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Gastrointestinal stromal tumor (GIST) is the most common soft tissue sarcoma of the gastrointestinal tract and, in the vast
majority of cases, is characterized by activating mutations in KIT or, less commonly, PDGFRA. Mutations in these type III receptor
tyrosine kinases (RTKs) account for over 85% of GIST cases, and the majority of KIT primary mutations respond to treatment with
the tyrosine kinase inhibitor (TKI) imatinib. However, drug resistance develops over time, most commonly due to secondary
kinase mutations. Sunitinib and regorafenib are approved for the treatment of imatinib-resistant GIST in the second and third
lines, respectively. However, resistance to these agents also develops and new therapeutic options are needed. In addition, a
small number of GISTs harbor primary activating mutations that are resistant to currently available TKIs, highlighting an
additional unmet medical need. Several novel and selective TKIs that overcome known mechanisms of resistance in GIST have
been developed and show promise in early clinical trials. Additional emerging targeted therapies in GIST include modulation of
cellular signaling pathways downstream of KIT, antibodies targeting KIT and PDGFRA and immune checkpoint inhibitors. These
advancements highlight the rapid evolution in the understanding of this malignancy and provide perspective on the
encouraging horizon of current and forthcoming therapeutic strategies for GIST.
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Introduction

Gastrointestinal stromal tumor (GIST) is among the most com-

mon soft tissue sarcomas, with an estimated annual incidence of

up to 6000 cases in the USA [1], and population-based annual in-

cidence rates of 0.78–1.1 cases per 100 000 [2, 3]. Their recogni-

tion as a pathologic entity distinct from smooth muscle and other

gastrointestinal mesenchymal tumors came first from the identi-

fication of specific immunohistochemical markers, and subse-

quently the discovery of recurrent activating mutation in the type

III receptor tyrosine kinases (RTKs) KIT and PDGFRA [4–7].

Due to similar morphologic and expression patterns, GIST has

been hypothesized to arise from the transformation of interstitial

cells of Cajal [8] or their cellular progenitors, which are pace-

maker cells situated between enteric neurons and the smooth

muscle of the gastrointestinal tract that regulate gut motility.

KIT is normally expressed in many tissues during development

and is important for hematopoiesis, gut motility, gametogenesis,

neurodevelopment, pigmentation, mast cell function and vascu-

lar endothelial formation [9]. Wild-type KIT is activated upon

binding its ligand, stem cell factor (SCF), which induces receptor

dimerization and subsequent conformational changes. These

structural changes evict the inhibitory juxtamembrane (JM) do-

main from the split kinase domains. Activation of the kinase

domains requires a conformational change in the activation loop

(A-loop), enabling the kinase domains to bind ATP and phos-

phorylate target substrates. Phosphorylation of the KIT intracel-

lular domain constructs docking sites for several mediators of

signal transduction, stimulating signaling through the Ras/MAP

kinase pathway, the JAK/STAT pathway, PLC/PKC and the PI3K/

AKT/mTOR pathway (Figure 1A and B) [9].

Activating mutations in several domains within KIT and

PDGFRA lead to dysregulated receptor signaling (Figures 1C

and 2). Crystal structures of the KIT extracellular and kinase

domains have shed light into how these mutations lead to aber-

rant receptor activity. Mutations in exon 9, which encodes the
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C-terminal portion of the ectodomain including the

immunoglobulin-like D5 domain, lead to aberrant receptor ac-

tivation through ligand-independent dimerization (Figure 2A)

