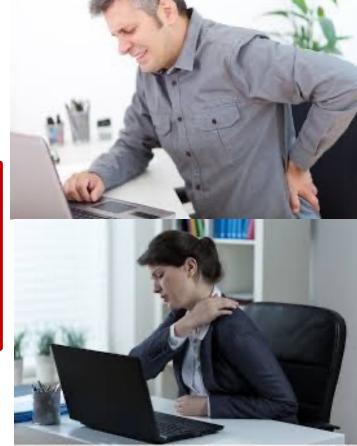
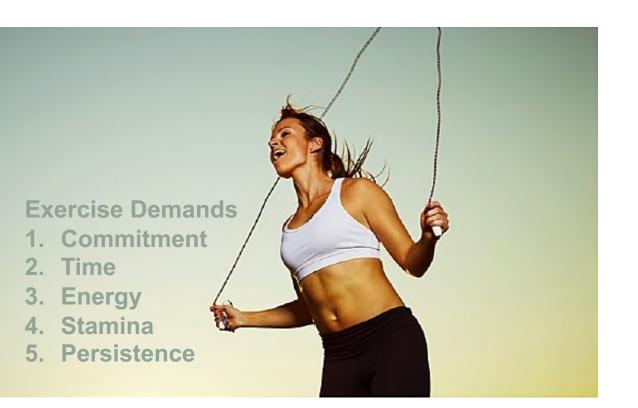
HOW TO REDUCE VISCERAL FAT AND DECREASE HUNGER

BY XANYA SOFRA, PH.D

Physical activity Increases:

- cardiovascular fitness
- * muscle mass
- healthy blood glucose regulation
- reduces visceral fat
- triglycerides
- Iow-density lipoproteins.

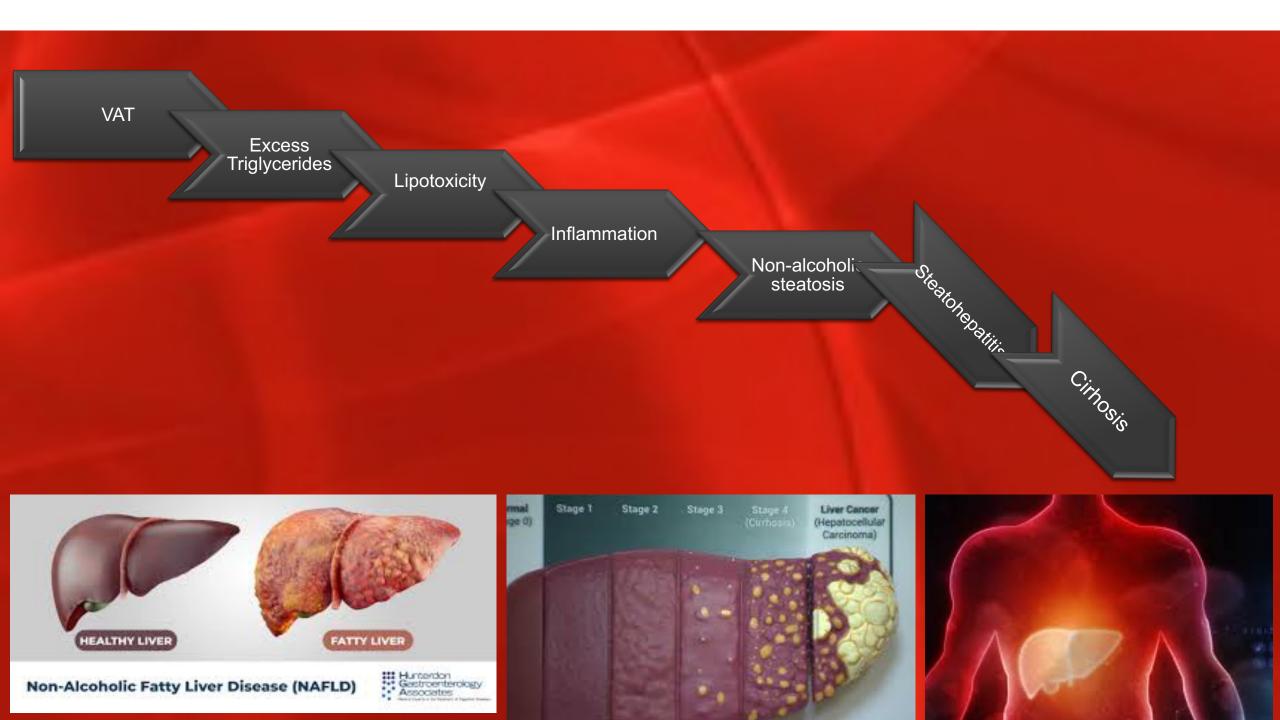

VS


Sedentary lifestyles promote:

- * Adipose tissue accumulation
- * Systemic inflammation
- Oxidative damage
- Chronic Pain

Exercise is not Concerned about

- 1. Time restraints
- 2. Career responsibilities
- 3. Movement restriction due to Obesity
- 4. Chronic Pain
- 5. individual choice


Over a BILLION of individuals obese globally

OBESITY ➡ INSULIN RESISTANCE ➡ 1. TYPE 2 DIABETES 2. HYPERTENSION 3. CARDIOVASCULAR DISEASE (CVD)

CVD kills about 18 million individuals yearly

SIXTEEN MINUTES OF LOW-LEVEL LASER THERAPY (LLLT), COMBINED WITH ONE HOUR OF AEROBIC AND RESISTANCE EXERCISE, REPORTED VISCERAL FAT REDUCTION AS MEASURED BY A CONDUCTANCE SCALE. HOWEVER, IT IS UNCLEAR IF THE RESULTS WERE DUE TO THE LLLT OR THE EXERCISE.

A follow up study by the same investigators demonstrated no visceral fat differences between the experimental and control groups

No External Validity

Duarte, F., Seme-Fiorese, M., Eduard de Aquino, A., Campos, R., Masquio, D., Tock, L., Duarte, A., Bagnato, V., Parizotto, N. (2018). The Effects of Exercise Training Associated With Low-Level Laser Therapy on Biomarkers of Adipose Tissue Transdifferentiation in Obese Women. Lasers Med Sci. 33(6):1245-1254. doi: 10.1007/s10103-018-2465-1.Epub 2018 Feb 23. PMID: 29473115 There are no peer review RF studies on Visceral Fat reduction

LIMITATIONS WITH EXERCISE

Randomized placebo-controlled data demonstrated some modest reduction of visceral adipose tissue, and fatty liver improvement following 8 weeks of aerobic exercise

