personal Protective Equipment
- Equipment needed
- Number of injured
- Mechanism of injury
- Additional resources needed
- Need for immobilization?

MI ST
A checklist for handover of a trauma patient.

- Mechanism of injury - describe it
- Injuries - describe them
- Signs - vital signs, abnormal s/s
- Treatment - what have you done?

CHATT
Elements of a Patient Contact/Care Report or Patient Report Form

- Chief complaint
- History - recent & relevant long term
- Assessment - your conclusions
- Treatment - include patient reactions
- Transport - note changes en route

SOAP
This is the general order for treating a patient.

- Subjective information (What is the patient telling you?)
- Objective information (What are your observations and tools telling you?)
- Assessment of the patient (What do you think is happening?)
- Plan of action (What are you going to do about it?)

CHEATED
This is a summary of a patient contact, from start to finish.

- Chief Complaint
- History
- Examination
- Assessment
- Treatment
- Evaluation (Did the treatment help?)
- Disposition (What was the final outcome?)
ASSESSMENT MNEMONICS

OPQRST
Used to assess PAIN.

- **Onset** (this event)
- **Provoke, Palpation**
- **Quality**
- **Radiates** (Does it spread out?)
- **Severity**
- **Time** (history)

SAMPLE
SAMPLE is the acronym covering the details we need to get about any patient.

- **Signs & Symptoms**
- **Allergies**
- **Medications**
- **Past pertinent history**
- **Last oral intake, liquid & solid**
- **Events leading to the incident**

AVPU
This is the mnemonic to establish level of responsiveness.

- **Alert**
- **Verbal** (Instructions are mostly followed. Answers are delayed or inappropriate.)
- **Pain** (Sternal rub. Thumb web pinch.)
- **Unresponsive**

PERRLA
I can’t believe I never included this list for evaluating the eyes during a field exam.

- **Pupils are**
- **Equal,**
- **Round, and**
- **Reactive to**
- **Light**
- **Accommodation**

START & RPM
START is an acronym for a copyrighted system for triage. RPM is the list of specific actions taken in this system.

- **Simple**
- **Triage**
- **And**
- **Rapid**
- **Transport and**
- **Respirations**
- **Perfusion**
- **Mentation**

SLUDGE
These are the symptoms of excessive stimulation of body functions due to organophosphate poisoning.

- **Salivation** (Drool)
- **Lacrimation** (Tears)
- **Urination**
- **Defecation**
- **Gastric juices** (Heartburn)
- **Emesis** (Vomiting)
GLASGOW COMA SCALE

<table>
<thead>
<tr>
<th>Response</th>
<th>Scale</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Opening Response</td>
<td>Eyes open spontaneously</td>
<td>4 Points</td>
</tr>
<tr>
<td></td>
<td>Eyes open to verbal command, speech, or shout</td>
<td>3 Points</td>
</tr>
<tr>
<td></td>
<td>Eyes open to pain (not applied to face)</td>
<td>2 Points</td>
</tr>
<tr>
<td></td>
<td>No eye opening</td>
<td>1 Point</td>
</tr>
<tr>
<td>Verbal Response</td>
<td>Oriented</td>
<td>5 Points</td>
</tr>
<tr>
<td></td>
<td>Confused conversation, but able to answer questions</td>
<td>4 Points</td>
</tr>
<tr>
<td></td>
<td>Inappropriate responses, words discernible</td>
<td>3 Points</td>
</tr>
<tr>
<td></td>
<td>Incomprehensible sounds or speech</td>
<td>2 Points</td>
</tr>
<tr>
<td></td>
<td>No verbal response</td>
<td>1 Point</td>
</tr>
<tr>
<td>Motor Response</td>
<td>Obey commands for movement</td>
<td>6 Points</td>
</tr>
<tr>
<td></td>
<td>Purposeful movement to painful stimulus</td>
<td>5 Points</td>
</tr>
<tr>
<td></td>
<td>Withdraws from pain</td>
<td>4 Points</td>
</tr>
<tr>
<td></td>
<td>Abnormal (spastic) flexion, decorticate posture</td>
<td>3 Points</td>
</tr>
<tr>
<td></td>
<td>Extensor (rigid) response, decerebrate posture</td>
<td>2 Points</td>
</tr>
<tr>
<td></td>
<td>No motor response</td>
<td>1 Point</td>
</tr>
</tbody>
</table>

Minor Brain Injury = 13-15 points; Moderate Brain Injury = 9-12 points; Severe Brain Injury = 3-8 points
<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ā</td>
<td>before</td>
</tr>
<tr>
<td>Ab</td>
<td>abortion</td>
</tr>
<tr>
<td>abd</td>
<td>abdomen</td>
</tr>
<tr>
<td>adm</td>
<td>admission</td>
</tr>
<tr>
<td>AED</td>
<td>automatic external defibrillator</td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immune deficiency syndrome</td>
</tr>
<tr>
<td>AKA</td>
<td>above the knee amputation</td>
</tr>
<tr>
<td>ALOC</td>
<td>altered level of consciousness</td>
</tr>
<tr>
<td>ALS</td>
<td>advanced life support</td>
</tr>
<tr>
<td>am</td>
<td>morning</td>
</tr>
<tr>
<td>AMA</td>
<td>against medical advice</td>
</tr>
<tr>
<td>Amb</td>
<td>ambulation/ambulance</td>
</tr>
<tr>
<td>amt</td>
<td>amount</td>
</tr>
<tr>
<td>ant</td>
<td>anterior</td>
</tr>
<tr>
<td>a/o x3</td>
<td>alert and oriented to person, place, and time</td>
</tr>
<tr>
<td>approx</td>
<td>approximately</td>
</tr>
<tr>
<td>ASC</td>
<td>Approved Stroke Center</td>
</tr>
<tr>
<td>appt</td>
<td>appointment</td>
</tr>
<tr>
<td>ARDS</td>
<td>adult respiratory distress syndrome</td>
</tr>
<tr>
<td>ASA</td>
<td>aspirin</td>
</tr>
<tr>
<td>ASAP</td>
<td>as soon as possible</td>
</tr>
<tr>
<td>ASHD</td>
<td>atherosclerotic heart disease</td>
</tr>
<tr>
<td>BCP</td>
<td>birth control pills</td>
</tr>
<tr>
<td>BIB</td>
<td>brought in by</td>
</tr>
<tr>
<td>BKA</td>
<td>below the knee amputation</td>
</tr>
<tr>
<td>BLS</td>
<td>basic life support</td>
</tr>
<tr>
<td>BM</td>
<td>bowel movement</td>
</tr>
<tr>
<td>BOA</td>
<td>born out of asepsis</td>
</tr>
<tr>
<td>BOW</td>
<td>bag of waters</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>BS</td>
<td>breath sounds</td>
</tr>
<tr>
<td>BSA</td>
<td>body surface area</td>
</tr>
<tr>
<td>ABBREVIATION</td>
<td>MEANING</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>ĉ</td>
<td>with</td>
</tr>
<tr>
<td>C</td>
<td>centigrade</td>
</tr>
<tr>
<td>CA</td>
<td>cancer</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>cc</td>
<td>cubic centimeter</td>
</tr>
<tr>
<td>CC or c/c</td>
<td>chief complaint</td>
</tr>
<tr>
<td>CHF</td>
<td>congestive heart failure</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>C/O</td>
<td>complains of</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>COA</td>
<td>condition on arrival</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CP</td>
<td>chest pain</td>
</tr>
<tr>
<td>CPAP</td>
<td>continuous positive airway pressure</td>
</tr>
<tr>
<td>CPR</td>
<td>cardiopulmonary resuscitation</td>
</tr>
<tr>
<td>CRF</td>
<td>chronic renal failure</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>CSM</td>
<td>circulation, sensation, movement</td>
</tr>
<tr>
<td>CVA</td>
<td>cerebral vascular accident</td>
</tr>
<tr>
<td>CXR</td>
<td>chest x-ray</td>
</tr>
<tr>
<td>D&C</td>
<td>dilation and curettage</td>
</tr>
<tr>
<td>dc</td>
<td>discharge/discontinue</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>DNR</td>
<td>do not resuscitate</td>
</tr>
<tr>
<td>DOA</td>
<td>dead on arrival</td>
</tr>
<tr>
<td>DOB</td>
<td>date of birth</td>
</tr>
<tr>
<td>DOE</td>
<td>dyspnea on exertion</td>
</tr>
<tr>
<td>DT’s</td>
<td>delirium tremors</td>
</tr>
<tr>
<td>DVT</td>
<td>deep vein thrombosis</td>
</tr>
<tr>
<td>DX</td>
<td>diagnosis</td>
</tr>
<tr>
<td>EBL</td>
<td>estimated blood loss</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>ED/ER</td>
<td>emergency dept. / emergency room</td>
</tr>
<tr>
<td>EDAP</td>
<td>emergency dept. approved for pediatrics</td>
</tr>
<tr>
<td>ABBREVIATION</td>
<td>MEANING</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>EMS</td>
<td>emergency medical services</td>
</tr>
<tr>
<td>EMT</td>
<td>emergency medical technician</td>
</tr>
<tr>
<td>EMT-P</td>
<td>emergency medical technician-paramedic</td>
</tr>
<tr>
<td>ET</td>
<td>endotracheal</td>
</tr>
<tr>
<td>ETA</td>
<td>estimated time of arrival</td>
</tr>
<tr>
<td>ETOH</td>
<td>ethanol (alcohol)</td>
</tr>
<tr>
<td>FB</td>
<td>foreign body</td>
</tr>
<tr>
<td>f/u</td>
<td>follow up</td>
</tr>
<tr>
<td>fx</td>
<td>fracture</td>
</tr>
<tr>
<td>G</td>
<td>gravida</td>
</tr>
<tr>
<td>GB</td>
<td>gallbladder</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>gm</td>
<td>gram</td>
</tr>
<tr>
<td>GSW</td>
<td>gunshot wound</td>
</tr>
<tr>
<td>gtt</td>
<td>drop</td>
</tr>
<tr>
<td>GU</td>
<td>genitourinary</td>
</tr>
<tr>
<td>HMO</td>
<td>health maintenance organization</td>
</tr>
<tr>
<td>hosp</td>
<td>hospital</td>
</tr>
<tr>
<td>hr(s)</td>
<td>hour(s)</td>
</tr>
<tr>
<td>hs</td>
<td>at night</td>
</tr>
<tr>
<td>ht</td>
<td>height</td>
</tr>
<tr>
<td>HTN</td>
<td>hypertension</td>
</tr>
<tr>
<td>Hx</td>
<td>history</td>
</tr>
<tr>
<td>ICU</td>
<td>intensive care unit</td>
</tr>
<tr>
<td>IUD</td>
<td>intrauterine device</td>
</tr>
<tr>
<td>IUP</td>
<td>intrauterine pregnancy</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>IVP</td>
<td>Intravenous push</td>
</tr>
<tr>
<td>JVD</td>
<td>jugular vein distention</td>
</tr>
<tr>
<td>KCL</td>
<td>potassium chloride</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>ABBREVIATION</td>
<td>MEANING</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>KO</td>
<td>knocked out (loss of consciousness)</td>
</tr>
<tr>
<td>KVO</td>
<td>keep vein open</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>lab</td>
<td>laboratory</td>
</tr>
<tr>
<td>lac</td>
<td>laceration</td>
</tr>
<tr>
<td>lb</td>
<td>pound</td>
</tr>
<tr>
<td>LLE</td>
<td>left lower extremity</td>
</tr>
<tr>
<td>LLL</td>
<td>left lower lobe (lung)</td>
</tr>
<tr>
<td>LLQ</td>
<td>left lower quadrant (abdomen)</td>
</tr>
<tr>
<td>LMP</td>
<td>last menstrual period</td>
</tr>
<tr>
<td>LOC</td>
<td>level of consciousness/loss of consciousness</td>
</tr>
<tr>
<td>LUE</td>
<td>left upper extremity</td>
</tr>
<tr>
<td>LUL</td>
<td>left upper lobe (lung)</td>
</tr>
<tr>
<td>LUQ</td>
<td>left upper quadrant</td>
</tr>
<tr>
<td>MAR</td>
<td>most accessible receiving facility</td>
</tr>
<tr>
<td>max</td>
<td>maximum</td>
</tr>
<tr>
<td>MCL</td>
<td>mid clavicular line</td>
</tr>
<tr>
<td>MD/PMD</td>
<td>medical doctor/private medical doctor</td>
</tr>
<tr>
<td>mEq</td>
<td>milliequivalent</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>MICN</td>
<td>mobile intensive care nurse</td>
</tr>
<tr>
<td>min</td>
<td>minutes/minimum</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>MS</td>
<td>multiple sclerosis/morphine sulfate</td>
</tr>
<tr>
<td>MVA</td>
<td>motor vehicle accident</td>
</tr>
<tr>
<td>NA</td>
<td>not applicable/not available</td>
</tr>
<tr>
<td>NAD</td>
<td>no apparent distress</td>
</tr>
<tr>
<td>narc</td>
<td>narcotic</td>
</tr>
<tr>
<td>NB</td>
<td>newborn</td>
</tr>
<tr>
<td>neg</td>
<td>negative</td>
</tr>
<tr>
<td>ABBREVIATION</td>
<td>MEANING</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>NKA</td>
<td>no known allergies</td>
</tr>
<tr>
<td>NP</td>
<td>nurse practitioner</td>
</tr>
<tr>
<td>npo</td>
<td>nothing per mouth</td>
</tr>
<tr>
<td>NSR</td>
<td>normal sinus rhythm</td>
</tr>
<tr>
<td>NTG</td>
<td>nitroglycerin</td>
</tr>
<tr>
<td>nv</td>
<td>nausea/vomiting</td>
</tr>
<tr>
<td>n/v/d</td>
<td>nausea/vomiting/diarrhea</td>
</tr>
<tr>
<td>O2</td>
<td>oxygen</td>
</tr>
<tr>
<td>O2 sat</td>
<td>oxygen saturation</td>
</tr>
<tr>
<td>OB/GYN</td>
<td>obstetrical/gynecological</td>
</tr>
<tr>
<td>OD</td>
<td>overdose/right eye</td>
</tr>
<tr>
<td>OS</td>
<td>left eye</td>
</tr>
<tr>
<td>OU</td>
<td>both eyes</td>
</tr>
<tr>
<td>ïš</td>
<td>after</td>
</tr>
<tr>
<td>P</td>
<td>para</td>
</tr>
<tr>
<td>PE</td>
<td>physical exam/pedal edema/pulmonary embolus</td>
</tr>
<tr>
<td>Peds</td>
<td>pediatric/pedestrians</td>
</tr>
<tr>
<td>perf</td>
<td>perforation</td>
</tr>
<tr>
<td>PERL</td>
<td>pupils equal, react to light</td>
</tr>
<tr>
<td>PIH</td>
<td>pregnancy induced hypertension</td>
</tr>
<tr>
<td>pm</td>
<td>evening</td>
</tr>
<tr>
<td>PMH</td>
<td>past medical history</td>
</tr>
<tr>
<td>po</td>
<td>by mouth</td>
</tr>
<tr>
<td>post</td>
<td>posterior/after</td>
</tr>
<tr>
<td>PPD</td>
<td>purified protein derivative (TB skin test)</td>
</tr>
<tr>
<td>pr</td>
<td>per rectum</td>
</tr>
<tr>
<td>prn</td>
<td>as needed</td>
</tr>
<tr>
<td>Psych</td>
<td>psychiatric</td>
</tr>
<tr>
<td>pt</td>
<td>patient</td>
</tr>
<tr>
<td>PTA</td>
<td>prior to arrival</td>
</tr>
<tr>
<td>PVC</td>
<td>premature ventricular contraction</td>
</tr>
<tr>
<td>ABBREVIATION</td>
<td>MEANING</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>q</td>
<td>every</td>
</tr>
<tr>
<td>rehab</td>
<td>rehabilitation</td>
</tr>
<tr>
<td>RLE</td>
<td>right lower extremity</td>
</tr>
<tr>
<td>RLL</td>
<td>right lower lobe (lung)</td>
</tr>
<tr>
<td>RLQ</td>
<td>right lower quadrant (abdomen)</td>
</tr>
<tr>
<td>RML</td>
<td>right middle lobe (lung)</td>
</tr>
<tr>
<td>RN</td>
<td>registered nurse</td>
</tr>
<tr>
<td>r/o</td>
<td>rule out</td>
</tr>
<tr>
<td>RUE</td>
<td>right upper extremity</td>
</tr>
<tr>
<td>RUL</td>
<td>right upper lobe (lung)</td>
</tr>
<tr>
<td>RUQ</td>
<td>right upper quadrant (abdomen)</td>
</tr>
<tr>
<td>Rx</td>
<td>prescription</td>
</tr>
<tr>
<td>s</td>
<td>without</td>
</tr>
<tr>
<td>SC</td>
<td>specialty center</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
<tr>
<td>SIDS</td>
<td>sudden infant death syndrome</td>
</tr>
<tr>
<td>SL</td>
<td>saline lock/sublingual</td>
</tr>
<tr>
<td>SOB</td>
<td>shortness of breath</td>
</tr>
<tr>
<td>sq</td>
<td>square</td>
</tr>
<tr>
<td>SQ</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>SRC</td>
<td>STEMI Receiving Center</td>
</tr>
<tr>
<td>TB</td>
<td>tuberculosis</td>
</tr>
<tr>
<td>TBC</td>
<td>total body check</td>
</tr>
<tr>
<td>Tbsp</td>
<td>tablespoon</td>
</tr>
<tr>
<td>TIA</td>
<td>transient ischemic attack</td>
</tr>
<tr>
<td>TKO</td>
<td>to keep open (IV rate)</td>
</tr>
<tr>
<td>TK</td>
<td>tourniquet</td>
</tr>
<tr>
<td>tsp</td>
<td>teaspoon</td>
</tr>
<tr>
<td>TV</td>
<td>tidal volume</td>
</tr>
<tr>
<td>UTI</td>
<td>urinary tract infection</td>
</tr>
<tr>
<td>vs</td>
<td>versus</td>
</tr>
</tbody>
</table>
APPROVED ABBREVIATIONS