[12, 18]. Exon 11 encodes the JM domain of KIT, which stabil-

izes the autoinhibited kinase conformation with the A-loop in

the ‘DFG-Out’ orientation (‘DFG’ indicates the first three

amino acids of the A-loop: aspartate, phenylalanine and gly-

cine) which sterically blocks the ATP-binding pocket

(Figure 2B) [14]. Deletions, insertions or mutation of the JM

domain produces a disinhibited and unregulated kinase do-

main, and represents the most common KIT activating muta-

tion in GIST [19]. Mutation in exon 13, encoding the tyrosine

kinase 1 (TK1) domain, and exon 17, encoding the TK2 do-

main, are rare in primary GIST tumors [20]. Mutations in exon

13 alter areas of TK1 important for contact with the JM domain

and also with the ATP-binding-pocket and imatinib [21]. Exon

17 and 18 mutations lie within the A-loop, biasing the A-loop

toward the ‘DFG-in’ conformation that excludes the inhibitory

JM domain and permits ATP and substrate binding (Figure 2C

and D) [10]. These structural insights into aberrant receptor ac-

tivation in KIT and related tyrosine kinases has led to an under-

standing of drug resistance and significant advances in the

development of kinase inhibitors which can bind to the active

(type I inhibitors) or inactive (type II inhibitors) kinase states

and other mechanisms of kinase inhibition [22]. As these mech-

anistic insights have evolved into novel therapeutic approaches

currently being deployed, an appreciation of their therapeutic

basis is important for modern oncology clinical practice.

In addition to GIST, activating KIT mutations have also been

implicated in mastocytosis, seminoma, natural killer/T-cell lym-

phomas, acute myeloid leukemia, thymic carcinoma, melanoma

and myeloproliferative disorders [23]. Germline activating KIT

mutations are rare, with reported mutations involving exons 8, 9,

10, 11, 13 and 17. Affected individuals have variable phenotypes,

with hyperpigmentation, gastrointestinal motility disorders and

increased risk of cancers limited to GIST and mastocytosis [24].

Germline PDGFRA mutations resulting in familial GIST have

also been reported [25].

Recently, the discovery of circulating tumor DNA has arisen

as a method to detect, monitor response to therapy and identify

resistance mutations in several cancer subtypes [26]. This meth-

odology has been applied to GIST in the research setting and

shown preliminary utility in diagnosis before tumor biopsy

[27], in monitoring response to therapy [28] and in identifying

tyrosine kinase inhibitor (TKI) resistance mutations [29].

Though not yet formally part of the standard diagnostic

armamentarium, this approach is currently being evaluated in

clinical trials as a surrogate marker for disease control and

evolution of drug resistance mutations, with early results sug-

gesting circulating tumor DNA may be a more sensitive

and rapid indicator of disease response compared with

imaging [30].
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Figure 1. Schematic of the KIT protein and activating mutations. (A) Diagram of KIT functional domains including the five immunoglobulin-
like domains (D1–5), JM (red) domain, tyrosine kinase 1 (TK1, gold) domain, tyrosine kinase 2 (TK2, silver) domain and activation loop (A-loop,
blue). (B) Upon binding the SCF ligand, wild-type KIT homodimerizes through homotypic interactions involving D4–D5, inducing conform-
ational changes activating the kinase domains. Receptor phosphorylation and binding of adaptor proteins initiates downstream signaling
through multiple pathways. (C) Locations of mutational hotspots in KIT and characteristics of associated GIST [1, 10, 11].
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Current therapy