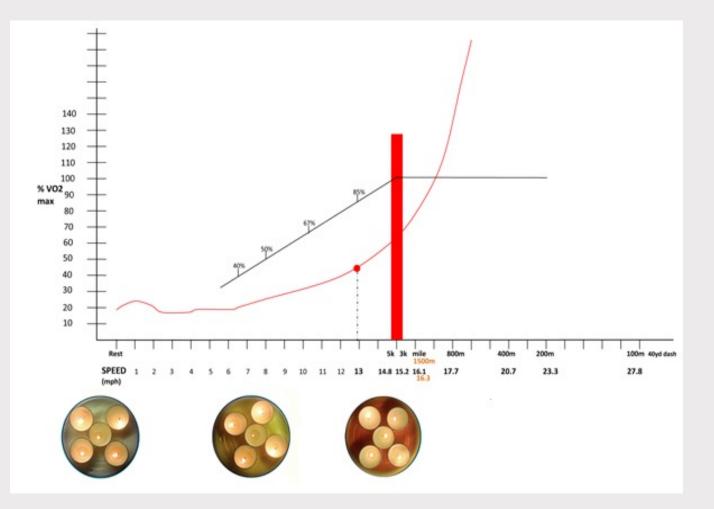
RESISTANCE TRAINING RESULTED IN SIGNIFICANTLY LOWER LEVELS OF THE LOW-DENSITY LIPOPROTEIN (LDL), AND AN IMPROVEMENT IN MUSCULAR STRENGTH, BUT NO DIFFERENCES IN BMI

Exercise Balances Hormones

Easy to exercise when you are young and fit

Not so easy when you have accumulated weight

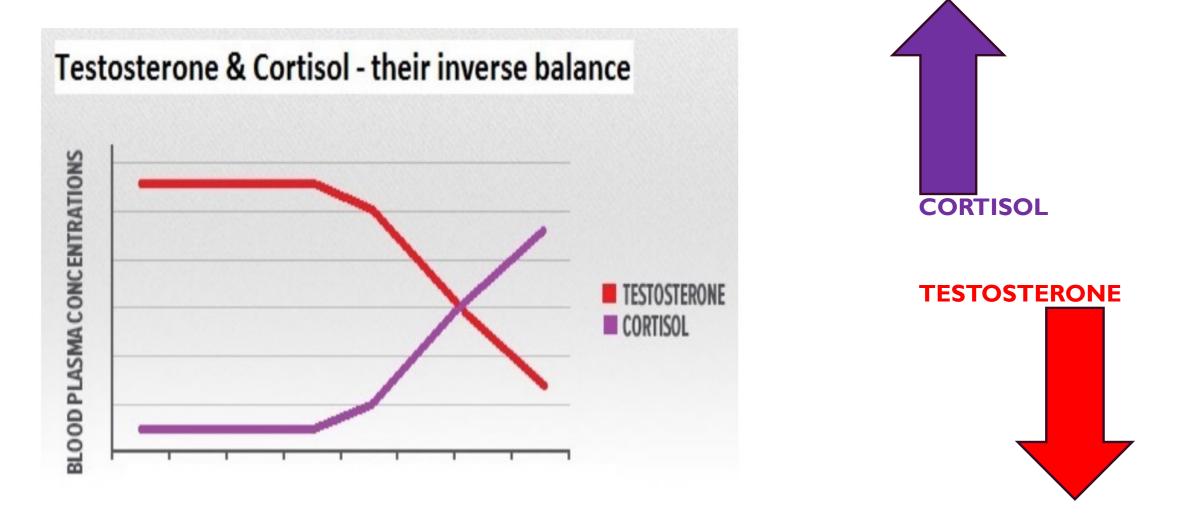
Over 50 years old gym workout

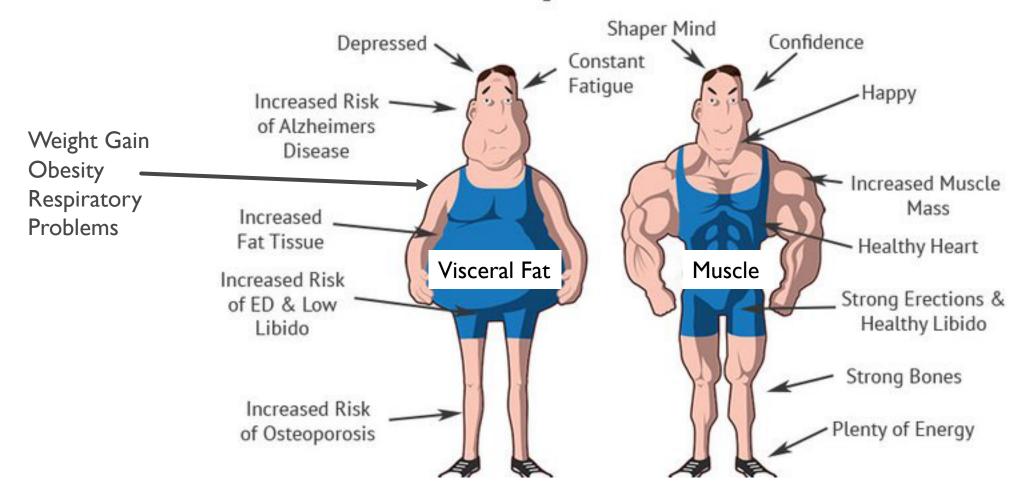

You WILL NOT Get This! 个

You WILL Get This! 个

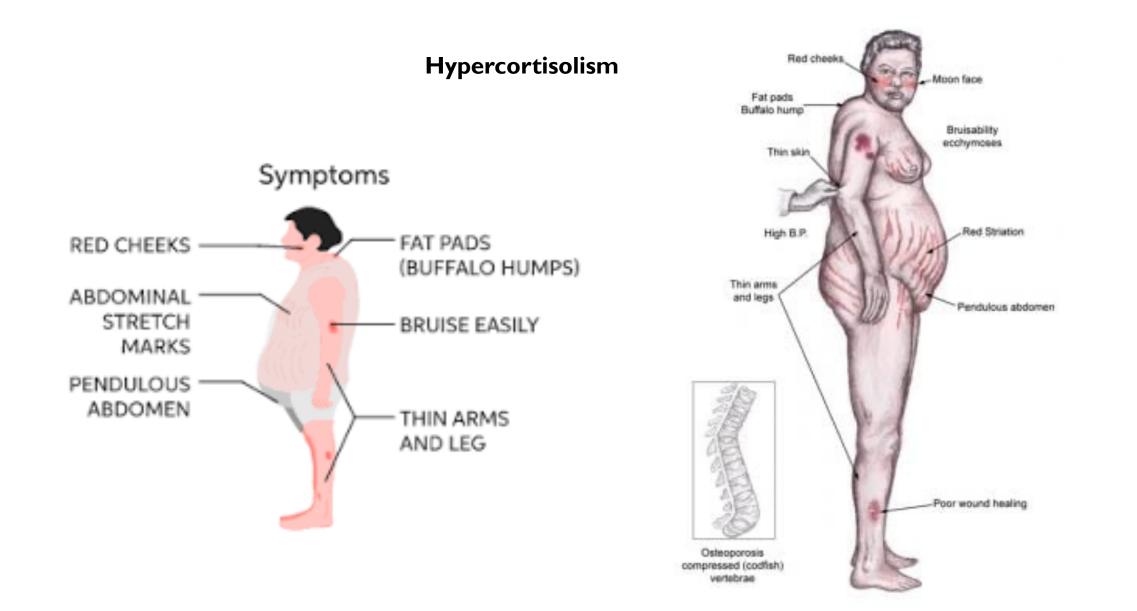
VERY STRENUOUS EXERCISE IS NECESSARY TO GET RID OF VISCERAL FAT

Overtraining can Upset PH balance




lactic acidosis

upsets the body's pH balance


VERY STRENUOUS EXERCISE IS NECESSARY TO GET RID OF VISCERAL FAT Overtraining can cause greater hormone imbalance

Benefits of Optimal Testosterone

This is WHY DO WE NEED THE VIRTUAL GYM

How is the Virtual Gym different than Electrical Muscle Stimulators EMS or ELECTROMAGNETIC DEVICES?