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS</td>
<td>vital signs</td>
</tr>
<tr>
<td>wk</td>
<td>weak</td>
</tr>
<tr>
<td>WNL</td>
<td>within normal limits</td>
</tr>
<tr>
<td>wt</td>
<td>weight</td>
</tr>
<tr>
<td>y/o</td>
<td>year old</td>
</tr>
<tr>
<td>yr</td>
<td>year</td>
</tr>
<tr>
<td>@</td>
<td>at</td>
</tr>
<tr>
<td>↑</td>
<td>increase/positive</td>
</tr>
<tr>
<td>↓</td>
<td>decrease/negative</td>
</tr>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>2°</td>
<td>secondary to/ second degree</td>
</tr>
<tr>
<td>Δ</td>
<td>change</td>
</tr>
<tr>
<td>=</td>
<td>equal</td>
</tr>
<tr>
<td>♂</td>
<td>male</td>
</tr>
<tr>
<td>♂</td>
<td>female</td>
</tr>
<tr>
<td>#</td>
<td>number</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
</tr>
<tr>
<td><</td>
<td>less than</td>
</tr>
<tr>
<td>+</td>
<td>plus/positive</td>
</tr>
<tr>
<td>-</td>
<td>minus/negative</td>
</tr>
</tbody>
</table>
CINCINNATI PREHOSPITAL STROKE SCALE

<table>
<thead>
<tr>
<th>SIGN OF STROKE</th>
<th>PATIENT ACTIVITY</th>
<th>INTERPRETATION</th>
</tr>
</thead>
</table>
| Facial Droop | Have the patient look up at you, smile, and show his teeth | Normal: Symmetry to both sides.
Abnormal: One side of the face droops or does not move symmetrically. |
| Arm Drift | Have patient lift arms up and hold them out with eyes closed for 10 seconds | Normal: Symmetrical movement in both arms.
Abnormal: One arm drifts down or asymmetrical movement of the arms. |
| Abnormal Speech| Have the patient say, “You can’t teach an old dog new tricks” | Normal: The correct words are used and no slurring of words is noted.
Abnormal: The words are slurred, the wrong words are used, the patient is aphasic. |
Report of EMS Patient Care Without Telecommunications

This report is for the purpose of documenting to the Medical Director of the Office of EMS the circumstances surrounding the administration of drugs or fluids or the application of advanced life support techniques to a patient or patients without direct voice contact with a medical command physician or designee or written order of a medical command physician or designee in accordance with Section 16, Article 4C, Chapter 16 of the Code of West Virginia as amended.

Date of Incident: ________________

Pre-hospital Care Record Form Number (attach copy): ________________________________

Patient Name(s): __

EMS services provided (use additional sheets if necessary):

Justification for providing services (radio failure, multiple patients, etc. - use additional sheets if necessary):

EMS Agency: _________________________ County: _______________________

Person reporting incident: __________________________ (Last) __________________ (First) __________________ (MI)

EMSP Number: ___________________________ Date of Expiration: __________________

Signature: ____________________________ Date: __________________

Return to:
State EMS Medical Director
Office of EMS
350 Capitol Street, Room 425
Charleston, WV 25301-3714

EMS Without Telecommunications

1-01-2015

2021 EDITION

West Virginia Office of Emergency Medical Services – Statewide Protocols
ACETAMINOPHEN

<table>
<thead>
<tr>
<th>Generic Name:</th>
<th>Acetaminophen (a-seet-a-min-oh-fen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Name:</td>
<td>Tylenol</td>
</tr>
<tr>
<td>Chemical Class:</td>
<td>N/A</td>
</tr>
<tr>
<td>Therapeutic Class:</td>
<td>Antipyretics, non-opioid analgesics</td>
</tr>
</tbody>
</table>

Actions:
Inhibits the synthesis of prostaglandins that may serve as mediators of pain and fever, primarily in the CNS. Has no significant anti-inflammatory properties or GI toxicity.

Pharmacokinetics:
Absorption: Well absorbed following oral administration. Rectal absorption is variable.
Distribution: Widely distributed. Crosses the placenta; enters breast milk in low concentrations.
Metabolism and Excretion: 85–95% metabolized by the liver (CYP2E1 enzyme system). Metabolites may be toxic in overdose situation. Metabolites excreted by the kidneys.
Half-life: Neonates: 7 hr; Infants and Children: 3–4 hr; Adults: 1–3 hr.

Indications:
Treatment of fever in pediatrics

Contraindications:
Previous hypersensitivity; Products containing alcohol, aspartame, saccharin, sugar, or tartrazine (FDC yellow dye #5) should be avoided in patients who have hypersensitivity or intolerance to these compounds; Severe hepatic impairment/active liver disease.

Precautions:
Hepatic disease/renal disease (lower chronic doses recommended); Alcoholism, chronic malnutrition, severe hypovolemia or severe renal impairment; Chronic alcohol use/abuse; Malnutrition; OB: Use in pregnancy only if clearly needed
Lactation: Use cautiously Pedi: Neonates (safety and effectiveness not established).

Side Effects:
CNS: agitation, anxiety, headache, fatigue, insomnia
Resp: atelectasis, dyspnea
CV: hypertension, hypotension
GI: HEPATOTOXICITY, constipation, nausea, vomiting
F and E: hypokalemia
GU: renal failure (high doses/chronic use).
Hemat: neutropenia, pancytopenia.
MS: muscle spasms, trismus.

Interactions:
Chronic high-dose acetaminophen (2 g/day) may increase risk of bleeding with warfarin (INR should not exceed 4). Hepatotoxicity is additive with other hepatotoxic substances, including alcohol

Administration:
Pediatric
Administer 15 mg/kg oral with temperature > 102° F

Supply:
160 mg in 5 mL UD solution
160 mg in 5 ml elixer

Notes:
<table>
<thead>
<tr>
<th>Generic Name:</th>
<th>Adenosine (ah-den’oh-seen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Name:</td>
<td>Adenocard®</td>
</tr>
<tr>
<td>Chemical Class:</td>
<td>Endogenous nucleoside</td>
</tr>
<tr>
<td>Therapeutic Class:</td>
<td>Antiarrhythmic</td>
</tr>
<tr>
<td>Actions:</td>
<td>Adenosine is a naturally occurring substance that is present in all body cells. Adenosine decreases conduction of the electrical impulse through the AV node and interrupts AV reentry pathways in paroxysmal supraventricular tachycardia (PSVT). It can effectively terminate rapid supraventricular tachycardia such as PSVT. Because of its rapid onset and very short half-life, the administration of Adenosine is sometimes referred to as chemical cardioversion. A single bolus of the drug was effective in converting PSVT to a normal sinus rhythm in a significant number (90%) of patients in initial drug studies.</td>
</tr>
<tr>
<td>Pharmacokinetics:</td>
<td>Cleared from plasma in less than 30 seconds; $t_1/2 = 10$ seconds</td>
</tr>
<tr>
<td>Indications:</td>
<td>• Unstable narrow QRS tachycardia refractory to vagal maneuvers. • Stable, regular, monomorphic wide-complex tachycardia.</td>
</tr>
<tr>
<td>Contraindications:</td>
<td>• Second- or third-degree heart block. • Sick sinus syndrome. • Hypersensitivity to the drug. • Bradycardia. • Broncho-constrictive lung disease (i.e. asthma). • Irregular wide-complex tachycardias</td>
</tr>
<tr>
<td>Precautions:</td>
<td>Adenosine typically causes dysrhythmias at the time of cardioversion. These generally last a few seconds or less and may include PVCs, PACs, sinus bradycardia, sinus tachycardia, and various degrees of AV block. In extreme cases, transient asystole may occur. If this occurs, appropriate therapy should be initiated.</td>
</tr>
<tr>
<td>Pregnancy Cat. C</td>
<td></td>
</tr>
<tr>
<td>Side Effects:</td>
<td>• CNS: dizziness, headache • CV: dysrhythmia outlined under precautions, chest pain, facial flushing, palpitations, diaphoresis • GI: nausea • RESP: chest pressure, dyspnea</td>
</tr>
<tr>
<td>Administration:</td>
<td>Adult</td>
</tr>
<tr>
<td></td>
<td>Pediatric</td>
</tr>
<tr>
<td>Supply:</td>
<td>Vials or prefilled syringes containing 6 mg in 2 mL and/or 12 mg in 2 mL</td>
</tr>
<tr>
<td>Notes:</td>
<td>• Give Adenosine rapidly over 1 to 3 seconds, into the medication administration port closest to the patient, through a large (e.g., antecubital) vein followed by a 10 mL Normal Saline flush and elevation of the arm. • Higher doses than usual may be needed for patients receiving Theophylline preparations or consuming large quantities of Caffeine. • Dipyridamole (Persantine) can potentiate the effects of Adenosine. The dosage of Adenosine may need to be reduced in patients receiving Dipyridamole. • Use of Adenosine for irregular wide-complex tachycardias may cause degeneration of the rhythm to VF.</td>
</tr>
</tbody>
</table>
ALBUTEROL (Proventil®)