Before targeted therapy, effective treatment options for GIST

were limited to surgical resection, when feasible. Five-year sur-

vival for all patients diagnosed with GIST was 35%, and in those

with metastatic disease at presentation or disease recurrence me-

dian survival was 12–19 months [31]. Shortly after the identifica-

tion of activating KIT mutations in GIST, imatinib was found to

selectively inhibit KIT signaling in vitro [32] and effectively treat

metastatic tumors in patients with GIST [33]. In contrast to the

prior dismal outlook for patients with metastatic or unresectable

GIST, treatment with imatinib significantly prolongs survival,

with approximately half of patients with metastatic disease sur-

viving beyond 5 years [34]. Imatinib achieves disease control (in

the form of complete or partial responses or stable disease) in

�80% of advanced KIT-expressing GIST, with median

progression-free survival of 20–24 months [35] and 5-year overall

survival of 69% in primary exon 11 mutant GIST, 49% in exon 9

mutant GIST and 40% in wild-type GIST treated with 400 mg

imatinib [36]. Exon 9 mutant tumors have a higher response

rate when treated at 800 mg imatinib daily [37]. Approximately
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Figure 2. Structures of the KIT D5 and kinase domains and mechanisms of activation and inhibition. (A) Schematic and crystal structure of
the KIT D5 homodimer [12], demonstrating surface interactions facilitating ectodomain dimerization. Position 502 is highlighted, which is at
the dimer interface and a site commonly altered in exon 9 mutant GIST. Individual monomers are colored for distinction, with sites of indels
on the left and point mutations on the right monomer indicated in purple. (B) Schematic and crystal structure of KIT in the inactive and (C)
active [13] kinase states. The JM domain is colored in red, TK1 domain in gold, TK2 in silver and the A-loop in blue. ATP bound in the active
state is in green. (D) Overlay of inactive and active KIT structures, demonstrating the DFG-out and DFG-in conformation of the A-loop. The
DFG phenylalanine within the A-loop is highlighted, and in the DFG-out conformation sterically blocks the ATP-binding pocket. (E) Imatinib
binding to wild-type KIT [14] stabilizes the kinase in the inactive, auto-inhibited state. (F) Kinase domain of PDGFRA in the inactive state [15].
In (E) and (F), activating mutation sites seen in GIST and the associated native amino acid side-chains are highlighted in purple. The most
common A-loop mutation is labeled in both KIT and PDGFRA structures. (G) Expanded view of the KIT kinase domain with color-coded struc-
tures including ATP, imatinib, sunitinib [10], ponatinib [16] and PLX647 [17] that were merged on to sunitinib-bound KIT to obtain relative
positions of each molecule. Structures were modified with UCSF Chimera software (http://www.rbvi.ucsf.edu/chimera).
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one-fourth of patients experience prolonged disease control on

imatinib and subsequent lines of therapy [38].

The success of imatinib used in the metastatic setting has also

led to interest in its use as a neoadjuvant and adjuvant therapy.

Neoadjuvant imatinib is deployed with the goal of reducing op-

erative morbidity, with treatment having demonstrated safety, ef-

ficacy in tumor size reduction and enabling less morbid surgery

[39, 40]. For completely resected GIST tumors treated without

neoadjuvant imatinib, select tumors at high risk of recurrence

[41] may benefit from adjuvant imatinib [42]. For these high-risk

patients, adjuvant imatinib has been shown to improve

recurrence-free and overall survival, with 3 years of therapy being

superior to one [43]. Importantly, treatment with adjuvant ima-

tinib may not promote the development of imatinib-resistance

mutations in patients with recurrent disease [44]. The benefit of

longer durations of adjuvant treatment with imatinib is currently

under investigation. In early reports, the single-arm PERSIST-5

trial (NCT00867113) is evaluating 5 years of adjuvant imatinib in

GIST patients at high risk of recurrence. In this study, nearly half

of patients discontinued imatinib early, and while most recur-

rences occurred following imatinib cessation, the single patient

who recurred on adjuvant therapy had a PDGFRA D842V muta-

tion [45]. Two additional trials underway (NCT02260505 and

NCT02413736) are comparing 3 to up to 6 years of adjuvant ima-

tinib. There may be additional opportunity to more accurately

risk-stratify patients through molecular features of the tumor,

both from the specific RTK mutation [46] as well as from an

emerging understanding of GIST biology predictive of metastatic

behavior [47].

Resistance to imatinib therapy occurs in the majority of

patients, with risk increasing over time on therapy, and is com-

monly due to KIT mutations that render the kinase domain re-

sistant to inhibitor therapy [48]. For progressing tumors with

primary exon 11 mutations, the secondary kinase domain muta-

tion evolves at a median of 27 months, which suggests either the

generation of a secondary KIT mutation or competitive growth

of a pre-existing but rare drug-resistant clone, although studies

remain ongoing in this arena [49]. These secondary mutations

commonly lie within either the ATP-binding pocket or A-loop

domains in KIT and PDGFRA, biasing the kinase domain toward

the active state and excluding the binding of standard TKIs

(Figure 2E–G).

Amplification of KIT is not a common mechanism of disease

progression or drug resistance [49, 50], although hemizygous

KIT mutations following loss of the wild-type allele have been

correlated with more aggressive disease [51]. Under effective

treatment with KIT inhibition, tumor volume decreases as GIST

cells undergo apoptosis and cell cycle arrest following withdrawal

of trophic kinase signaling [52]. However, even following effect-

ive long-term treatment with TKIs, GIST tumor cells can remain

viable but quiescent and may escape cell death through altera-

tions in gene expression, transdifferentiation and autophagy [53,

54]. It remains incompletely understood how this sub-

population of tumor cells survives years of TKI therapy and later

emerges with treatment resistant RTK mutations, and how this

process can be therapeutically interrupted.