THE VIRTUAL GYM SENDS A SIGNAL TO THE BRAIN AND THE BRAIN ORDERS THE MOTOR NERVES TO CONTRACT THE ENTIRE BODY CAUSING A FULL 10 SECONDS CONTRACTION AS IN A VARIETY OF EXERCISES AS A RESULT, THERE IS AN INCREASE OF HORMONES, ENERGY, OPTIMAL IMMUNITY AND SYSTEMIC BALANCE. THE VIRTUAL GYM OFFERS A BODY TUNING

MUSCLE STIM AND ELECTROMAGNETIC DEVICES SEND MULTIPLE PULSES PER SECOND TO STIMULATE ONLY THE INDIVIDUAL MUSCLES DIRECTLY UNDER THE STIMULATION AREA They DO NOT INVOLVE THE BRAIN

Gender	Age	Ethnicity	Testo sterone Pre (nmol/l)	Testo sterone post (nmol/l)	Normal range (nmol/l)	Testosterone % increase	Cortisol pre (nmol/l)	Cortisol post (nmol/l)	Normal range (nmol/l)	Cortisol% decrease
Male	36	Asian	14.75	17.3	8.64 - 29	17.28%	158	121	80 - 477.3	-23.42%
Male	39	Caucasian	11.34	13.96	8.64 - 29	23.1%	182	144	80 - 477.3	-20.87%
Male	43	Caucasian	12.38	14.6	8.64 - 29	17.92%	219	198	80 - 477.3	-9.6%
Male	35	Asian	15.41	18.65	8.64 - 29	21.02%	143	138	80 - 477.3	-3.49%
Female	42	Asian	0.5	0.92	0.29 - 1.6	84%	185	162	80 - 477.3	-12.43%
Female	45	Indian	0.3	0.63	0.29 - 1.6	110%	198	183	80 - 477.3	-7.6%
Female	49	Caucasian	0.72	1.01	0.29 - 1.6	52.77%	129	112	80 - 477.3	-13.18%
Female	38	Caucasian	0.63	0.78	0.29 - 1.6	23.8%	173	129	80 - 477.3	-25.43%
Female	37	Asian	0.53	0.69	0.29 - 1.6	30.18%	256	231	80 - 477.3	-49.76%
	Me	an Average	lestosterone %	6 Increase		+42.23%	Mean Ave	rage Cortisol	% Decrease	-18.42%

 Table 1. Blood Plasma Subjects' Results on Testosterone and Cortisol for each subject.
 VIRTUAL GYM RESULTS

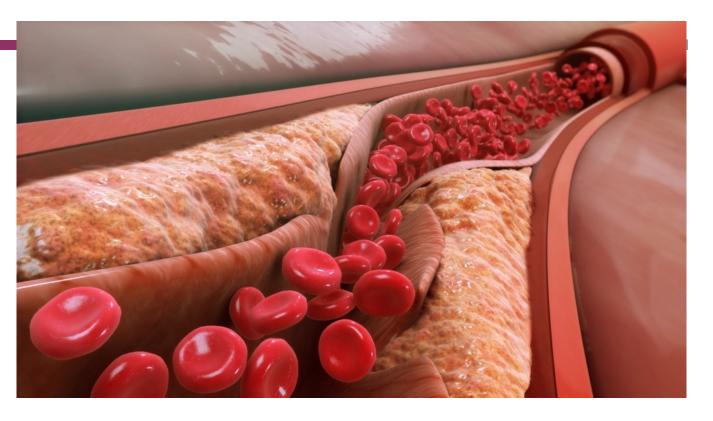
Both testosterone increase and cortisol decrease remained within the normal range. Testosterone overall increase was +42.23%. Testosterone showed a mean average increase of +20.15% increase for males and a mean average of +60.15% for females. Cortisol showed a mean average decrease of -18.42%.

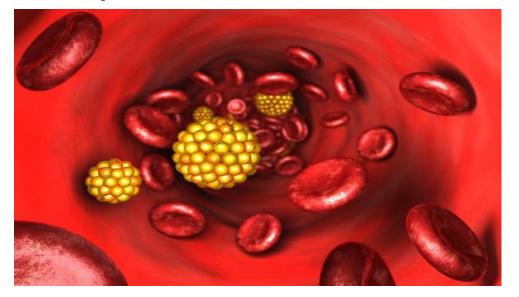
/	Mean Average Testosterone 6 Increase				62.18 %				
G	ENDER	TESTO STERONE PRE	TESTO STERONE POST	Normal Range (nmol/L)	% Increase	CORTISOL PRE	CORTISOL POST	Normal Range (nmol/L)	% decrease
MA	LE	10.92	14.6	8.64-29	33.6%	198	181	80-477.3	8.5%
MA	LE	12.16	15.43	8.64-29	26.9%	177	163	80-477.3	7.9%
FEI	MALE	0.3	0.71	0.29-1.6	136.6%	135	128	80-477.3	5.2%
FEI	MALE	0.4	0.9	0.29-1.6	125%	168	153	80-477.3	8.9%
MA	ALE	15.38	21.6	8.64-29	40.4%	229	198	80-477.3	13.5%
MA	ALE .	13.41	19.92	8.64-29	48.5%	160	149	80-477.3	6.8%
FEI	MALE	0.64	0.92	0.29-1.6	43.7%	116	109	80-477.3	6.4%
FEI	MALE	0.4	0.71	0.29-1.6	77.5%	87	82	80-477.3	5.7%
MA		11.3	14.4	8.64-29	27.4%	221	214	80-477.3	3.1%
FEI	MALE	0.43	0.72	0.29-1.6	67.4%	197	189	80-477.3	4.%