<table>
<thead>
<tr>
<th>Generic Name:</th>
<th>Albuterol (al-byoo’ter-ole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Name:</td>
<td>Airet®, Proventil®, Repetabs®, Respirol®, Ventolin®, Volmax®, Combivent® (combined with Ipratropium Bromide)</td>
</tr>
<tr>
<td>Chemical Class:</td>
<td>Sympathomimetic amine; β₂-adrenergic agonist</td>
</tr>
<tr>
<td>Therapeutic Class:</td>
<td>Antiasthmatic; bronchodilator</td>
</tr>
<tr>
<td>Actions:</td>
<td>Albuterol is a selective β₂-adrenergic agonist with a minimal number of side effects. It causes prompt bronchodilation and has a duration of action of approximately 5 hours.</td>
</tr>
<tr>
<td>Pharmacokinetics:</td>
<td>Onset 5 to 15 minutes. Peak 1 to 1½ hours. Duration 4 to 6 hours. t½ = 2½ to 4 hours.</td>
</tr>
<tr>
<td>Indications:</td>
<td>• Bronchial asthma.</td>
</tr>
<tr>
<td></td>
<td>• Reversible bronchospasm associated with chronic bronchitis and emphysema.</td>
</tr>
<tr>
<td></td>
<td>• Anaphylactic respiratory distress.</td>
</tr>
<tr>
<td></td>
<td>• Crush syndrome [per MCP].</td>
</tr>
<tr>
<td>Contraindications:</td>
<td>• Hypertension</td>
</tr>
<tr>
<td></td>
<td>• Tachycardia (HR greater than 130 adult, HR greater than 150 child).</td>
</tr>
<tr>
<td></td>
<td>• Severe cardiac disease.</td>
</tr>
<tr>
<td></td>
<td>• Hypersensitivity to the drug.</td>
</tr>
<tr>
<td>Precautions:</td>
<td>• Hyperthyroidism.</td>
</tr>
<tr>
<td></td>
<td>• Diabetes mellitus.</td>
</tr>
<tr>
<td></td>
<td>• Convulsive disorders.</td>
</tr>
<tr>
<td>Pregnancy Cat. C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Diabetes mellitus.</td>
</tr>
<tr>
<td>Adminsitration:</td>
<td>Using a small volume nebulizer, adjust the oxygen flowmeter to 8 to 10 L/minute to produce a steady, visible mist.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adutl</td>
<td>Give 2.5 mg (3 mL of 0.083% solution) with a mouthpiece, facemask, or CPAP.</td>
</tr>
<tr>
<td>Pediatric</td>
<td>Give 2.5 mg (3 mL of 0.083% solution) with a mouthpiece, blow-by, or CPAP.</td>
</tr>
<tr>
<td>Adult Bronchospasm</td>
<td>Give 5 mg with a mouthpiece, blow-by, or CPAP.</td>
</tr>
</tbody>
</table>

Supply:	Unit dose vials containing 2.5 mg in 3 mL, 5 mg in 0.5mL, or 5mg in 3 mL.
Notes:	• The possibility of developing unpleasant side effects increases when Albuterol is administered with other sympathetic agonists.
	• β-blockers may blunt the pharmacological effects of Albuterol.
	• Albuterol is also supplied in metered-dose inhalers (MDI) that deliver 90 mcg per inhalation. Be sure to obtain a complete medication history detailing administration times and frequency of use of home inhalation therapy. Overdoses of inhalers cause bronchial constriction and possibly death.
AMIODARONE (Cordarone®)

Generic Name:	Amiodarone (a-mee’oh-da-rone)
Trade Name:	Cordarone®, Pacerone®
Chemical Class:	Iodinated benzofuran derivative
Therapeutic Class:	Antiarrhythmic

Actions: Amiodarone prolongs myocardial action potential and effective refractory period and causes noncompetitive α- and β-adrenergic inhibition. Amiodarone suppresses atrial and ventricular ectopy (PSVT, AF, ATach, VT, VF, etc.) and slows conduction through the AV node (ventricular rate control; useful in WPW). Amiodarone also causes vasodilation resulting in reduced cardiac work.

Pharmacokinetics: $t_1/2 = 20$ to 47 days

Indications:
- Shock refractory ventricular fibrillation and pulseless ventricular tachycardia
- Ventricular tachycardia
- Wide-complex tachycardia of unknown type (regular rhythm)

Contraindications:
- Cardiogenic shock (SBP <90 mm Hg)
- Marked sinus bradycardia
- Second- or third-degree heart block
- Hypersensitivity to the drug
- Torsades de pointes

Precautions:
- May worsen existing or precipitate new dysrhythmias, including torsades de pointes and VF.
- Use with beta-blocking agents could increase risk of hypotension and bradycardia. Amiodarone inhibits atrioventricular conduction and decreases myocardial contractility, increasing the risk of AV block with Verapamil or Diltiazem or of hypotension with any calcium channel blocker.
- Use with caution in pregnancy and with nursing mothers.

Side Effects:
- **CNS:** dizziness, headache
- **CV:** bradycardia, cardiac conduction abnormalities, CHF, dysrhythmias, hypotension, SA node dysfunction, sinus arrest
- **RESP:** dyspnea, pulmonary inflammation

Administration:

Adult
- **VF and pulseless VT:** Give 300 mg IV/IO. Give additional 150 mg IV push in 3 to 5 minutes for refractory or recurrent VF/VT.
- **VT with pulse:** Give a slow infusion of 150 mg over 10 minutes. Mix in 100 mL of NS and infuse at 150 gtts/minute (15 drop set).

Pediatric
- **VF and pulseless VT:** Give 5 mg/kg IV/IO. May repeat up to 2 times for refractory VT/pulseless VT. Maximum single dose 300 mg.
- **VT with pulse:** Give an infusion of 5 mg/kg. Mix in 100 mL of NS and infuse at 75 gtts/minute (15 drop set). Maximum dosage is 300 mg.

Slow Infusion
- 1 mg/minute. Mix 150 mg in 250 mL NS and infuse at 100 gtts/minute (60 drop set).

Supply: Vial containing 150 mg in 3 mL.

Notes:
ASPIRIN

<table>
<thead>
<tr>
<th>Generic Name:</th>
<th>Aspirin (as'pir-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Name:</td>
<td>Bayer®, Bufferin®, Ecotrin®</td>
</tr>
<tr>
<td>Chemical Class:</td>
<td>Salicylate derivative</td>
</tr>
<tr>
<td>Therapeutic Class:</td>
<td>Antiplatelet agent</td>
</tr>
<tr>
<td>Actions:</td>
<td>Aspirin blocks the formation of the substance thromboxane A₂, which causes platelets to aggregate and arteries to constrict. This results in an overall reduction in mortality associated with myocardial infarction. It also appears to reduce the rate of nonfatal reinfarction and nonfatal stroke.</td>
</tr>
<tr>
<td>Pharmacokinetics:</td>
<td>Onset 15 to 30 minutes. Peak 1 to 2 hours. Duration 4 to 6 hours. (t_{\frac{1}{2}} = 3) hours at low doses.</td>
</tr>
<tr>
<td>Indications:</td>
<td>Chest pain suggestive of an acute myocardial infarction.</td>
</tr>
</tbody>
</table>
| Contraindications: | - Hypersensitivity to the drug, NSAIDS, and Tartrazine (FDC yellow dye #5).
 | - Bleeding disorders including GI hemorrhage and hemophilia.
 | - Hemorrhagic states. |
| Precautions: | Children or teenagers with flu-like symptoms (may be associated with the development of Reye’s syndrome). |
| Pregnancy Cat. C | C |
| Side Effects: | GI: GI bleeding, heartburn, nausea |
| | HEME: prolonged bleeding time |
| Interactions: | When administered together, Aspirin and other anti-inflammatory agents may cause an increased incidence of side effects and increased blood levels of both drugs. Administration of aspirin with antacids may reduce the blood levels of the drug by decreasing absorption. |
| Administration: | Administer four (4) 81 mg chewable tablets (324 mg total dose) PO as soon as possible after the onset of chest pain. |
| Supply: | 81 mg low dose chewable tablets or 81 mg quick absorbing powder |
| Notes: | |
ATROPINE

Generic Name: Atropine (a'troe-peen)

Trade Name: Atropine Care®, Atropen Autoinjector®, Atropisol®, Atrosulf-1®

Chemical Class: Belladonna alkaloid

Therapeutic Class: Anticholinergic

Actions: Atropine is a potent parasympatholytic that increases cardiac output and heart rate. Atropine acts by blocking acetylcholine receptors, thus inhibiting parasympathetic stimulation. Although it has positive chronotropic properties, it has little or no inotropic effect.

Pharmacokinetics: Peak 2 to 4 minutes. Duration 4 to 6 hours.

Indications:
- [Adult] Hemodynamically significant bradycardia (HR less than 50):
 - Acute altered mental status, Hypotension, ongoing chest pain, acute heart failure, or other signs of shock.
 - Bradycardia associated with “escape” ventricular ectopy (i.e., PVCs attributed to the underlying slow heart rate).
- [Pediatric] Hemodynamically significant bradycardia [HR less than 60 (neonate less than 80/minute)] due to increased vagal tone or primary AV block.
- Severe organophosphate poisonings (insecticides).

Contraindication: Hypersensitivity to the drug

Precautions:
- Use Atropine cautiously in the presence of acute coronary ischemia or myocardial infarction; increased heart rate may worsen ischemia or increase the zone of infarction.
- Avoid relying on Atropine in type II second-degree or third-degree AV block or in patients with third-degree AV block with a new wide-QRS complex. These patients require immediate pacing.

Side Effects:
- CNS: drowsiness, confusion
- CV: angina, PVCs, tachycardia
- EENT: blurred vision, dilated pupils
- GI: dry mouth

Administration:

- **Bradycardia:** Administer 0.5 mg IV. May repeat every 5 minutes to a total dose of 3 mg if needed.
- **Cholinergic Toxicity:** Give 2 mg IV. Repeat every 5 minutes if needed.
- **Bradycardia:** Administer 0.02 mg/kg IV/IO. May repeat once in 3 to 5 minutes if needed. (Minimum dose = 0.1 mg, maximum dose = 0.5 mg for child and 1mg for adolescent)

Supply: Prefilled syringe containing 1 mg in 10 mL.
DEXAMETHOSONE (Decadron®)

<table>
<thead>
<tr>
<th>Generic Name:</th>
<th>Decadron, Solurex, Baycadron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Name:</td>
<td>Decadron®</td>
</tr>
<tr>
<td>Chemical Class:</td>
<td>Corticosteroid, Anti-Inflammatory</td>
</tr>
<tr>
<td>Therapeutic Class:</td>
<td>Endocrine-Metabolic Agent</td>
</tr>
</tbody>
</table>

Actions: Dexamethasone provides relief for inflamed areas of the body. It is used to treat a number of different conditions, such as inflammation (swelling), severe allergies, adrenal problems, arthritis, asthma, blood or bone marrow problems, kidney problems, skin conditions, and flare-ups of multiple sclerosis. Dexamethasone is a corticosteroid (cortisone-like medicine or steroid). It works on the immune system to help relieve swelling, redness, itching, and allergic reactions.

Pharmacokinetics: Biological half-life about 190 minutes. Duration of 4 – 6 hours.

Indication: Bronchospasm secondary to administration of Albuterol and Ipratropium Bromide.

Contraindications: Peptic ulcers, Osteoporosis, Psychoses, Infectious diseases (e.g. herpes simplex, keratitis), Diabetes, Hypertension, Hypersensitivity to the drug.