Following resistance to imatinib, subsequent lines of TKIs

associated with more modest rates and durations of disease con-

trol have been developed. Second-line therapy with sunitinib has

been found to prolong time to progression compared with pla-

cebo from 6.4 to 27.3 weeks [55]. Third-line therapy with regora-

fenib similarly prolongs progression-free survival from 0.9 to

4.8 months compared with placebo [56]. Compared with first-

line imatinib, the more modest benefits conferred by these se-

cond- and third-line TKIs likely arises from the emergence of

multiple unique drug-resistant KIT mutations within an individ-

ual tumor [49, 57]. Despite heterogeneity at the time of imatinib

resistance, secondary KIT mutations occur in a nonrandom pat-

tern, with mutations clustered in both the ATP binding pocket

and the A-loop.

Other TKIs have been evaluated for advanced GIST, including

pazopanib [58], ponatinib [16], sorafenib [59] and nilotinib

[60], though results have been less supportive of their clinical de-

velopment in imatinib-resistant GIST. Additional multi-targeted

TKIs approved for the treatment of other malignancies are cur-

rently under clinical evaluation in imatinib-resistant GIST (e.g.

NCT02216578), which may offer additional lines of therapy for

this disease. All of these TKIs have overlapping contact sites with-

in the ATP-binding pocket of KIT (Figure 2G), and their unique

points of contact dictate the KIT mutations they are able to in-

hibit as well as their kinase selectivity and promiscuity.

PDGFRA-mutant GIST bears alterations in analogous func-

tional domains of this related type III RTK, though the prepon-

derance of PDGFRA activating mutations lie within the A-loop.

Compared with KIT-mutant tumors, PDGFRA mutant tumors

primarily have a gastric origin [61], epithelioid morphology [62]

and appear to be less adept at metastasis [63–65]. Many PDGFRA

mutations are sensitive to imatinib in the first-line setting, with

the notable exceptions including the D842V mutation that is

highly resistant to currently approved TKIs. The D842V muta-

tion is the most common PDGFRA mutation and represents a

clear unmet medical need [66]. KIT and PDGFRA mutations are

mutually exclusive and drive a similar repertoire of signal trans-

duction pathways [7]. Other less common oncogenic causes of

GIST, making up less than 10% of total cases, include NF1 loss of

function mutations [67], SDH deficiency [68], BRAF mutation

[69] and NTRK or FGFR1 fusions [70, 71].

Novel tyrosine kinase inhibitors

Akin to other RTK-dependent malignancies, GIST can remain re-

liant upon kinase signaling even following years of effective treat-

ment with TKIs [72, 73]. The liabilities of currently available

TKIs are the development of secondary resistance mutations,

which modify the structure of the kinase domain to prevent

therapeutic KIT inhibition [74]. In imatinib-resistant GIST, suni-

tinib has been found to be most effective in vitro and in clinical

experience at targeting secondary mutations involving the ATP-

binding pocket encoded by exons 13 and 14 [75]. Evaluation of

tissue biopsies following imatinib failure demonstrates the

V654A ATP-binding pocket mutation as the most common site

of imatinib resistance [76]. In contrast, in a phase II trial of regor-

afenib in GIST following failure of imatinib and sunitinib, pre-

and postregorafenib treatment biopsies demonstrated inhibition

of KIT protein phosphorylation in GIST tumors with A-loop

mutations, primarily in exon 17 [77]. Though kinases other than

KIT are inhibited by these TKIs and may contribute to their
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clinical efficacy, these data suggest that later line inhibitors target

a selective range of imatinib resistance mutations. The ability to

pharmacologically target a spectrum of kinase-domain mutations

has generated enthusiasm for the development of additional lines

of TKIs, with specific inhibition of common resistance mutations

in KIT and PDGFRA, several of which are currently under active

clinical investigation.