Table 5. Free T3 (triiodothyronine) and CRP (C-Reactive Protein) Free T3 Normal Range: 2:30-4.20 pg/mL, CRP Normal Range <1 mg/dL												
		Free T3	Normal Range:	2:30-4.20 pg/n	nL, CRP Nor	mal Range <1	mg/dL					
Subject NO from	Gender	Age	Medical	Free T3	Free T3	Free T3	CRP PRE	CRP	Normal			
Table 1			Condition	PRE	POST	Normal	mg/dL	POST	Range			
DIABETES				pg/mL	pg/mL	Range		mg/dL	mg/dL			
						pg/mL						
12	Male	46y	Diabetes	1.99	2.69	2.30-4.20	1.45	1.05	<1.00			
13	Male	59y	Diabetes	1.92 2.12	2.78	2.30-4.20	1.29	1.08	<1.00			
14	Fatty Liver				2.55	2.30-4.20	2.51	1.25	<1.00			
15	Male	59y	Diabetes	1.97	2.62	2.30-4.20	1.83	0.96	<1.00			
16	Male	49y	Diabetes	1.18	2.29	2.30-4.20	1.13	0.91	<1.00			
17	Female	69y	Diabetes Fatty Liver	1.43	2.42	2.30-4.20	1.67	1.01	<1.00			
18	Female	53y	Diabetes	1.63	2.15	2.30-4.20	1.09	0.86	<1.00			
19	Female	68y	Diabetes Fatty Liver	1.93	2.88	2.30-4.20	1.18	0.84	<1.00			
20	Female	61y	Diabetes Fatty Liver	2.23	2.37	2.30-4.20	1.94	0.95	<1.00			
21	Male	55y	Diabetes	1.47	2.26	2.30-4.20	2.23	1.03	<1.00			
Subject NO from Table 2 PREDIABETES												
14	Female	33	Prediabetes	2.25	2.77	2.30-4.20	1.09	0.76	<1.00			
15	Male	49y	Prediabetes	2.22	2.58	2.30-4.20	1.59	1.05	<1.00			
16	Male	69y	Prediabetes	1.68	2.51	2.30-4.20	1.19	1.02	<1.00			
17	Male	53y	Prediabetes	1.99	2.89	2.30-4.20	2.42	1.25	<1.00			
18	Female	68y	Prediabetes	1.28	2.25	2.30-4.20	1.98	0.99	<1.00			
19	Female	49y	Prediabetes	1.43	2.36	2.30-4.20	1.52	1.14	<1.00			
20	Female	52y	Prediabetes	1.53	2.14	2.30-4.20	1.75	1.03	<1.00			
14	Female	33	Prediabetes	1.97	2.78	2.30-4.20	1.08	0.89	<1.00			
				32.22	45.29		28.94	18.07				
	Av	erage Free	e T3 Pre & Post	1.79	2.52	Average	1.61	1.00				
				BELOW Normal	Normal	CRP Pre & Post	BELOW Normal	Improved				
			Free T3 Percen	tage Increase	+40.78%	Average CR Decrease	P Percentage	-37.88%				

SKELETAL MUSCLE MASS (SMM) INCREASE

Mean Aver	age % Increase for Skelet	tal Muscle mass	36.45%
GENDER	SKELETAL MUSCLE MASS PRE	SKELETAL MUSCLE MASS POST	SKELETAL MUSCLE MASS (SMM) % Increase
MALE	36.40	43.80	20.3%
MALE	30.30	38.60	27.39%
FEMALE	18.40	27.00	46.79%
FEMALE	17.00	26.80	57.64%
MALE	37.80	44.80	18.5%
MALE	29.40	38.30	30.27%
FEMALE	17.20	26.80	55.81%
FEMALE	19.80	28.80	45.45%
MALE	29.80	37.22	25.89%
FEMALE	17.95	26.63	48.35%


IGF-I INCREASE


Mean Avera	ge IGF-1 % Incr	ease 2	25.85% WITHIN TH	IE NORMAL RANGE
GENDER	IGF-1 PRE	IGF-1 POST	Normal Range (nmol/L)	IGF-1% Increase
MALE	25.97	30.35	15.08-32.5	16.86%
MALE	23.98	31.12	15.08-32.5	29.77%
FEMALE	16.33	20.75	11.25-28.8	27.06%
FEMALE	15.14	19.21	11.25-28.8	26.88%
MALE	22.27	28.11	15.08-32.5	26.22%
MALE	26.98	30.52	15.08-32.5	11.80%
FEMALE	15.86	21.08	11.25-28.8	32.91%
FEMALE	18.55	23.50	11.25-28.8	26.68%
MALE	24.56	31.34	15.08-32.5	27.60%
FEMALE	19.34	25.66	11.25-28.8	32.67%

TRIGLYCERI DES

Laser & RF lipolysis releases triglycerides, glucose & **toxins** into the bloodstream. A healthy liver will handle that. But detox will be a problem with individuals who have fatty liver

Without Exercise, triglycerides and toxins remain in the bloodstream, overwhelm the fatty live and may clog your arteries THIS IS HOW THEVIRTUAL GYM CAN HELP

TRIGLYCERIDES DECREASE

Mean Av	erage Triglyceride		40.7%	
GENDER	TRIGLYCERIDES PRE	TRIGLYCERIDES POST	Normal Range (nmol/L)	TRIGLYCERIDES % Decrease
MALE	2.90	1.23	<1.7	55%
MALE	2.34	0.94	<1.7	59.8 %
FEMALE	2.50	1.50	<1.7	40%
FEMALE	2.00	1.44	<1.7	28%
MALE	0.80	0.53	<1.7	33%
MALE	0.90	0.64	<1.7	41.1%
FEMALE	1.00	0.60	<1.7	40%
FEMALE	0.90	0.58	<1.7	35%
MALE	1.32	0.92	<1.7	30%
FEMALE	0.98	0.54	<1.7	44.9%

VLDL (THE BAD CHOLESTEROL)

DECREASE

Mean Averag	ge VLDL Decrea	ise		71.88%			
GENDER	VLDL PRE	VLDL POST	Normal Range (nmol/L)	VLDL CHOLESTEROL % Decrease			
MALE	1.48	0.24	<1.6	83.78%			
MALE	1.55	0.64	<1.6	58.7%			
FEMALE	0.80	0.20	<1.6	75%			
FEMALE	0.86	0.27	<1.6	68.6%			
MALE	0.52	0.04	<1.6	92.3%			
MALE	1.36	0.24	<1.6	82.35%			
FEMALE	0.68	0.05	<1.6	92.64%			
FEMALE	0.53	0.26	<1.6	50.9%			
MALE	1.53	0.67	<1.6	56.20%			
FEMALE	1.75	0.73	<1.6	58.28%			