Side Effects:
- **CNS:** Convulsions, headache, increased intracranial pressure with papilledema
- **CV:** Bradycardia, cardiac arrest, cardiac arrhythmias, cardiac enlargement, circulatory collapse, congestive heart failure, hypertension, myocardial rupture following recent myocardial infarction, syncope, tachycardia, thromboembolism, thrombophlebitis, vasculitis, edema
- **EENT:** blurred or diplopia, tinnitus
- **Other:** nausea, vomiting

Administration
- **Adult:** 10 mg IV/IO/IM
- **Pediatric:** 0.6 mg/kg up to a max dose of 10 mg IV/IO/IM

Supply: 1 mL in 4 mg, 5 mL in 20 mg, 10 mg/mL-1 mL vial
DEXTROSE (Glucose®)

Generic Name: Dextrose (dex’trose)

Trade Name: Glucose®, Glutose®, Insta-Glucose®

Chemical Class: Carbohydrate

Therapeutic Class: Nutrient, caloric

Actions: Dextrose supplies supplemental glucose in cases of hypoglycemia and restores blood sugar level to normal (80 to 120 mg/dL).

Pharmacokinetics: N/A

Indications:
- Altered mental status of unknown etiology (GCS less than or equal to 12).
- Hypoglycemia (less than 60 mg/dL) based on rapid glucose determination or clinical judgment.
- Status epilepticus.
- Oral hypoglycemic agent overdose.
- Neonatal resuscitation not responsive to ventilation and chest compressions.

Contraindications: No contraindications for a patient with suspected hypoglycemia.

Precautions:
- Use with caution in patients with increased intracranial pressure because the Dextrose load may worsen cerebral edema.
- Localized venous irritation may occur when smaller veins are used.
- Infiltration may result in tissue necrosis.
- Dextrose is only administered via the IV or IO route.

Side Effects: Tissue necrosis and phlebitis at the injection site.

Patient 2 years of age or older — If blood glucose is < 60 mg/dl, administer D50W 1 ml/kg IV/IO. Maximum dose is 25 grams.

Patient older than 1 month but younger than 2 years old — If blood glucose is < 60 mg/dl, administer 2 ml/kg of D25 IV/IO; (D25 Is prepared by mixing 25 ml NS with 25 ml D50W).

Patient 1 month of age or younger — If blood glucose is < 60 mg/dl, administer 5 ml/kg Dextrose 10% IV/IO (D10 is prepared by mixing 40 ml of NS with 10 ml of D50W).

Supply:
- Prefilled syringe containing 25 g in 50 mL (50% solution)
- Prefilled syringe containing 2.5 g in 10 mL (25% solution)

Notes:
- Establish a free flowing IV of Normal Saline in a large vein. Aspirate blood before and during administration of Dextrose to ensure IV patency.
- Hypoglycemic states require immediate intervention. Prolonged hypoglycemia can result in permanent brain damage.
Generic Name: Diltiazem (dil-tye-a-zem)

Trade Name: Cardizem, CardizemCD, CardizemLA, Cartia XT, Dilacor XR, Taztia XT, Tiazac

Chemical Class: Calcium channel blockers

Therapeutic Class: Therapeutic: antianginals, antiarrhythmics (class IV), antihypertensives

Actions: Inhibits transport of calcium into myocardial and vascular smooth muscle cells, resulting in inhibition of excitation-contraction coupling and subsequent contraction.

Pharmacokinetics: Absorption: Well absorbed, but rapidly metabolized after oral administration. Distribution: Unknown. Protein Binding: 70–80%. Metabolism and Excretion: Mostly metabolized by the liver (CYP3A4 enzyme system). Half-life: 3.5–9 hr.

Indications: Supraventricular tachyarrhythmias and rapid ventricular rates in atrial flutter or fibrillation.

Contraindication: Hypersensitivity; Sick sinus syndrome; 2nd- or 3rd-degree AV block (unless an artificial pacemaker is in place); Systolic BP < 90mmHg; Recent MI or pulmonary congestion; Concurrent use of rifampin.

Precautions: Severe hepatic impairment, consider age related decrease in body mass, Severe renal impairment; Serious ventricular arrhythmias or heart failure.

Pregnancy Cat. C

Administration: Adult: Administer 0.25 mg/kg slow IVP. Repeat dose in 15 minutes if needed at 0.35 mg/kg slow IVP. [per MCP]

Supply:
- 100 mg vial requiring reconstitution with 0.9% NS diluent
- 50 mg per 10 mg vial (requires refrigeration)

Notes:
DIPHENHYDRAMINE (Benadryl®)

Generic Name: Diphenhydramine (dye-fen-hye’dra-meen)
Trade Name: Benadryl®
Chemical Class: Ethanolamine derivative
Therapeutic Class: Antihistamine, antianaphylactic (adjunct)

Actions: Diphenhydramine is an antihistamine with anticholinergic (drying) and sedative side effects. Diphenhydramine decreases the allergic response by blocking Histamine at H₁ receptor sites.

Pharmacokinetics: N/A

Indications:
- Anaphylaxis, *as an adjunct to Epinephrine.*
- To treat dystonic reactions and extrapyramidal reactions caused by phenothiazines.

Contraindications:
- Bronchial asthma.
- Nursing mothers.
- Children less than 10 kg.
- Glaucoma.
- Hypersensitivity to the drug or other antihistamines.

Precautions: Use with caution in patients with a history of hyperthyroidism, cardiovascular disease, and hypertension.

Pregnancy Cat. B

Side Effects:
CNS: dizziness, drowsiness, sedation, sleepiness
CV: headache, palpitations
GI: dryness of mouth, nose and throat
RESP: thickening of bronchial secretions, wheezing

Interactions:
- Diphenhydramine has additive effects with alcohol and other CNS depressants (hypnotics, sedatives, tranquilizers, etc).
- MAO inhibitors prolong and intensify the anticholinergic (drying) effects of antihistamines.

Administration:
Adult Give 25 mg IM or slow IVP
Pediatric Give 1 mg/kg up to 25 mg IM or slow IVP

Supply: Vial containing 50 mg in 1 mL
Notes: The IV route is preferred for the patient in severe shock. If an IV cannot be readily established, give Diphenhydramine via the IM route. Administer deep IM into large muscle mass.
DOPAMINE (Intropin®)

<table>
<thead>
<tr>
<th>Scope</th>
<th>PARAMEDIC</th>
</tr>
</thead>
</table>

Generic Name: Dopamine (doe'pa-meen)

Trade Name: Intropin®

Chemical Class: Catecholamine

Therapeutic Class: Vasopressor, α- and β-adrenergic sympathomimetic

Actions: Dopamine stimulates both adrenergic and dopaminergic receptors in a dose-dependent manner. Low doses (1-5 mcg/kg/minute) stimulate mainly dopaminergic receptors producing renal and mesenteric vasodilation. Intermediate doses (5-10 mcg/kg/minute) stimulate both dopaminergic and β₁-adrenergic receptors producing cardiac stimulation and renal dilation. Large doses (10-20 mcg/kg/minute) stimulate α₁-adrenergic receptors producing vasoconstriction and increases in peripheral vascular resistance and blood pressure.

Pharmacokinetics: Onset 5 minutes. Duration less than 10 minutes. t½ = 2 minutes.

Indications:
- Hemodynamically significant bradycardia that does not respond to Atropine and/or transcutaneous pacing.
- Hemodynamically significant hypotension associated with cardiogenic shock.

Contraindications:
- Hypovolemic shock; volume replacement must be accomplished prior to using Dopamine.
- Pheochromocytoma (tumor of the adrenal gland).

Precautions:
- Dopamine increases heart rate and can induce or worsen supraventricular and ventricular dysrhythmias.
- Dopamine should not be administered in the presence of tachydysrhythmias or ventricular fibrillation.

Pregnancy Cat. C

Side Effects:
- **CNS:** headache, nervousness
- **CV:** anginal pain, ectopic beats, hypertension, palpitation, tachycardia, vasoconstriction
- **GI:** nausea, vomiting
- **RESP:** dyspnea

Administration:
- IV infusion at 5 to 10 mcg/kg/minute. Piggyback the Dopamine infusion into an already established IV infusion.
- ROSC: IV infusion at 5 to 20 mcg/kg/minute. Piggyback the Dopamine infusion into an already established IV infusion.

Supply: Premixed Bag containing 800 mg in 250 mL (3,200 mcg/mL).

Notes:
- To prepare a Dopamine infusion, mix 200 mg Dopamine in a 250 mL bag of NS and mix well. Resultant concentration is 800 mcg/mL. Infuse using a 60 drop administration set. Use the formula below to calculate the drip rate.
- Tissue sloughing may occur with extravasation. Antecubital veins are preferable sites. Monitor closely for leakage and/or infiltration.

Dopamine Infusion Formula

\[
\text{Dose} \times \text{weight in kg} \times 60 \text{ drops/minute} \div \text{Concentration of drug in 1 mL} = \text{gtts/minute}
\]

2021 EDITION
Generic Name: Epinephrine 1:1,000
Trade Name: Adrenalin®
Chemical Class: Catecholamine
Therapeutic Class: Bronchodilator, vasopressor

Actions: Epinephrine is a naturally occurring catecholamine. It acts directly on α- and β-adrenergic receptors. Its effect on β-receptors is much more profound than its effect on α-receptors. The effects of Epinephrine on β1-adrenergic receptors include a positive chronotropic effect (increased heart rate) and a positive inotropic effect (cardiac contractile force). The effects of Epinephrine on α-adrenergic receptor sites include increased systemic vascular resistance. The effects on these receptors sites together cause an increased blood pressure. Epinephrine also causes bronchodilation due to its effects on β2-adrenergic receptors.

Pharmacokinetics:
- **IM**: Onset variable; Peak unknown; Duration 1 to 4 hours
- **SC**: Onset 5 to 10 minutes; Peak 30 minutes; Duration 1 to 4 hours

Indications:
- Anaphylaxis.
- Bronchial asthma.
- Respiratory distress due to epiglottitis or croup [per MCP].

Contraindications: Epinephrine should be avoided in the following patients unless signs and symptoms are severe:
- Hypertension
- Tachycardia
- Cardiovascular disease.
- Elderly
- Angle closure glaucoma.

Precautions:
- Hyperthyroidism.
- Diabetes Mellitus.
- Give Epinephrine cautiously in geriatric and cardiac patients.

Side Effects:
- **CNS**: anxiety, dizziness, restlessness, tremulousness, headache
- **CV**: anginal pain, dysrhythmias, hypertension, palpitations
- **GI**: nausea, vomiting
- **SKIN**: pallor

Interactions: Cyclic antidepressants and antihistamines may potentiate the effects of Epinephrine.

PARAMEDIC/AEMT Administration
- **Adult**
 - **Anaphylaxis**: Administer 0.3 mg IM/IM/IO. Repeat dose per MCP.
- **Bronchospasm**
 - **Adult**: Administer 0.3 mg IM/IM/IO. [per MCP]
 - ** Pediatric**: Administer 0.3 mg for patients >30 kg.
 - **Anaphylaxis**: Administer 0.15 mg for patients <30 kg.
- **Pediatric Cardiac Arrest**
 - **Adult**: Administer 0.1 mg/kg ET

EMT Administration
- **Adult**
 - **Anaphylaxis**: Administer 0.3 mg IM/IM/IO. Repeat dose per MCP

Supply: Ampule containing 1 mg in 1 mL.
- Multidose Vial containing 30 mg in 30 mL.

Notes: The IM route is preferred for the patient in severe shock.
Generic Name: Epinephrine 1:10,000
Trade Name: Adrenalin®
Chemical Class: Catecholamine
Therapeutic Class: Bronchodilator, vasopressor

Actions: Epinephrine is a naturally occurring catecholamine. It acts directly on α- and β-adrenergic receptors. Its effect on β-receptors is much more profound than its effect on α-receptors. The effects of Epinephrine on β_1-adrenergic receptors include a positive chronotropic effect (increased heart rate) and a positive inotropic effect (cardiac contractile force). The effects of Epinephrine on α-adrenergic receptor sites include increased systemic vascular resistance. The effects on these receptor sites together cause an increased blood pressure. Epinephrine also causes bronchodilation due to its effects on β_2-adrenergic receptors.

Pharmacokinetics: IV: Onset immediate; Peak 5 minutes; Duration short

Indications: • Cardiac arrest.
• Anaphylaxis and asthma patients in severe distress.

Contraindications: No contraindications when used for indicated conditions.

Precautions: No precautions when used for indicated conditions.

Pregnancy Cat. C

Side Effects: CNS: anxiety, dizziness, restlessness, tremulousness, headache
CV: anginal pain, dysrhythmias, hypertension, palpitations
GI: nausea, vomiting
SKIN: pallor

Adult: Give 1 mg (10 mL) IV/IO. Repeat every 3 to 5 minutes if needed.

Pediatric: Give 0.01 mg/kg (0.1 mL/kg) IV/IO. Repeat every 3 to 5 minutes if needed.

Anaphylaxis: 0.5 – 1 mg slow IVP [per MCP]

Administration: Prefilled syringe containing 1 mg in 10 mL

Notes:
EPIPEN®, EPIPEN JR.®

Drug Names: Epinephrine (EpiPen®, EpiPen Jr.®)

Overview: Epinephrine auto-injector (EpiPen®) is a life-saving self-administered medication that is prescribed by a physician to a specific patient. Epinephrine dilates the bronchioles and constricts blood vessels to treat anaphylactic shock.

Indications: Patient exhibiting the assessment findings of an allergic reaction (shock and/or respiratory distress).