Crenolanib is a novel inhibitor of type III RTKs in develop-

ment for PDGFRA D842V mutant GIST, among other malignan-

cies. It has been shown to potently and selectively inhibit many

PDGFRA mutations found in GIST [78], and is currently in a

phase III trial for PDGFRA D842V mutant GIST

(NCT02847429). Early results from a phase II trial have been pre-

sented in preliminary form and suggest possible clinical activity.

However, the spectrum of kinase inhibition is broad and suggests

multiple targets in addition to PDGFRA [79].

Imatinib, sunitinib and regorafenib are type II kinase inhibi-

tors, and as such preferentially bind to the inactive kinase con-

formation. As A-loop mutations bias the kinase domain toward

the active state, these existing TKI are relatively less active in the

setting of TKI resistance mutations seen in GIST. In search of a

type I kinase inhibitor that can bind to the kinase domain in its

active form, avapritinib (BLU-285) was developed [30]. This

compound demonstrates type I binding characteristics, with con-

sequential potent inhibition of KIT and PDGFRA A-loop

mutants in vitro and in preclinical models that are superior to

existing type II kinase inhibitors. Analogous to imatinib, avapriti-

nib demonstrates a narrow range of kinase selectivity, potently

inhibiting KIT and PDGFRA but few other kinases, and is more

selective for mutant KIT than its wild-type counterpart.

Avapritinib is currently under clinical investigation for advanced

GIST (NCT02508532) and other KIT and PDGFRA D842V mu-

tant tumors [80].

For KIT and many other kinases, activation requires conform-

ational change in the A-loop that moves it away from the ATP-

and substrate-binding pocket and into contact with a region

called the ‘switch pocket’ or ‘switch control’, which stabilizes the

active kinase conformation [81]. Disruption of this contact with

a small molecule leads to destabilization of the active kinase and,

unlike traditional TKIs, inhibits the kinase in a non-ATP-

competitive manner (Figure 3). Switch pocket inhibitors have

shown preclinical promise by inhibiting a variety of TKI-resistant

mutations within the BCR-ABL1 kinase [82]. A KIT switch

pocket inhibitor, DCC-2618, was developed with the goal of

bypassing secondary kinase resistance mutations and has also

entered clinical trials for GIST and other tumors (NCT02571036)

[84].

Given the emergence of multiple distinct drug-resistance

clones within an individual GIST patient [48, 57], the concept of

combining multiple TKIs targeting a different spectrum of muta-

tions has emerged. Two clinical trials utilizing this approach are

under evaluation, either using the commercially available TKIs

sunitinib and regorafenib (NCT02164240) or the novel TKI

PLX9486 alone or in combination with PLX3397 or sunitinib

(NCT02401815). Furthermore, the use of alternating TKIs in the

first-line setting as a strategy to prevent the emergence of TKI-

resistance is under evaluation (NCT02365441). Early results

from these trials of novel kinase inhibitors, most notably avapriti-

nib and DCC-2618 [85], have demonstrated encouraging

preliminary evidence of disease control through the targeting of

TKI resistance mutations, even in patients treated with multiple

prior lines of TKIs.

Novel targeted therapies

Given the propensity of GIST to generate TKI-resistance muta-

tions, targeting alternative steps in the KIT signaling pathway,

affecting KIT protein maturation or immune-based therapies,

are attractive antineoplastic strategies. Heat shock protein 90

(HSP90) is a protein chaperone that assists in the folding and

intracellular transport of RTKs, among many other client pro-

teins. As HSP90 contributes to many oncogenic pathways, the de-

velopment of HSP90 inhibitors has drawn therapeutic interest in

diverse malignancies [86]. HSP90 inhibitors in pre-clinical mod-

els have been shown to decrease KIT protein levels, induce cell-

cycle arrest and apoptosis and decrease xenograft tumor growth

[52, 87]. However, early clinical trials to date have shown modest

effects in patients with TKI-refractory GIST [88–90]. As an alter-

native means of targeting HSP90, histone deacetylase inhibition

has been found to lead to HSP90 acetylation and destabilize KIT

in vitro [91], though this strategy has yet to reach clinical trial.