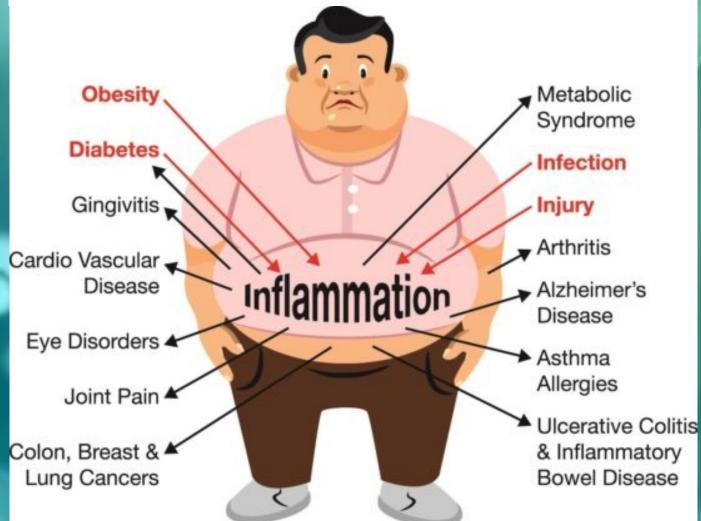


	Table 4. PREDIABETICS Triglycerides, High-Density Protein (HDL),											
	Presence of Fatty Liver on Sonography Reports Pre and Post Treatment.											
Trigly	Triglycerides Normal Range: > 150 mg/dL;											
High-	Density Lipo	protein (H	IDL) Normal Rang	ge: Men >60 mg/dL	; Women >60 mg	g/dL						
	High-Density Lipoprotein (HDL) At Risk: Men: < 40 mg/dL; Women < 50 mg/dL											
No	Gender	Age	Medical	Triglycerides	Triglycerides	Triglycerides	HDL	HDL	HDL			
			Diagnosis	mg/dL	mg/dL	mg/dL	mg/dL	mg/dL	mg/dL			
			Pre Treatment	Pre	Post	decrease	Pre	Post	Increase			
1	Female	43y	Prediabetes	294	197	Improved	36	42	At risk			
						(abnormal)						
2	Female	27y	Prediabetes	192	126	Normal	36	48	At risk			
3	Female	63y	Prediabetes	155	117	Normal	45	47	At risk			
4 Female 24y Prediabetes 88 86 Normal 45 52 Normal												
5	Female	30y	Prediabetes	156	124	Normal	37	46	At risk			
6 Male 15y Prediabetes 187 132 Normal 36 42 Norr												
7 Male 58y Prediabetes 141 136 Normal 39.1 46.8 Normal												
8	Male	46y	Prediabetes	262	158	Improved (abnormal)	34.3	56	Normal			
9	Female	24y	Prediabetes	186	148	Normal	41	58	Normal			
10	Male	40y	Prediabetes	178	137.6	Normal	34.8	45.4	Normal			
11	Male	50y	Prediabetes	169	142.8	Normal	34.7	43.0	Normal			
12	Male	39y	Prediabetes	172	139.2	Normal	29.6	48.8	Normal			
13	Male	31y	Prediabetes	159	122.4	Normal	26.6	53.4	Normal			
14	Female	33	Prediabetes	163.6	134.8	Normal	39.3	67.2	Normal			
15	Male	49y	Prediabetes	158.9	128.3	Normal	34.7	53.1	Normal			
16	Male	69y	Prediabetes	184.6	148.9	Normal	29.4	54	Normal			
17	Male	53y	Prediabetes	176	146.8	Normal	39.2	51.6	Normal			
18	Female	68y	Prediabetes	154.7	129.6	Normal	47.2	58.5	Normal			
19	Female	49y	Prediabetes	154.6	121.7	Normal	47.4	52.5	Normal			
20	Female	52y	Prediabetes	189	138.5	Normal	46.2	57.9	Normal			
	TOTAL 3520.4 2714.6 785.5 1023.2											
	AVERAGE 176.02 135.73 39.25 51.16											
				HIGH	Normal		LOW	Normal				
Average decrease in Triglycerides -22.88 Average Increase in HDL 30.34												

Blo	Fasting Blood Glucose: Normal <100 mg/dL; Prediabetes = 100 - 125 mg/dL; Diabetes >126 mg/dL Blood Glucose Postprandial (PP): Normal < 140 mg/dL; Prediabetes = 140 - 199 mg/dL; Diabetes > 199 mg/dL											
s	G		Medical Diagnosis Post Tx	Blood Glucose Fasting mg./dL Pre Tx	Blood Glucose Fasting mg/dL Post Tx	Blood Glucose Normal <100 mg/dL Post Tx	Blood Glucose PP mg/dL Pre Tx	Blood Glucose PP mg/dL Post Tx	Blood Glucose PP Normal < 140 mg/dL Post Tx			
1	F	45	Diabetes Fatty liver	178	104	Prediabetic	260	185	Prediabetic			
2	M	69	Diabetes	209	108	Prediabetic	230	125	Normal			
3	M	46	Diabetes	131.7	99.15	Normal	290	183.2	Prediabetic			
4	F	50	Diabetes	177	106	Prediabetic	221	176	Prediabetic			
5	F	49	Diabetes Fatty Liver	192	102	Prediabetic	248	175	Prediabetic			
6	F	48	Diabetes Fatty Liver	189	115	Prediabetic	224	163	Prediabetic			
7	м	44	Diabetes Fatty Liver	178	109	Prediabetic	196	162	Prediabetic			
8	F	45	Diabetes Fatty Liver	186	117	Prediabetic	197	126	Normal			
9	F	47	Diabetes Fatty Liver	169	102	Prediabetic	243	178	Prediabetic			
10	M	45	Diabetes	135	92	Normal	218	156	Prediabetic			
11	M	82	Diabetes	136	87	Normal	191	142	Prediabetic			
12	M	46	Diabetes	134	97	Normal	216.3	139	Normal			
13	M	59	Diabetes	106.8	82	Normal	199.9	133	Normal			
14	F	45	Diabetes Fatty Liver	186	117	Prediabetic	207.5	123	Normal			
15	M	59	Diabetes	188	119	Prediabetic	202	133	Prediabetic			
16	M		Diabetes	141	99	Normal	125.6	144	Prediabetic			
17	F	69	Diabetes Fatty Liver	136	87	Normal	231.4	131	Normal			
18	F	53	Diabetes	190	108.5	Prediabetic	212	118	Normal			
19	F	68	Diabetes Fatty Liver	176	92	Normal	209.8	98	Normal			
20	F	61	Diabetes Fatty Liver	157.5	98.5	Normal	204	103	Normal			
21	м	55	Diabetes Fatty Liver	194	107	Prediabetic	231	138	Normal			
		Tota		3490	214815		4557.5	3031.2				
			Average	166.19	102.29	Normal	237.02	144.34	Normal			
			age Of Blood	Blood			Blood PP					
		Gluce	ose Decrease	Fasting			Glucose					
				Glucose	-38.44%		% Decrease	-39.1%				
				%								
				Decrease								

Table 2 PREDIABETICS Pre and Post Treatment Results on Insulin (Fasting and PP)												
	Insulin Postprandial (P											
Insulin	Insulin Fasting	Insulin PP	Insulin	Insulin PP								
Fasting	Normal	mIU/ml	PP	Normal <75								
mIU/ml	< 25 mIU/ml	Pre	mIU/ml	mIU/ml								
Post			Post									
15.7	Normal	174.3	73.9	Normal								
8.7 Normal		136	74	Normal								
12.27	Normal	150	76.2	Normal								
21	Normal	139.9	71.8	Normal								
18.5	Normal	241	24.6	Normal								
10.9	Normal	136.6	74.8	Normal								
24	Normal	246	68.4	Normal								
12.56	Normal	68.8	23.5	Normal								
24.9	Normal	69.7	72	Normal								
11.8	Normal	127.2	73.4	Normal								
14.6	Normal	102.8	96.8	Prediabetes								
14.6	Normal	103.9	68.8	Normal								
22.8	Normal	116.3	73.4	Normal								
18.6	Normal	109.3	68.4	Normal								
24.8	Normal	126.4	73.8	Normal								
27.4	Prediabetic	112.4	83.74	Prediabetic								
23.12	Normal	93.4	71.6	Normal								
28.9	Prediabetic	77.2	70.65	Normal								
23.4	Normal	81.4	72.5	Normal								
21.7	Normal	76.8	64.3	Normal								
380.25		2489.4	1376.59									
19.02	NORMAL	124.47	68.83	NORMAL								
		PP										
-54.52%		INSULIN %	-44.7%									
			PP	-54.52% PP INSULIN % -44.7%								