Contraindications: No contraindications when used in a life-threatening situation.

Precautions: Give Epinephrine cautiously in geriatric and cardiac patients.

Side Effects: Increased pulse rate, tremors, nervousness.

Administration:
- Assure right medication, right patient, right route, and right dose.
- Ensure medication is not discolored (liquid may not be visible inside all types of devices).
- Remove safety cap from the auto-injector.
- Place tip of auto-injector against the thigh and press firmly until the injector activates.
- Hold injector firmly against thigh for a minimum of 10 seconds to allow for full dose delivery.
- Record activity and time.
- Dispose of injector in biohazard container.
- If patient condition continues to worsen:
 - Decreasing mental status, increasing breathing difficulty, decreasing blood pressure.
 - Give an additional dose of Epinephrine using a second EpiPen®.

Supply:
- EpiPen® contains 0.3 mg of Epinephrine
- EpiPen Jr.® contains 0.15 mg of Epinephrine

Notes:

2021 EDITION
<table>
<thead>
<tr>
<th>Generics:</th>
<th>Trade Names:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fentanyl (fen'-ta-nil)</td>
<td>Sublimaze®, Duragesic®, Fentora®</td>
</tr>
</tbody>
</table>

Generic Name: Fentanyl (fen'-ta-nil) | **DEA Class:** Schedule II

Chemical Class: Opiate derivative | **Therapeutic Class:** Narcotic analgesic

Actions: Fentanyl is a powerful synthetic opiate with mechanism of action similar to Morphine. It is considered both faster acting and of shorter duration than Morphine. Interacts with opiate receptors decreasing pain impulse transmission.

Pharmacokinetics:
- **IV:** Onset immediate. Peak effect several minutes. Duration of action 30 to 60 minutes.
- **IM:** Onset of action 7 – 8 minutes. Duration of action 1 – 2 hours.

Indication: Moderate to severe pain.

Contraindications:
- Known hypersensitivity
- Respiratory depression

Precautions:
- Use with caution with suspected traumatic brain injury.
- Use with caution in patients with COPD.
- Use with caution in patients with cardiac bradyarrhythmias.

Side Effects:
- **CNS:** dizziness
- **CV:** hypotension, hypertension, bradycardia
- **EENT:** blurred vision
- **GI:** nausea, vomiting
- **RESP:** respiratory depression, apnea, laryngospasm
- **SKIN:** diaphoresis

Administration:
- **Pain Adult** 1 mcg/kg up to 100 mcg IM, IV, IO, IN over 1 to 2 minutes. Repeat doses require MCP order.
- **Pain Pediatric** 1 mcg/kg up to 50 mcg IM, IV, IO, IN over 1 to 2 minutes. MCP order required for pediatric patients less than 12 years of age.
- **Pain >55 years** 0.5 mcg/kg up to 100 mcg IM or IV over 1 to 2 minutes.
- **Chest pain** 50 mcg IV q 5 minutes (up to 150 mcg).

Supply: 100 mcg in 2 mL

Notes: If a subsequent dose is given prior to the peak effect of the initial dose, there is a risk of dose stacking and potential overdose.
Furosemide

Generic Name: Furosemide (fur-oh-se-mide)
Trade Name: Lasix®
Chemical Class: Loop diuretics
Therapeutic Class: Diuretic

Actions:
Inhibits the reabsorption of sodium and chloride from the loop of Henle and distal renal tubule. Increases renal excretion of water, sodium, chloride, magnesium, potassium, and calcium. Effectiveness persists in impaired renal function.
Therapeutic Effects: Diuresis and subsequent mobilization of excess fluid (edema, pleural effusions). Decreased BP.

Pharmacokinetics:
Absorption: 60–67% absorbed after oral administration
Distribution: Crosses placenta, enters breast milk.
Protein Binding: 91–99%.
Metabolism and Excretion: Minimally metabolized by liver, some non-hepatic metabolism, some renal excretion as unchanged drug.
Half-life: 30–60 min

Indications:
Edema due to heart failure, hepatic impairment or renal disease. Hypertension.

Contraindications:
Hypersensitivity; Cross-sensitivity with thiazides and sulfonamides may occur; Hepatic coma or anuria; Some liquid products may contain alcohol, avoid in patients with alcohol intolerance.

Precautions:
Severe liver disease (may precipitate hepatic coma; concurrent use with potassium-sparing diuretics may be necessary); Electrolyte depletion; Diabetes mellitus; Hypoproteinemia; Severe renal impairment; OB, Lactation: Safety not established; Pedi: increased risk for renal calculi and patent ductus arteriosis in premature neonates; Geri: May have increased risk of side effects, especially hypotension and electrolyte imbalance, at usual doses.

Side Effects:
CNS: blurred vision, dizziness, headache, vertigo.
EENT: hearing loss, tinnitus.
CV: hypotension.
GI: anorexia, constipation, diarrhea, dry mouth, dyspepsia, increased liver enzymes, nausea, pancreatitis, vomiting.
GU: increased BUN, excessive urination, nephrocalcinosis.
Derm: photosensitivity, rash, urticaria.
Endo: hypercholesterolemia, hyperglycemia, hypertriglyceridemia, hyperuricemia.
Hemat: hemolytic anemia, leukopenia, thrombocytopenia.
MS: muscle cramps.
Neuro: paresthesia.
Misc: fever.

Interactions:
Increased risk of hypotension with antihypertensives, nitrates, or acute ingestion of alcohol. Increased risk of hypokalemia with other diuretics, amphotericin B, stimulant laxatives, and corticosteroids.

Administration: Adult
• Administer 40 mg if the patient is not currently prescribed furosemide and SBP ≥ 100 mmHg.
• Administer 80 mg if the patient is currently prescribed furosemide and SBP ≥ 100 mmHg.

Supply:
• Vial containing 40 mg in 4 mL.
• Prefilled Syringe containing 40 mg in 4 mL.
GLUCAGON (GlucaGen®)

<table>
<thead>
<tr>
<th>Scope</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
</table>

- **Generic Name:** Glucagon (gloo'ka-gon)
- **Trade Name:** GlucaGen®
- **Chemical Class:** Polypeptide hormone
- **Therapeutic Class:** Antihypoglycemic
- **Actions:** Glucagon is a protein secreted by the α cells of the pancreas. When released, it causes the breakdown of glycogen, stored in the liver, to glucose. It also inhibits the synthesis of glycogen from glucose. Both actions tend to cause an increase in circulating blood glucose. A return to consciousness following the administration of glucagon usually takes 5 to 20 minutes. Glucagon is only effective if there are sufficient stores of glycogen in the liver.

- **Pharmacokinetics:** Onset within 15 minutes. t½ = 3 to 6 minutes.
- **Indications:** When unable to obtain IV access and give Dextrose, and:
 - Altered mental status of unknown etiology (GCS less than or equal to 12).
 - Hypoglycemia (less than 60 mg/dL) based on rapid glucose determination or clinical judgment.
 - Status epilepticus.
 - Oral hypoglycemic agent overdose.

- **Contraindications:** Hypersensitivity to the drug.
- **Precautions:** Glucagon is only effective if there are sufficient stores of glycogen with the liver. In an emergency situation, intravenous Dextrose is the agent of choice.

- **Pregnancy Cat. C**

- **Side Effects:**
 - CNS: dizziness, headache
 - CV: hypotension
 - GI: nausea, vomiting

- **Administration:**
 - **Adult** 1 mg IM
 - **Pediatric** 1 mg IM

- **Supply:** Glucagon must be reconstituted before administration. It is supplied in rubber-stoppered vials containing 1 mg of powder and 1 mL of diluting solution.

- **Notes:** Glucagon may be given to reverse effects of beta-blocker drug overdoses. A significant dose is needed to be effective, usually 3 to 10 mg IV bolus followed by a 2 to 5 mg/hour infusion.)
Haloperidol is a major tranquilizer that has provided effective in the management of acute psychotic episodes. Haloperidol appears to block Dopamine receptors in the brain associated with mood and behavior. Haloperidol has weak anticholinergic properties.

Pharmacokinetics:
- IM: Peak 10-20 minutes, t½ = 17 hours; IV: N/A

Indications: Comatative patients secondary to acute psychotic episodes.

Contraindications:• Severe toxic central nervous system depression or comatose states from any cause.
• Hypersensitivity to the drug.
• Patients suffering from Delirium Tremens (DTs) from long-term alcohol abuse as it reduces seizure threshold.
• Parkinson's disease.
• Age less than 8 years. [per MCP]

Precautions:• Haloperidol may impair mental and physical abilities. Occasionally, orthostatic hypotension may be seen in conjunction with Haloperidol use. Caution should be used when administering Haloperidol to patients on anticoagulants.
• Extrapyramidal reactions have been known to occur following the administration of Haloperidol, especially in children. Diphenhydramine should be available.

Side Effects: CNS: extrapyramidal symptoms, drowsiness, headache, insomnia, restlessness, seizures, vertigo
- CV: hypertension, hypotension, tachycardia
- EENT: blurred vision
- GI: nausea, vomiting, dry mouth, constipation

Administration:
- Adult: Give 5 mg IM/IV/IO. Contact [per MCP] for repeat dosing.
- Pediatric: Contact Medical Command Physician

Supply: Ampule containing 5 mg in 1 mL.

Note: If dystonic reaction (dyskinesia) is noted secondary to Haloperidol (Haldol®) administer Diphenhydramine (Benedryl®) 25 mg IV or IM
HYDROXOCOBALAMIN (Cyanokit®) (OPTIONAL)

Generic Name: Hydroxocobalamin (hye-drox-oh-koe-bal'-a-min)

Trade Name: Cyanokit®

Chemical Class: Vitamin B complex

Therapeutic Class: Hematinic; vitamin

Actions: Cyanide is an extremely toxic poison. In the absence of rapid and adequate treatment, exposure to a high dose of Cyanide can result in death within minutes due to inhibition of cytochrome oxidase resulting in arrest of cellular respiration. Specifically, Cyanide binds rapidly with cytochrome a₃, a component of the cytochrome c oxidase complex in mitochondria. Inhibition of cytochrome a₃ prevents the cell from using oxygen and forces anaerobic metabolism, resulting in lactate production, cellular hypoxia and metabolic acidosis. The action of Cyanokit® in the treatment of cyanide poisoning is based on its ability to bind cyanide ions to form Cyanocobalamin, which is then secreted in the urine.

Pharmacokinetics: N/A

Indications: Known or suspected cyanide poisoning.

Contraindications: Hypersensitivity to Hydroxocobalamin or Cyanocobalamin

Precautions:
- Allergic reactions may include anaphylaxis, chest tightness, edema, urticaria, pruritus, dyspnea, and rash.
- Hypertension.

Side Effects:
- **CNS:** headache
- **CV:** increased blood pressure
- **GI:** transient chromoauria (abnormal coloration of the urine), nausea
- **SKIN:** erythema, rash, injection site reactions

 Adult

 Give 5 g IV infused over 15 minutes. If signs and symptoms persist, a repeat dose can be administered [per MCP]. The infusion rate for second dose is usually between 15 minutes and 2 hours.

 Pediatric

 Give 70 mg/kg, up to 5 g IV infused over 15 minutes. If signs and symptoms persist, a repeat dose can be administered [per MCP]. The infusion rate for second dose is usually between 15 minutes and 2 hours.

Administration:

Supply: Each 5 g vial needs to be reconstituted with 200 mL of Normal Saline. Total volume prior to administration is 200 mL and contains 5 g of drug.

Notes:
- The drug substance is the hydroxylated active form of Vitamin B12.
- Cyanide poisoning may result from inhalation, ingestion, or dermal exposure to various cyanide-containing compounds, including smoke from closed-space fires. The presence and extent of Cyanide poisoning are often initially unknown. There is no widely available, rapid, confirmatory cyanide blood test. Treatment decisions must be made on the basis of clinical history and signs and symptoms of cyanide intoxication. If clinical suspicion of Cyanide poisoning is high, Cyanokit® should be administered without delay.
- Incompatible with Diazepam, Dobutamine, Dopamine, Fentanyl, Nitroglycerin, Pentobarbital, Propofol, Thiopental, blood products, Sodium Thiosulfate, Sodium Nitrite, and ascorbic acid. Use separate IV lines.
- The standard administration drip set that comes with the Cyanokit is 20 drops/mL.
IPRATROPIUM (Atrovent®)

<table>
<thead>
<tr>
<th>Scope</th>
<th>EMT</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
</table>

Generic Name: Ipratropium (eye-pra-troep’ee-um) Bromide
Trade Name: Atrovent®
Chemical Class: Quaternary ammonium compound
Therapeutic Class: Bronchodilator

Actions: Ipratropium Bromide is an anticholinergic bronchodilator that is chemically related to Atropine. Ipratropium acts by inhibiting the action of acetylcholine at receptor sites on bronchial smooth muscle, thus inhibiting parasympathetic stimulation and causing bronchodilation. Ipratropium has antisecretory properties when applied locally.

Pharmacokinetics: Onset 5 to 15 minutes. Peak effect 1 to 2 hours. Duration of action 3 to 6 hours.