As an alternative means of destabilizing or deactivating KIT

protein and enhancing immune response, treatment with KIT-

directed monoclonal antibodies has been shown to decrease KIT

cell-surface expression, enhance macrophage phagocytosis of

GIST cells and decrease tumor xenograft growth [92]. A KIT-

directed antibody is currently in early clinical trials

(NCT02642016). The PDGFRA-directed antibody olaratumab

has been found to block receptor phosphorylation and down-

stream signaling through PDGFRA and control xenograft growth

[93] and may have effects both on tumor cells and the tumor

microenvironment. Olaratumab in combination with doxorubi-

cin has shown a benefit in overall survival in non-GIST soft tissue

sarcoma [94], leading to its approval by the FDA. Considering

the dependence upon mutant PDGFRA signaling in a subset of

GIST, and expression of PDGFRA in many cases of KIT-mutant

GIST, a phase II trial explored the use of olaratumab in GIST

[95]. While there was no clear benefit in this study to patients

with tumors bearing KIT mutations, of six patients with

PDGFRA mutations half experienced prolonged stable disease at

a rate higher than expected from historical controls. Additional

investigation of olaratumab is warranted, possibly in combin-

ation with emerging TKIs, to further evaluate this finding.

KIT and PDGFRA signaling occurs through multiple signal

transduction pathways, and inhibitors of these pathways are

under clinical development [96]. In preclinical models, PI3K in-

hibition [97], AKT inhibition [98], MEK inhibition [99] and

mTOR inhibition [100] have been found to inhibit KIT signaling

and show promising effects in vitro and in xenograft models.

However, early efforts translating these findings into clinical trials

has not succeeded to date [101, 102], though additional trials are

underway with novel agents (NCT01991379, NCT01735968 and

NCT01468688). Signaling through fibroblast growth factor

receptors (FGFRs) has been found to increase following KIT in-

hibition in GIST, resulting in drug resistance through alternative

and complimentary signal transduction, and FGFR inhibition

reduces GIST xenograft tumor growth [103, 104]. Clinical
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evaluation of FGFR inhibitors is currently underway

(NCT02257541). Though there has been substantial preclinical

evidence in support of targeting downstream or alternative sig-

naling mediators in GIST, these results have not yet translated

into clinical impact. This lack of success to date may have several

contributing factors, including compensatory activation of mul-

tiple alternative signaling cascades downstream of RTKs, alterna-

tive RTK-independent mechanisms of survival in advanced GIST

where these novel therapies are initially tested or lack of pairing

with an effective TKI.

There has been an evolving understanding of the tumor micro-

environment and immune interactions in GIST. Immune cell in-

filtration into GIST tumors has been well documented, with

unique immunologic features seen in localized and metastatic

disease and as a consequence of TKI therapy [105, 106]. Imatinib

has been found to have important roles in modulating intratu-

moral T cells to exert an antitumor response, which may in part

work by preventing tumor cell production of the immune inhibi-

tory enzyme indoleamine 2,3-dioxygenase (IDO) [107].

Combination treatment with imatinib and checkpoint inhibitors

have shown superior effects to imatinib alone in pre-clinical

models [107, 108], though efficacy of checkpoint blockade may

depend on concurrent TKI treatment. These findings have broad-

ened interest in studying immunotherapy in many forms for the

treatment of GIST [109]. Efforts at utilizing immune checkpoint

inhibition alone and in combination with TKI treatment are

under early clinical evaluation in GIST (NCT02880020,

NCT03291054, NCT02834013 and NCT02500797) [110].

Discussion

Conclusions

From its initial distinction from other sarcomas with similar hist-

ology, to the identification of activating KIT mutations and the

development of targeted therapies, GIST is an outstanding ex-

ample of scientific and medical progress in oncology. With pro-

longed TKI treatment, secondary KIT resistance mutations arise

which present challenges to available therapies. Currently, mul-

tiple novel kinase inhibitors targeting KIT and PDGFRA resist-

ance mutations through various mechanisms are in clinical trials,

with encouraging preliminary results reported. Additional means

of therapeutically targeting GIST under clinical investigation in-

clude anti-KIT antibodies, modulation of KIT protein matur-

ation or signaling and immune-based therapies. The deep and

maturing understanding of this disease, and the development of

targeted agents based on its scientific understanding, generates

enthusiasm for the future of GIST therapeutics and hope for

those currently treating and suffering from this condition.
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