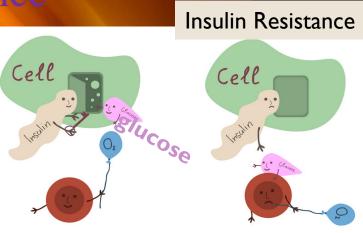
Why is Visceral Fat a Problem? INFLAMMATION & TOXICITY

Ferrucci L., Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews, 2018 <u>*Cardiology*</u> volume 15, pages505–522(2018). <u>https://www.nature.com/articles/s41569-018-0064-2</u>. 001 https://doi.org/10.1038/s41569-018-0064-2

J S Yudkin, <u>C D Stehouwer</u>, <u>J J Emeis</u>, <u>S W Coppack</u>, C-reactive Protein in Healthy Subjects: Associations With Obesity, Insulin Resistance, and Endothelial Dysfunction: A Potential Role for Cytokines Originating From Adipose Tissue? Arteriosclerosis Thromb Vasc Biol. 1999 Apr;19(4):972-8.

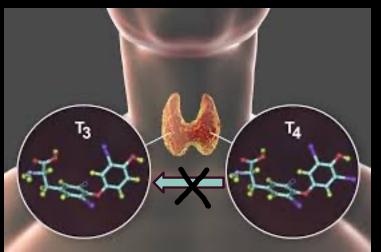
doi: 10.1161/01.atv.19.4.972

Alexopoulos N., Katritsis D, Raggi P. 2014. Visceral Adipose Tissue as a source of inflammation and promoter of arherosclerosis. <u>Volume 233, Issue 1</u>, Pages 104-112. <u>https://doi.org/10.1016/j.atherosclerosis.2013.12.023</u>


Wener, MH, Daum PR, McQuillan GM. The influence of age, sex, and race on the upper reference limit of serum C-reactive protein concentration. *J Rheumatol* 2000; 27:2351–9. https://pubmed.ncbi.nlm.nih.gov/11036829/PMID: 11036829
Skouby S., Gram J., Andersen L., Sidelmann J., Petersen K., Jespersen J., Hormone replacement therapy: Estrogen and progestin effects on plasma C-reactive protein concentrations. Americal Journal of Obstetrics and Gynecology. 2002 <u>Volume 186, Issue 5</u>. Pages 969-977. <u>https://doi.org/10.1067/mob.2002.122414</u>
Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante AW, Jr. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006; *IIG*.115–124. https://pubmed.ncbi.nlm.nih.gov/16341265/DOI: 10.1172/JCI24335

Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003; *112* 1821–1830. https://pubmed.ncbi.nlm.nih.gov/14679177/ DOI: 10.1172/JCI19451 Byrne C.D. Ectopic fat, insulin resistance and non-alcoholic fatty liver disease. Proc. Nutr. Soc. 2013;72:412–419. doi: 10.1017/S0029665113001249. PMID: **23668723** DOI: 10.1017/S0029665113001249

Marz W., Scharnagl H., Winkler K., Tiran A., Nauck M., Boehm B., Windelmann B. Low-Density Liposprotein Triglycerides associated with Low-Grade Systemic Inflammation, Adhesion Molecules, and Angiographic Coronary Artery Disease. Circulation 2004. 110: 3068-3074. <u>https://doi.org/10.1161/01.CIR.0000146898.06923.80</u>


Excess adiposity

Hormonal imbalance

Dyslipidemia

	TABLE 6 Pre and Post Treatment Results on BMI, Overall Fat, Visceral Fat, and Skeletal Muscle Mass (SMM)												
S #	Gender	Age	MEDICAL CONDITION	BMI Pre	BMI Post	Overall Fat Pre	Overall Fat Post	Visceral Fat Pre	Visceral Fat Post	SMM Pre	SMM Post		
I	Female	46	Diabetes Fatty Liver	39.2	36.2	44.6	36.8	35	24.8	22.1	29.4		
2	Female	48	Diabetes Fatty Liver	41.2	38.5	42.9	33.5	33	29	23.8	29.7		
3	Male	44	Diabetes Fatty Liver	42.6	38.2	34.9	24.6	29	26	34.5	47.3		
4	Female	48	Diabetes Fatty Liver	32.0	30.1	42.9	33.5	29	24	23.8	31.8		
5	Female	45	Diabetes Fatty Liver	29.1	25.1	34	28.7	31	27	20.7	26.3		
6	Female	24	Prediabetes	29.3	25.0	34.7	33	9.5	5	21.8	24.2		
7	Male	40	Prediabetes	33.7	25.1	33.0	13.4	21	13.4	28.8	31.2		
8	Male	39	Prediabetes	36.2	32.0	41.1	37.4	18	14.5	36	38.9		
9	Male	31	Prediabetes	43.8	39.1	37.6	34.6	30	25	25.2	27.4		
10	Male	46	Diabetes	39.2	24.6	42.3	25.6	24.7	10.8	28.9	39.4		
11	Male	59	Diabetes	36.5	28.9	37.9	31.6	32.3	16.4	26	41		
12	Female	45	Diabetes Fatty Liver	41.3	27.4	43.8	22.7	39.5	19.4	23.8	38.5		
13	Male	59	Diabetes	34.2	24.8	36.9	25.8	35.4	22.8	28.9	41.2		
14	Male	49	Diabetes	37.4	29.5	41.3	22.5	29.3	18.3	35.7	42.6		
15	Female	69	Diabetes Fatty Liver	42.6	36.8	44.2	37.9	34.6	31.7	27.9	33.2		
16	Female	53	Diabetes	33.5	25.1	30.1	25.7	38.2	30.1	32.4	39.9		
17	Female	68	Diabetes Fatty Liver	40.7	36.1	42.3	39.8	37.4	33.8	30.2	39.7		
18	Female	61	Diabetes Fatty Liver	34.2	25.3	36.7	33.2	38	36.1	23.8	28.6		
19	Male	55	Diabetes	36.7	26.4	38.7	29.6	33.5	23.2	27.9	39.4		
20	Female	33	Prediabetes	36.8	22.5	39.2	21.3	25.3	9.4	32.5	43.2		
21	Male	49	Prediabetes	35.9	24.6	39.4	18.4	24.3	8.5	35.4	48.3		
22	Male	69	Prediabetes	38.2	33.7	39.6	31.5	28.3	24.6	31.4	37.8		
23	Male	53	Prediabetes	37.2	30.3	40.2	29.3	36.2	30.6	29.3	36.7		
24	Female	68	Prediabetes	35.7	29.4	33.6	31.4	37.3	32.9	30.8	34.2		
25	Female	49	Prediabetes	35.3	25.4	37.4	21.5	27.6	10.8	38.9	47.2		
26	Female	52	Prediabetes	36.1	29.6	36.5	28.3	29.7	25.3	37.5	41.3		
27	Female	37	Prediabetes	39.2	23.9	47.3	24.1	28.4	12.3	24.6	42.8		
ΤΟΤΑΙ				997.8	793.6	1013.5	775.7	815.5	585.7	782.6	1001.2		
MEAN	AVERAGE			36.9	29.4	38.9	28.73	30.20	21.69	28.98	37.1		
MEAN -7.5	MEAN OVERALL BMI DECREASE: -7.5					VERAGE OVERA CREASE %	LL MEAN VIS DECREAS -28.17%	CERAL FAT E %	MEAN SMI +28.02%	M % INCREASI	E		