Indications:
- Bronchoconstriction in COPD, including chronic bronchitis and emphysema as an adjunct to Albuterol.
- Bronchial asthma as an adjunct to Albuterol.

Contraindications:
- Hypersensitivity to the drug, or to Atropine and its derivatives.
- Pediatric patients < 1 year old

Precautions:
- Ipratropium should be used with caution in patients with narrow-angle glaucoma, prostatic hypertrophy, or bladder-neck obstruction.

Pregnancy Cat. B

Side Effects:
- **CNS:** anxiety, dizziness, headache, nervousness
- **CV:** palpitations
- **EENT:** blurred vision, dry mouth
- **GI:** nausea, vomiting
- **RESP:** bronchospasm, cough

Administration: Using a small volume nebulizer, adjust the oxygen flowmeter to 8 to 10 L/minute to produce a steady, visible mist.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>Give 0.5 mg in 2.5 mL with a mouthpiece or facemask. Repeat doses per Medical Command.</td>
</tr>
<tr>
<td>Pediatric</td>
<td>Not Administered in patients < 1 years of age.</td>
</tr>
</tbody>
</table>
| **Pediatric Bronchospasm** | 0.5 mg for children 6 – 12 years of age
| | 0.25 mg for children < 6 years of age |

Supply: Unit dose vials containing 0.5 mg in 2.5 mL

Notes: Give only one dose of Ipratropium with the initial Albuterol treatment. Ipratropium is not used as a standalone drug.
Generic Name: Ketamine (ket’-a-meen)
Trade Name: Ketalar®
Chemical Class: Analgesic
Therapeutic Class: General anesthetic

Actions: Ketamine attaches to NMDA receptors which disassociates the portion of the brain that controls consciousness from the portion of the brain that controls vital bodily functions. The result is, when given in sufficient doses, anesthesia that provides pain control and amnesia while not causing hypotension or prolonged apnea.

Pharmacokinetics: IV: Onset 30-40 seconds. t½ = 5 minutes.

Indications: 1. Excited Delirium
2. Non Cardiac related pain secondary to administration of Morphine and/or Fentanyl

Contraindications: 1. Hypersensitivity to the drug.
2. Marked hypertension with potential for increased intracranial pressure (ICP).
3. Patients less than twelve (12) years of age.

Precautions: In patients with cardiac diseases/syndromes, Ketamine might worsen such conditions; NOT indicated as sedation prior to cardioversion or transcutaneous pacing.

Pregnancy Cat. B

Side Effects: CNS: confusion, delirium, vivid dreams
CV: hypertension, tachycardia
GI: nausea, vomiting, hypersalivation
RESP: respiratory depression

Administration
Adult: **Pain Augmentation (if pain persists after initial dose of first line analgesic is given):** Administer 0.2 mg/kg IV to a maximum single dose of 20 mg. Alternatively may administer 0.5 mg/kg IM

Adult: **Excited Delirium:** Administer 5 mg/kg IM or 2 mg/kg IV/IO

IV/IM:

Pediatric: **Do not administer Ketamine in patients under the age of 12 years and/or 50 kg.**

Supply: Vial contains 500 mg in 10 mL.

Notes: 1. Ketamine (in lower doses) is much more effective in relieving pain when given following a dose of an opiate analgesic. It is effective in relieving pain when combined with another opioid.
LABETALOL (Trandate®)

Generic Name: Labetalol (la-bet-a-lole)

Trade Name: Trandate®

Chemical Class: Beta Blockers

Therapeutic Class: Antianginals, Anti-hypertensive

Actions: Blocks stimulation of beta1 (myocardial)- and beta2 (pulmonary, vascular, and uterine)-adrenergic receptor sites. Also has alpha1-adrenergic blocking activity, which may result in more orthostatic hypotension.

Pharmacokinetics:
Absorption: Well absorbed but rapidly undergoes extensive first-pass hepatic metabolism, resulting in 25% bioavailability.
Distribution: Some CNS penetration; crosses the placenta.
Protein Binding: 50%.
Metabolism and Excretion: Undergoes extensive hepatic metabolism.
Half-life: 3–8 hr.

Indications: Management of hypertension

Contraindications:
- Hypersensitivity to the drug
- Uncompensated HF
- Pulmonary edema
- Cardiogenic shock
- Bradycardia or heart block

Precautions:
Renal impairment; Hepatic impairment; Pulmonary disease (including asthma); Diabetes mellitus (may mask signs of hypoglycemia); Thyrotoxicosis (may mask symptoms); Patients with a history of severe allergic reactions (intensity of reactions may be elevated); OB: May cause fetal/neonatal bradycardia, hypotension, hypoglycemia, or respiratory depression; Lactation: Usually compatible with breast feeding (AAP); Pedi: Limited data available; Geri: Elevated sensitivity to beta blockers (risk of orthostatic hypotension); lowered initial dosage recommended.

Side Effects:
CNS: fatigue, weakness, anxiety, depression, dizziness, drowsiness, insomnia, memory loss, mental status changes, nightmares.
EENT: blurred vision, dry eyes, intraoperative floppy iris syndrome, nasal stuffiness.
Resp: bronchospasm, wheezing.
CV: ARRHYTHMIAS, BRADYCARDIA, CHF, PULMONARY EDEMA, orthostatic hypotension.
GI: constipation, diarrhea, nausea.
GU: erectile dysfunction, libido.
Derm: itching, rashes.
Endo: hyperglycemia, hypoglycemia.
MS: arthralgia, back pain, muscle cramps.
Neuro: paresthesia.

Interactions:
Since injection may be administered to patients already being treated with other medications, including other antihypertensive agents, careful monitoring of these patients is necessary to detect and treat promptly any undesired effect from concomitant administration.

Labetalol HCL blunts the reflex tachycardia produced by nitroglycerin without preventing its hypotensive effect. If labetalol HCL is used with nitroglycerin in patients with angina pectoris, additional antihypertensive effects may occur.

Administration:
- Adult: Administer 10 mg slow IVP over 2 minutes [per MCP]. Repeat dose in 10 minutes at 20 mg if BP remains > 180/120 and symptoms remain
- Pediatric: N/A

Supply: Prefilled syringe or vials containing 20 mg in 4 mL

Notes:
LIDOCAINE (Xylocaine®)

<table>
<thead>
<tr>
<th>Generic Name:</th>
<th>Lidocaine (lye’doe-kane) Hydrochloride 1% or 2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Name:</td>
<td>Xylocaine®</td>
</tr>
<tr>
<td>Chemical Class:</td>
<td>Amide derivative</td>
</tr>
<tr>
<td>Therapeutic Class:</td>
<td>Anesthetic, local</td>
</tr>
<tr>
<td>Actions:</td>
<td>Lidocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of nerve impulses, thereby effecting local anesthetic action.</td>
</tr>
<tr>
<td>Pharmacokinetics:</td>
<td>Onset of anesthesia: 15-30 seconds. Duration 30-60 minutes.</td>
</tr>
<tr>
<td>Indication:</td>
<td>Pain associated with infusing fluid under pressure via the EZ-IO system.</td>
</tr>
<tr>
<td>Contraindications:</td>
<td>Hypersensitivity to the drug.</td>
</tr>
<tr>
<td></td>
<td>Stokes-Adams syndrome.</td>
</tr>
<tr>
<td></td>
<td>Wolff-Parkinson-White syndrome.</td>
</tr>
<tr>
<td></td>
<td>Severe degrees of sinoatrial, atrioventricular, or intraventricular block in the absence of an artificial pacemaker.</td>
</tr>
<tr>
<td>Precautions:</td>
<td>Use cautiously in patients with severe liver or kidney disease, hypovolemia, severe congestive heart failure, and shock.</td>
</tr>
<tr>
<td>Pregnancy Cat. B</td>
<td>Use cautiously in patients with severe liver or kidney disease, hypovolemia, severe congestive heart failure, and shock.</td>
</tr>
<tr>
<td>Side Effects:</td>
<td>CNS: seizures, tremors, twitching, dizziness, unconsciousness</td>
</tr>
<tr>
<td></td>
<td>CV: bradycardia, edema, heart block, hypotension</td>
</tr>
<tr>
<td></td>
<td>EENT: blurred or diplopia, tinnitus</td>
</tr>
<tr>
<td></td>
<td>Other: respiratory depression, nausea, vomiting</td>
</tr>
<tr>
<td>Administration</td>
<td>Adult: 40 mg IO. Give slowly</td>
</tr>
<tr>
<td>IO Analgesia:</td>
<td>Pediatric: 0.5 mg/kg up to 40 mg IO.</td>
</tr>
<tr>
<td>Administration</td>
<td>Adult: 1 – 1.5 mg/kg repeated at 0.5-0.75 mg/kg IV/IO to a maximum dose of 3 mg/kg</td>
</tr>
<tr>
<td>Cardiac Arrest:</td>
<td>Pediatric: 1 mg/kg repeated at 1mg/kg IV/IO</td>
</tr>
<tr>
<td>Administration</td>
<td>Adult: 0.5-0.75 mg/kg IV/IO to a maximum dose of 3 mg/kg</td>
</tr>
<tr>
<td>Wide Complex Tachycardia:</td>
<td>Pediatric: 1 mg/kg repeated at 1mg/kg IV/IO [per MCP].</td>
</tr>
<tr>
<td>Administration</td>
<td>Adult: 1g / 250 mL titrated at 1 – 4 mg/min.</td>
</tr>
<tr>
<td>ROSC:</td>
<td>Supply: 100mg / 5ml prefilled syringe</td>
</tr>
<tr>
<td></td>
<td>1g in 250 mL</td>
</tr>
</tbody>
</table>
Generic Name: Magnesium Sulfate (mag-nee'-see-um sul'fate)

Trade Name: Magnesium Sulfate Inj. 50%

Chemical Class: Divalent cation

Therapeutic Class: Antiarrhythmic, electrolyte

Actions: Magnesium Sulfate is a salt that dissociates into the Magnesium cation (Mg²⁺) and the Sulfate anion when administered. Magnesium is an essential element in many of the biochemical processes that occur in the body. It acts as a physiological calcium channel blocker and blocks neuromuscular transmission by decreasing acetylcholine release at the neuromuscular junction. Magnesium slows the rate of SA node impulse formation and prolongs conduction time.

Pharmacokinetics: Onset immediate. Duration 30 minutes.

Indications: Torsades de pointes.
Eclampsia.
Tricyclic antidepressant toxicity.
Status asthmaticus non-responsive to standard medications.

Contraindications: Third-degree AV block.

Precautions: • If reflexes disappear in the eclamptic patient, do not repeat the dose.
• Magnesium Sulfate should be administered slowly to minimize side effects.
• Any patient receiving intravenous Magnesium Sulfate should have continuous cardiac monitoring and frequent monitoring of vital signs.
• Magnesium Sulfate should be given very cautiously in the presence of serious impairment of renal function since it is excreted almost entirely by the kidneys.

Side Effects: CNS: coma, depressed reflexes, lethargy, weakness
CV: heart block, hypotension, bradycardia
RESP: respiratory depression
SKIN: flushing, sweating

Interactions: Magnesium Sulfate can cause cardiac conduction abnormalities if administered in conjunction with Digitalis.

Administration: Adult

Torsades: administer Magnesium Sulfate 1 gram diluted in 10 ml NS over 5 – 20 min

Eclampsia: 4 g (20% solution) IV over 5 minutes. Repeat dose (if available) in 5 minutes if seizure persists [per MCP].

Supply: Vial containing 1 g in 2 mL

Notes:
Generic Name: Midazolam (mid-az’zo-e-lam)
Trade Name: Versed®
Chemical Class: Benzodiazepine
Therapeutic Class: Sedative/hypnotic

Actions: Midazolam causes central nervous systems depression via facilitation of inhibitory GABA1 at benzodiazepine receptor sites (BZ1 – associated with sleep; BZ2 – associated with memory, motor, sensory, and cognitive function). Midazolam is a short-acting benzodiazepine that is three to four times more potent than Diazepam. Midazolam has important amnestic properties.

Pharmacokinetics:
- **IM:** Onset 15 minutes. Peak 30 to 60 minutes.
- **IV:** Onset 3 to 5 minutes. t½ = 1.2 to 12.3 hours.

Indications:
- Pre-medication sedation for transcutaneous pacing.
- Sedation for endotracheal intubation only after the ET tube is inserted.
- Seizures not caused by hypoglycemia
- Severe agitation, tachycardia, or hallucinations caused by alcohol withdrawal
- Behavioral or alcohol related agitation as an adjunct to Haloperidol.

Contraindications:
- Hypersensitivity to the drug.
- Hypotension (SBP less than 90 mm Hg).
- Acute angle closure glaucoma.

Precautions:
- Administer cautiously when alcohol intoxication is suspected. Emergency resuscitative equipment must be available prior to the administration of Midazolam. Vital signs must be continuously monitored during and after drug administration. Midazolam has more potential than the other benzodiazepines to cause respiratory depression and respiratory arrest.

Side Effects:
- CNS: drowsiness, amnesia, altered mental status
- CV: hypotension, tachycardia, PVCs
- RESP: bronchospasm, coughing, laryngospasm, respiratory depression, and arrest

Interactions: The effects of Midazolam can be accentuated by CNS depressants such as narcotics and alcohol.