		od Test Results on C-rea diovascular risk accordi						scular risk according to AH	A/CDC	CRP: 1.0-3.0 mg/dL
Gender	Age	Medical History	BMI PRE		CRP POST . mg/dL	Normal Range mg/dL	Cortisol Total, Serum ug/dL, PRE		POST ug	Normal Range g/dL
Female	56	Diabetes Fatty Liver	32.6	1.56	1.02	<1.00	18.44	15.66	3.0	09-25.0
Female	52	Prediabetes Fatty Liver	36.5	1.09	1.06	<1.00	21.89	20.12	3.(09-25.0
Female	49	Hypertension Hypothyroidism	28.6	2.31	1.15	<1.00	24.98	18.47	3.0	09-25.0
Female	63	Hypertension Fatty Liver	34.9	1.93	1.06	<1.00	23.43	21.98	3.0	09-25.0
Female	51	Prediabetes Hypertension Hypothyroidism	34.2	1.43	1.22	<1.00	18.46	15.34	3.0	09-25.0
Female	55	Prediabetes Fatty Liver Hypothyroidism	35.4	1.64	1.01	<1.00	19.33	14.75	3.0	09-25.0
Female	48	Prediabetes Fatty Liver Hypothyroidism	30.9	1.04	0.86	<1.00	9.67	8.23	3.0	09-25.0
Female	61	Hypertension Fatty Liver	32.7	1.08	0.74	<1.00	14.76	10.65	3.0	09-25.0
Female	46	, Heart Disease	29.5	1.84	0.98	<1.00	17.22	13.95	3.(09-25.0
Female	58	Prediabetes Fatty Liver Hypothyroidism	33.8		1.03	<1.00	21.28	17.24		09-25.0
			MEAN TOTAL	I.60 mg/dL			18.95 ug/dL		15.64 ug/dL	

Mean Average CRP % Decrease. -36.87 mg/dL

Mean Average Cortisol %Decrease. -17.47% mg/dL

Table 3. Blood Test Results on Creatinine and Bilirubin								
Gender/ Age	BMI	Medical History	Creatinine Serum PRE mg/dL	Creatinine Serum POST mg/dL	Creatinine Normal Range mg/dL	Bilirubin PRE mg/dL	Bilirubin POST mg/dL	Bilirubin Normal Range mg/dL
F/56	32.6	Diabetes Fatty Liver	1.15	0.94	0.5-1.10	1.31	1.09	0.3-1.2
F/52	36.5	Prediabetes Fatty Liver	1.03	0.87	0.5-1.10	1.44	1.63	0.3-1.2
F/49	28.6	Hypertension Hypothyroidism	1.37	1.05	0.5-1.10	1.27	1.15	0.3-1.2
F/63	34.9	Hypertension Fatty Liver	1.23	0.96	0.5-1.10	1.35	1.18	0.3-1.2
F/51	34.2	Prediabetes Hypertension Hypothyroidism	1.14	1.02	0.5-1.10	1.18	1.08	0.3-1.2
F/55	35.4	Prediabetes Fatty Liver Hypothyroidism	1.04	1.01	0.5-1.10	1.26	1.16	0.3-1.2
F/48	30.9	Prediabetes Fatty Liver Hypothyroidism	0.97	0.82	0.5-1.10	1.23	1.13	0.3-1.2
F/61	32.7	Hypertension Fatty Liver	1.18	0.98	0.5-1.10	1.33	1.05	0.3-1.2
F/46	29.5	Heart Disease	1.11	0.87	0.5-1.10	1.22	1.07	0.3-1.2
F/58	33.8	Prediabetes Fatty Liver Hypothyroidism	1.96	1.23	0.5-1.10	1.28	1.19	0.3-1.2

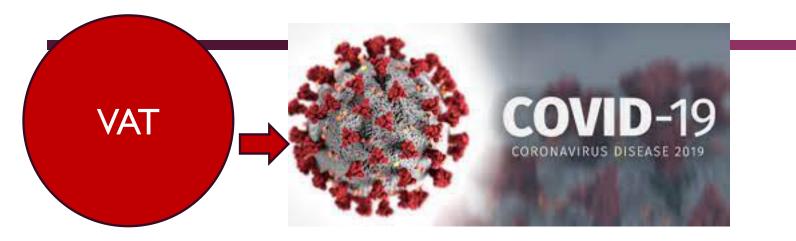
Mean Average Creatinine % Decrease. -19.67 mg/dL. (exits the body as a waste product) Mean Average Bilirubin % Decrease -8.85 mg/dL (excess may indicate jaundice)

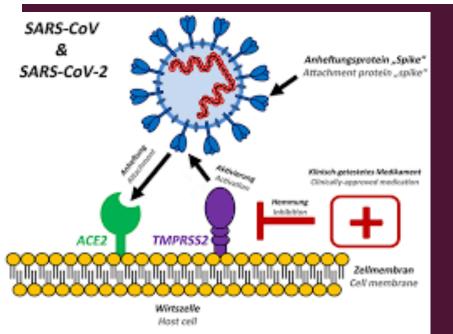
Diabetic Patient with back Pain and Fatty Liver. Measures: Sonogram, Blood Test, Measuring tape, Tanita Scale, Self Reports

BEFORE	AFTER				
Real Age: 43 y.o. female	METABOLIC AGE 32				
Severe Obesity FAT 36.5 %	FAT% 25.8				
Diabetic Status: On Insulin HbA1c- 10.8	On Oral Drugs HbA1c – 7.8				
Visceral Fat Evidence Sonography Reports: Fatty Liver	NO FATTY LIVER				
Lower Back Pain	NO BACK PAIN				
Weight: 92.2 Kg	Significant Weight Loss 83.7 KG				
Measurement: Umbilicus: 111cm	Significant Improvement: 100cm				
Measurement: Lower Abdomen: 115cm	Significant Improvement:100cm				

Before After 15 Treatments

49 Year old Patient suffering from Insulin Resistance and Diabetes. Measures: Sonogram, Tanita scale, Blood Test, Measuring Tape, Self Reports


	Before treatment	After treatment
Weight (kg)	75.8	67.2
Fat %	36.5	25.8
Upper abdomen(cm)	97	82
Umblicus (cm)	100	88
Lower abdomen (cm)	105	94
Insulin-Fasting(miU/mi)	25.8	8.7
Insulin PP (mlU/ml)	136	14
Triglycerides (mg/dl)	294	197
HDL(mg/dl) good choletserol	36	42
Back pain	Lower Back pain +++	Significant decrease in back pain