Administration
Seizures:
- **Adult:** Administer 2 mg slow IV/IO/IM. Repeated per MCP order.
- Midazolam may also be administered 5 mg IN if unable to readily establish IV access.
- Patients age 55 or older administer 1 mg slow IV/IO/IM (IN dose remains 5 mg)
- Give 0.1 mg/kg slow IV/IO/IM [per MCP].
- Pediatric: Midazolam may also be administered 0.2 mg/kg IN if unable to readily establish IV access [per MCP].

- **Behavioral:**
 - **Adult:** Administer 5 mg IV/IO/IM/IN. Repeated per MCP order.
 - Patients age 55 or older administer 2 mg slow IV/IO/IM (IN dose remains 5 mg)
 - Administration Post Intubation Management:
 - **Adult:** Administer 2 mg slow IV/IO q 5 minutes to a maximum dose of 10 mg. Repeated doses per MCP order

- **Pre-Medication:**
 - **Adult:** Administer 2 mg slow IV/IO/IM.

Supply: Vial containing 5 mg in 1 mL.

Notes:
Generic Name: Morphine (mor’feen) Sulfate
DEA Class: Schedule II

Trade Name: Astramorph®, Duramorph®, MS Contin®, Roxanol®

Chemical Class: Natural opium alkaloid, phenanthrene derivative

Therapeutic Class: Narcotic analgesic

Actions: Morphine is a central nervous system depressant that acts on opiate receptors in the brain, providing both analgesia and sedation. It increases peripheral venous capacitance and decreases venous return. Morphine also reduces myocardial oxygen demand due to both the decreased systemic vascular resistance and the sedative effects of the drug.

Pharmacokinetics:
- **IM**: Onset 10 to 30 minutes. Peak analgesia 30 to 60 minutes. Duration 4.5 hours.
- **IV**: Peak analgesia 20 minutes. t½ = 2.5 to 3 hours.

Indications:
- Pain associated with acute myocardial infarction unresponsive to nitrates.
- Pain management unspecified

Contraindications:
- Hypotension (SBP < 90 mmHg)
- Respiratory depression.
- Hypersensitivity to the drug.
- Multi-system trauma.
- Head injury.
- Altered mental status from any cause.

Precautions:
Pregnancy Cat. B

Morphine causes severe respiratory distress in high doses, especially in patients who already have some form of respiratory impairment. Naloxone should be readily available whenever morphine is administered.

Side Effects:
- CNS: dizziness, drowsiness, headache, sedation
- CV: hypotension
- EENT: blurred vision, constricted pupils, diplopia
- GI: abdominal cramps, constipation, nausea, vomiting
- RESP: respiratory depression

Interactions:
The CNS depression associated with Morphine can be enhanced when administered with antihistamines, antiemetics, sedatives, hypnotics, barbiturates, and alcohol.

- Administer 2 mg IV/IM/OI q 5 minutes to a maximum dose of 10 mg.
- Additional doses per MCP order.

Administer 0.05 mg/kg IV/OI/IM [per MCP].

Supply:
- Vial containing 10 mg in 1 mL.
- 10mg in 1 mL carpuject

Notes:
Discontinue the IV injection if the pain is relieved or a contraindication develops.
NALOXONE (Narcan®)

Generic Name: Naloxone (nal-oks’one)
Trade Name: Narcan®
Chemical Class: Thebaine derivative
Therapeutic Class: Antidote, opiate

Actions: Naloxone is chemically similar to the narcotics. However, it has only antagonistic properties. Naloxone competes for opiate receptors in the brain. It also displaces narcotic molecules from opiate receptors. It can reverse respiratory depression associated with narcotic overdose.

Pharmacokinetics:
- **IV:** Onset 2 minutes. \(t_\text{1/2} = 64 \) minutes.

Indications:
- Respiratory depression caused by narcotics.
- Coma unknown etiology.

Contraindications: Hypersensitivity to the drug.

Precautions: Naloxone should be administered cautiously to patients who are known or suspected to be physically dependent on narcotics. Abrupt and complete reversal by Naloxone can cause withdrawal-type effects (this includes newborns of mothers with known or suspected narcotic dependence).

Side Effects:
- **CNS:** seizures, tremulousness
- **CV:** hypertension, hypotension, tachycardia, ventricular dysrhythmia
- **GI:** nausea, vomiting

Interactions: Naloxone may cause narcotic withdrawal in the narcotic-dependent patient. In cases of suspected narcotic dependence, only enough drug to reverse respiratory depression should be administered.

Administration:
- **Paramedic / AEMT**
 - **Adult IV:** Administer 0.4 mg/minute to restore respiratory drive.
 - **IN:** Administer 2 mg IN (1 mL in each nostril).
- **EMT**
 - **Adult IN:** Administer 2 mg IN (1 mL in each nostril).

Supply: Vial containing 4 mg in 10 mL.

Notes:
- Unless necessary, avoid insertion of an advanced airway prior to administration of Naloxone.
- Administer Naloxone by a slow IV push (0.4 mg/minute).
- Reversal of the effects of narcotics may be only temporary. Titrate administration of Naloxone to respiratory rate.
- Common narcotic agents include Codeine, Darvon®, Demerol®, Dilaudid®, Fentanyl, Heroin, Methadone, Morphine, Nubain®, Paregoric, Percodan®, Stadol® and Talwin®.
Generic Name: Nitroglycerin (nye-troe-gli’ser-in)
Trade Name: Nitrolingual®, Nitroquick®, Nitrostat®, Nitr-bid®, Nitrol®
Chemical Class: Nitrate, organic
Therapeutic Class: Antianginal, vasodilator

Actions: Nitroglycerin is a rapid smooth muscle relaxant that causes vasodilation and, to a lesser degree, dilates the coronary arteries. This results in increased coronary blood flow and improved perfusion of the ischemic myocardium. Relief of ischemia causes reduction and alleviation of chest pain. Vasodilation decreases preload and leads to decreased cardiac work that can help reverse the effects of angina pectoris. Additionally, decreased preload results in decreased pulmonary capillary hydrostatic pressure and reduction of fluid passing into the pulmonary interstitium and alveoli in cardiogenic pulmonary edema.

Pharmacokinetics:
SL: Onset 1 to 3 minutes. Peak 5 minutes. Duration at least 25 minutes. $t_{1/2} = 2$ to 3 minutes.
TOP: Onset 15 to 60 minutes. Peak 30 to 120 minutes. Duration 2 to 12 hours.

Indications:
- Chest pain suspected to be cardiac in origin.
- Severe Hypertension
- Cardiogenic pulmonary edema.

Contraindications:
- Hypotension (SBP less than 90 mm Hg).
- Bradycardia (HR less than 60).
- Increased intracranial pressure (i.e., CVA, head injury).
- Hypersensitivity to the drug.
- Patients who are using anti-impotence agents (Cialis®, Levitra®, Viagra®).

Precautions:
- Administer nitrates with extreme caution if at all to patients with suspected inferior wall MI with possible right ventricular (RV) involvement because these patients require adequate RV preload.
- Patients taking the drug routinely may develop a tolerance and require an increased dose.
- Postural syncope sometimes occurs following the administration of Nitroglycerin; it should be anticipated and the patient kept supine when possible.
- Careful clinical or hemodynamic monitoring must be used because of the possibility of hypotension and tachycardia.

Side Effects:
- CNS: dizziness, headache, weakness
- CV: dysrhythmias, palpitations, postural hypotension, tachycardia
- GI: nausea, vomiting
- SKIN: diaphoresis, flushing, pallor, rash

Interactions:
- Severe hypotension is possible when administered to patients who have recently ingested alcohol.
- Orthostatic hypotension is possible when used in conjunction with β-adrenergic antagonists.
- Administration of Nitroglycerin is contraindicated in patients who are using anti-impotence agents such as Sildenafil (Viagra®) since these agents have been shown to potentiate the hypotensive effects of organic nitrates.

CONTINUED ON NEXT PAGE
NITROGLYCERIN (Nitrostat®)

<table>
<thead>
<tr>
<th>Scope</th>
<th>EMT</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
</table>

Administration

<table>
<thead>
<tr>
<th>Condition</th>
<th>Adult</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest Pain</td>
<td>Administer 0.4 mg SL. Repeat q 5 minutes, if needed, to a maximum of 3 doses.</td>
<td></td>
</tr>
<tr>
<td>Pulmonary Edema</td>
<td>Administer 0.4 mg SL. Repeated q 5 minutes to a maximum of 3 doses if needed. (SBP ≥ 110 mmHg)</td>
<td></td>
</tr>
<tr>
<td>Severe Hypertension</td>
<td>Administer 0.4 mg SL. Repeat q 5 minutes, if needed, to a maximum of 3 doses.</td>
<td></td>
</tr>
</tbody>
</table>

Supply:
Tablet: Bottle containing 0.4 mg (1/150 grain) tablets.
Liquid: 400mcg metered dose spray

Notes: Nitroglycerin should be kept in the original glass container, tightly capped.
ONDANSETRON (Zofran®)

Generic Name: Ondansetron (on-dan-she’tron)
Trade Name: Zofran®
Chemical Class: Carbazole derivative
Therapeutic Class: Antiemetic

Actions: Ondansetron is a selective 5-HT₃ antagonist which is an effective anti-nausea and anti-emetic medication with minimal reported significant side effects. Nausea and vomiting are strongly associated with serotonin receptors of the 5-HT₃ type, present both peripherally on vagal nerve terminals and centrally in the chemoreceptor trigger zone of the area postrema.

Pharmacokinetics: IV: Peak immediate. IM: N/A

Indications:
1. Severe vomiting or nausea.
2. Vertigo.

Contraindications:
1. Hypersensitivity to the drug.
2. Pregnancy (all trimesters).
3. Prolonged QT interval

Precautions: Rarely, transient ECG changes including QT interval prolongation have been reported.

Pregnancy Cat. B

Side Effects:
CNS: headache, lightheadedness, seizures
CV: angina, bradycardia, syncope, tachycardia
EENT: blurred vision
GI: constipation, diarrhea
RESP: bronchospasm
SKIN: rash

Interactions: N/A

Administration:
- **Paramedic / AEMT**
 - Administer 4 mg IV/IM over 4 minutes. Repeat dose requires MCP order.
 - Administer 4 mg ODT. Place tablet on patient’s tongue. The tablet dissolves quickly and can be swallowed with saliva. Repeat dose requires MCP order.

- **EMT**
 - Administer 4 mg ODT. Place tablet on patient’s tongue. The tablet dissolves quickly and can be swallowed with saliva. Repeat dose requires MCP order.

Supply: Vial containing 4 mg in 2 mL
Single dose tablets
ORAL GLUCOSE (Insta-Glucose®)

<table>
<thead>
<tr>
<th>Scope</th>
<th>EMT</th>
<th>AEMT</th>
<th>PARAMEDIC</th>
</tr>
</thead>
</table>

Drug Names: Dextrose (Glutose®, Insta-Glucose®)

Overview: Oral glucose is used to treat patients with a history of diabetes exhibiting an altered mental status and the ability to swallow. Oral glucose is a form of glucose that can reverse a diabetic’s hypoglycemic condition. Time of administration can make a critical difference. The preparation comes in a tube.

Indications: Patient with altered mental status and a known history of diabetes controlled by medication.

Contraindications:
- Unresponsive.
- Unable to swallow.

Side Effects: None when given properly. May be aspirated by the patient without a gag reflex.

Administration:
- Assure signs and symptoms of altered mental status with a known history of diabetes.
- Assure patient is conscious and can swallow and protect the airway.
- Administer glucose:
 - Between cheek and gum.
 - Place on tongue depressor between cheek and gum.

Supply: Tube contains 12.5 g, 15 g, or 25 g (varies per manufacturer).
SODIUM BICARBONATE

Generic Name:	Sodium Bicarbonate (so’dee-um bye-kar’boe-nate)
Trade Name:	N/A
Chemical Class:	Monosodium salt of carbonic acid
Therapeutic Class:	Alkalinizing agent; electrolyte supplement

Actions: Sodium Bicarbonate is an alkalinizing agent used to buffer acids present in the body during and after severe hypoxia. Sodium Bicarbonate combines with excess acids (usually lactic acid) present in the body to form a weak, volatile acid. This acid is broken down into CO₂ and H₂O. Sodium Bicarbonate is effective only when administered with adequate ventilation and oxygenation. Sodium Bicarbonate may be administered to alkalinize the urine to speed excretion of tricyclic antidepressants.

Pharmacokinetics: Onset in seconds. Peak 1 to 2 minutes. Duration 10 minutes.

Indications:
- Prolonged cardiac arrest.
- Known metabolic acidosis.
- Cardiac arrest in a dialysis patient (hyperkalemia). Should be an early treatment consideration.
- Tricyclic antidepressant (TCA) overdose.
- Crush syndrome

Contraindications: Hypokalemia.

Precautions: Sodium Bicarbonate can cause metabolic alkalosis when administered in large quantities. It is important to calculate the dosage based on patient weight and size.

Pregnancy Cat. C

Side Effects:
- Metabolic alkalosis.
- Hypernatremia.
- Hypokalemia.

Interactions:
- Most catecholamines and vasopressor (e.g., Dopamine and Epinephrine) can be deactivated by alkaline solutions such as Sodium Bicarbonate; assure these drugs are not administered simultaneously.
- Sodium Bicarbonate should not be administered in conjunction with Calcium Chloride. A precipitate can form and block the IV line.

Administration:
- **Adult Cardiac arrest:** Administer 50 mEq IV/IO
- **Pediatric** Contact [Medical Control].

Supply: Prefilled syringe containing 50 mEq in 50 mL (8.4% solution).

Notes:
Generic Name: Tetracaine Hydrochloride Ophthalmic Solution (te-truh-keyn)
Trade Name: Cepacol Viractin, Pontocaine
Chemical Class: Topical anesthetics
Therapeutic Class: Ophthalmic drops

Actions: Tetracaine is a topical local anesthetic for the eyes. Tetracaine works by interfering with entry of sodium ions into nerve cells. This reduces the ability of nerves to generate an impulse and send pain sensations.

Pharmacokinetics: The systemic exposure to tetracaine following topical ocular administration of Tetracaine Hydrochloride Ophthalmic Solution 0.5% has not been studied. Tetracaine hydrochloride is metabolized by plasma pseudocholinesterases and nonspecific esterases in ocular tissues.

Indications: Tetracaine Hydrochloride Ophthalmic Solution 0.5%, an ester local anesthetic, is indicated for procedures requiring a rapid and short-acting topical ophthalmic anesthetic.

Contraindications: Hypersensitivity; Thromboembolic disorders (current, history of, or at risk for); Acquired defective color vision (IV); Subarachnoid hemorrhage; Concurrent use of combination hormonal contraception (PO).

Precautions:
- Corneal injury with Intracameral Use. Not for injection or intraocular use. Do not use intracameral because use of Tetracaine Hydrochloride Ophthalmic Solution 0.5% may lead to damage of the corneal endothelial cells.
- Corneal Toxicity Prolonged use or abuse may lead to corneal epithelial toxicity and may manifest as epithelial defects which may progress to permanent corneal damage.
- Corneal Injury due to Insensitivity Patients should not touch the eye for at least 10-20 minutes after using anesthetic as accidental injuries can occur due to insensitivity of the eye.

Side Effects:
- Severe burning, stinging, or sensitivity where the medicine is applied;
- Swelling, warmth, or redness;
- Oozing, blistering, or any signs of infection; or.
- Eye irritation, watering, or increased sensitivity to light.

Interactions: Tetracaine hydrochloride should not be used if the patient is being treated with a sulfonamide because aminobenzoic acid inhibits the action of sulfonamides.

Administration: Adult One drop topically in the eye(s) as needed in conjunction with Morgan Lens insertion. Discard unused portion.

Supply:

Notes:
<table>
<thead>
<tr>
<th>Generic Name:</th>
<th>Betaxin, Vitamin B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Class:</td>
<td>Ethanolamine derivative</td>
</tr>
<tr>
<td>Therapeutic Class:</td>
<td>Vitamin</td>
</tr>
<tr>
<td>Actions:</td>
<td>Required for carbohydrate metabolism. Therapeutic Effects: Replacement in deficiency states.</td>
</tr>
<tr>
<td>Pharmacokinetics:</td>
<td>Absorption: Well absorbed from the GI tract by an active process. Excessive amounts are not absorbed completely. Also well absorbed from IM sites. Distribution: Widely distributed. Enters breastmilk. Metabolism and Excretion: Metabolized by the liver. Excess amounts are excreted unchanged by the kidneys. Half-life: Unknown.</td>
</tr>
<tr>
<td>Indications:</td>
<td>Treatment of thiamine deficiencies. Prevention of Wernicke's encephalopathy. Dietary supplement in patients with GI disease, alcoholism, or cirrhosis.</td>
</tr>
<tr>
<td>Contraindications:</td>
<td>Hypersensitivity Known alcohol intolerance or bisulfite hypersensitivity</td>
</tr>
<tr>
<td>Precautions:</td>
<td>Wernicke's encephalopathy (condition may be worsened unless thiamine is administered before glucose).</td>
</tr>
<tr>
<td>Pregnancy Cat. A</td>
<td></td>
</tr>
<tr>
<td>Interactions:</td>
<td>NONE</td>
</tr>
<tr>
<td>Administration:</td>
<td>Adult Administer 100 mg IV/IM/IO</td>
</tr>
<tr>
<td>Supply:</td>
<td>Vial containing 100 mg in 2 mL vial</td>
</tr>
<tr>
<td>Notes:</td>
<td>Administer prior to Glucose or Glucagon administration</td>
</tr>
</tbody>
</table>
TRANEXAMIC ACID (OPTIONAL)

<table>
<thead>
<tr>
<th>Scope</th>
<th>PARAMEDIC</th>
</tr>
</thead>
</table>

Generic Name: Tranexamic Acid (tran-ex-am'-ik as-id)
Trade Name: Cyklokapron®
Chemical Class: Amino acid derivative
Therapeutic Class: Antifibrinolytic

Actions: Inhibits plasminogen activation and plasmin activity.

Pharmacokinetics:
IV: Onset 5-15 minutes. \(t_{1/2} = 2 \) hours. Duration of action: approximately 3 hours.

Indications:
- Any trauma patient, 14 years of age or older, who is at high risk for ongoing internal hemorrhage meeting one or more of the following criteria:
 - Systolic blood pressure less than 90 mm Hg.
 - Patients over 65 years of age with systolic blood pressure less than 110 mm Hg.
 - Tachycardia with heart rate greater than 120 beats per minute with signs of hypoperfusion present (confusion, altered mental status, cool extremities, etc.).
 - Contact [Medical Control] as needed if the patient does not meet the above criteria.

Contraindications:
- Injuries greater than 3 hours old.
- Evidence of disseminated intravascular coagulation (DIC).
- Hypersensitivity to the drug.

Precautions:
- Excreted in breast milk.
- Caution in patients with history of deep vein thrombosis (DVT), pulmonary embolus, other blood clots, or severe renal failure.
- Can cause worsened coagulopathy in some patients.

Pregnancy Cat. B
- Caution in patients with history of deep vein thrombosis (DVT), pulmonary embolus, other blood clots, or severe renal failure.

Side Effects:
- **CNS:** anxiety, blurred vision, confusion
- **CV:** hypotension, chest pain, tachycardia
- **GI:** nausea, vomiting, diarrhea
- **RESP:** shortness of breath, cough

Interactions:
Female patients taking or using any form of birth control containing estrogen and progestin are at an increased risk for blood clots and this medication increases that risk significantly.

Administration:
- **Loading Dose:** IV infusion of 1 gram Tranexamic Acid (TXA) infused over 10 minutes. Piggyback the TXA infusion into an already established IV infusion.
- **Maintenance Dose:** IV infusion of 1 gram Tranexamic Acid (TXA) infused over 8 hours. Piggyback the TXA infusion into an already established IV infusion.

Supply: Vial containing 1,000 mg in 10 mL.

Notes:
- To prepare loading dose, mix 1 gram TXA in 100 mL or 250 ML NS. Attach a 15 drop administration set and infuse over 10 minutes.
- To prepare maintenance infusion, mix 1 gram TXA in 100 mL or 250 ML NS. Attach a 60 drop administration set and infuse over 8 hours.
- Major external bleeding MUST be controlled by direct pressure, hemostatic dressings, and tourniquets; TXA administration does NOT control external hemorrhage.
- Be sure to CLEARLY document the mechanism of injury, the time of injury/incident, and the time that the TXA bolus was administered (as well as when the maintenance infusion was started, if applicable).
PURPOSE: To establish standards for the submission and approval or modification and approval of West Virginia State-wide EMS protocols.

RATIONAL: Deciding to develop a new protocol or evaluate an existing one should be based on a rational process. Questions that should be asked and answered when considering a new drug therapy or procedure are as follows:

Key Questions for any New Protocol

- Is the drug therapy or procedure medically indicated and safe?
- Is it within the scope of practice for the provider?
- How specifically will this protocol benefit patient care?
- What specifically is needed to implement this protocol (education/training, medical director protocol development/authorization, equipment needs, etc.)?
- How will this protocol impact operation?
- What is the opinion of providers concerning this protocol?
- Does the medical community support this protocol change?
- What are all the costs versus benefits associated with implementation and maintenance?
- What are the medical-legal implications?
- What ongoing provider involvement such as skills maintenance and continuous quality improvement is necessary?
- How will success be measured?

Rational Protocol Development Process to Make the Right Protocol Decision

- Study the issue thoroughly
- Identify key questions
- Compare with goals
- Assess fit with system
- Cost benefit analysis
- Identify measuring tools

Stakeholders in this process are recognized to include, but not be limited to:

- Medical direction (on-line and off-line)
- Educators/training programs
- WVOEMS, MPCC, EMSAC
- Service directors
- Service providers
- Consumers
- Third party payers
POLICY: West Virginia State-wide protocol additions, deletions, and/or modifications shall be submitted utilizing the content outlined in this policy with heavy consideration given to the content listed in the Rational section. Submissions may come from any healthcare provider or interested party.

A. Complete the attached "Protocol Submission Template."

B. Each application will need a sponsoring "System Medical Director" (someone from the following groups: Squad Medical Directors, State EMS Medical Director, Regional Medical Directors, or Educational Institute Medical Directors.

C. The Protocol Submission Template will be sent to the State EMS Medical Director.

ESSENTIAL CRITERIA:

A. Clearly defined indication(s) for the proposed protocol

B. An explanation providing the advantages and disadvantages that the Proposed Protocol will have on patients encountered by EMS and how it will impact the delivery of EMS within West Virginia

C. Strong evidence supporting the implementation of the Proposed Protocol (as noted on the template)

D. Fiscal impact statement

E. A System Medical Director sponsor

EVALUATION:

A. The Protocol Submission Template will be evaluated by the State EMS Medical Director with input from subject matter experts.

B. Once the Protocol submission has been appropriately formatted and reviewed, it will be forwarded to the WV EMS Advisory Council (EMSAC) for peer review within the Policy, Procedure, and Protocol Committee.

C. The State EMS Advisory Council will vote to forward the protocol submission to the Medical Policy Care Committee (MPCC) for further consideration.
D. MPCC may choose one of the following:

a. Request more information/research on the proposal
b. Request a pilot study be performed and base a decision on the results of that study
c. Disapprove the submission
d. Approve the submission as is or with modifications.

E. Once approved by MPCC the protocol submission will be published for 30 days of public comment unless such an immediate response is warranted under exigent circumstances.
This document shall be completed as part of the requirements for submission to modify, delete, or add a new protocol the WV State-wide EMS protocols. Complete the cover sheet and attach all supporting documentation per policy to this form.

<table>
<thead>
<tr>
<th>NAME of submitter:</th>
<th>Certification Number (if applicable): WV</th>
<th>Expiration Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Affiliation:</td>
<td></td>
<td>Not Affiliated</td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sponsoring Medical Director (Print):

| Phone Number: | |
| Email: | |

Both signatures below are required for this submission to be reviewed.

<table>
<thead>
<tr>
<th>Agency Medical Director:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Submitter:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

Submit to:

WVOEMS Medical Director
West Virginia Office of Emergency Medical Services
350 Capitol Street
Room 425
Charleston WV, 25301

Official Use Only:

Date received by State Medical Director:	
Date Reviewed by EMSAC:	
Date Reviewed By MPCC:	
Decision: □ Approved □ Denied □ Pilot Project □ Requested additional Information	
Posted to 30 day comment period:	
WVOEMS Medical Director Signature:	
A. EXPLANATION

B. INDICATION

C. SUPPORTING EVIDENCE AND LITERATURE

D. SUPPORTING WEST VIRGINIA and/or NATIONAL DATA

E. DEFINE AREA OF PROTOCOL CONTENT
 1. Patient Care Presentation
 2. Treatment
 i. Basic Life Support
 ii. Advanced Life Support
 iii. Adult
 iv. Pediatric
 v. Geriatric
 vi. Medical Command
 vii. Algorithm
 viii. Alerts
 3. Procedure/ Skill
 i. Purpose
 ii. Indication
 iii. Contraindications
 iv. Potential Adverse Effects/Complications Precautions
 v. Procedure
 4. Medication
 i. Indication
 ii. Pharmacokinetics
 iii. Adverse Effects
 iv. Precautions
 v. Contraindications
 vi. Preparations
 vii. Dosage
 a. Adult
 b. Pediatric
 c. Geriatric
 d. Medical Consultation

F. FISCAL IMPACT STATEMENT COVERING THE START-UP AND MAINTENANCE COST OF THE MEDICATION, DEVICE, REPLACEMENT PARTS, AND ANY UNIQUE REQUIREMENTS TO IMPLEMENT THE PROTOCOL.

G. IMPACT ON THE EXISTING WEST VIRGINIA STATE-WIDE EMS PROTOCOLS