VIRTUAL GYM BALANCES HORMONES

VIRTUAL GYM INCREASES IMMUNITY

VAT has a higher expression of ACE2 receptors

MUSCLE HAS THE LEAST ACE2 RECEPTORS

TYPE I INTERFERONS & IMMUNITY

INDIVIDUALS WITH A STRONGER INTERFERONS RESPONSE HAVE MILDER COVID-19 SYMPTOMATOLOGY

nature immunology

Explore content - About the journal - Publish with us -

nature > nature immunology > letters > article

Letter Published: 04 December 2020

Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison

Ioanna-Evdokia Galani, Nikoletta Rovina, Vicky Lampropoulou, Vasiliki Triantafyllia, Maria Manioudaki, Eleftherios Pavlos, Evangelia Koukaki, Paraskevi C. Fragkou, Vasiliki Panou, Vasiliki Rapti, Ourania Koltsida, Andreas Mentis, Nikolaos Koulouris, Sotirios Tsiodras, Antonia Koutsoukou & Evangelos Andreakos 🖂

Nature Immunology 22, 32-40 (2021) Cite this article 21k Accesses | 181 Citations | 95 Altmetric | Metrics

Abstract

A central paradigm of immunity is that interferon (IFN)-mediated antiviral responses precede pro-inflammatory ones, optimizing host protection and minimizing collateral damage 1,2 Here, we report that for coronavirus disease 2019 (COVID-19) this paradigm does not apply By investigating temporal IFN and inflammatory cytokine patterns in 32 moderate-to-severe patients with COVID-19 hospitalized for pneumonia and longitudinally followed for the development of respiratory failure and death, we reveal that IFN-A and type LIFN production were both diminished and delayed, induced only in a fraction of patients as they became critically ill. On the contrary, pro-inflammatory cytokines such as tumor necrosis factor (TNF), interleukin (IL)-6 and IL-8 were produced before IFNs in all patients and persisted for a prolonged time. This condition was reflected in blood transcriptomes wherein prominent IFN signatures were only seen in critically ill patients who also exhibited augmented inflammation. By comparison, in 16 patients with influenza (flu) hospitalized for pneumonia with similar cliniconathological characteristics to those of COVID-19 and 24 nonhospitalized patients with flu with milder symptoms, IFN-λ and type I IFN were robustly induced earlier, at higher levels and independently of disease severity, whereas pro-inflammatory cytokines were only acutely produced. Notably, higher IEN-A concentrations in patients with COVID-19 correlated with lower viral load in bronchial aspirates and faster viral clearance and a higher IFN-λ to type I IFN ratio correlated with improved outcome for critically ill patients. Moreover altered cytokine patterns in patients with COVID-19 correlated with longer hospitalization and higher incidence of critical disease and mortality compared to flu. These data point to an untuned antiviral response in COVID-19, contributing to persistent viral presence, hyperinflammation and respiratory failure.

COAID-1A

Hajar Owji^a, Manica Negahdaripour^{a, b} 옷 쯔, Nasim Hajighahramani^c

Show more V

🚓 Share 📑 Cite

https://doi.org/10.1016/j.intimp.2020.106924

Get rights and content

Highlights

- Immunotherapy, as a viable approach to curtail COVID-19, could be done through:
- Active immunization by vaccines or direct interferon administration;
- Passive immunization by convalescent plasma or synthesized antibodies;
- Immunomodulatory drugs such as JAK inhibitors and corticosteroids.
- Immunotherapy should be adapted to the patient condition and disease stage.

Abstract

COVID-19, the disease induced by the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has imposed an unpredictable burden on the world. Drug repurposing has been employed to rapidly find a cure; but despite great efforts, no drug or vaccine is presently available for treating or prevention of COVID-19. Apart from antivirals, immunotherapeutic strategies are suggested considering the role of the immune response as the host defense against the virus, and the fact that SARS-CoV-2 suppresses interferon induction as an immune evasion strategy. Active immunization through vaccines, interferon administration, passive immunotherapy by convalescent plasma or synthesized monoclonal and polyclonal antibodies, as well as immunomodulatory drugs, are different immunotherapeutic approaches that will be mentioned in this review. The focus would be on passive immunotherapeutic interventions.

Interferons might be helpful in some stages. Vaccine development has been followed with unprecedented speed. Some of these vaccines have been advanced to human clinical trials. Convalescent plasma therapy is already practiced in many

Open Access Review

Type I Interferons in COVID-19 Pathogenesis

by 😤 Enrico Palermo ^{1,*} 🗵 💿, 😤 Daniele Di Carlo ¹ 🖾 💿, 🔗 Marco Sgarbanti ² 🖾 💿 and 🤗 John Hiscott ^{1,*} 🖾

- ¹ Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy
- ² Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
- * Authors to whom correspondence should be addressed.

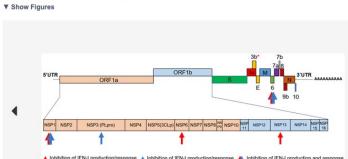
Academic Editors: Alessandra Soriani and Alessandra Zingoni

Biology 2021, 10(9), 829; https://doi.org/10.3390/biology10090829

Received: 2 August 2021 / Revised: 21 August 2021 / Accepted: 23 August 2021 / Published: 26 August 2021

(This article belongs to the Special Issue Type I Interferons: A Double-Edged Sword of Immune Regulation and Cancer Progression)

Simple Summary

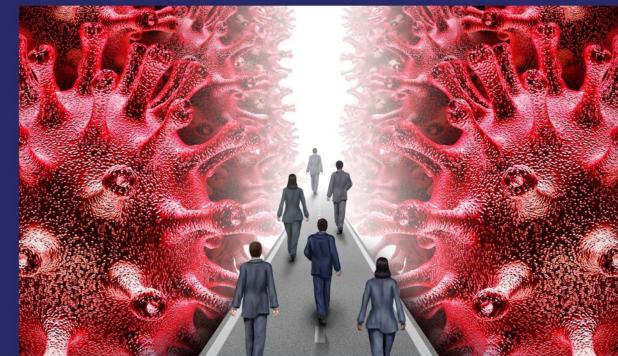

The innate antiviral immune response is essential to limit virus replication at early stages of infection, thus preventing viral spre and pathogenesis. Nevertheless, viruses have evolved different strategies to evade innate immune control. In this review, we describe recent findings delineating the relationship between SARS-CoV-2 and type I IFN response in vitro and in vivo and rep current studies using IFN-based therapy for COVID-19 treatment.

Abstract

Among the many activities attributed to the type I interferon (IFN) multigene family, their roles as mediators of the antiviral immi response have emerged as important components of the host response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Viruses likewise have evolved multiple immune evasion strategies to circumvent the host immune response and promote virus propagation and dissemination. Therefore, a thorough characterization of host-virus interactions is essential to understand SARS-CoV-2 pathogenesis. Here, we summarize the virus-mediated evasion of the IFN responses and the viral functions involved, the genetic basis of IFN production in SARS-CoV-2 infection and the progress of clinical trials designed to utilize type I IFN as a potential therapeutic tool. View Full-Text

Keywords: type I IFNs; innate immunity; SARS-CoV-2; COVID-19

by SARS-CoV-2



by SARS-CoV

Inhibition of IFN-I production and response in both SARS-CoV-2 and SARS-CoV

COVID-19 appears to use mutations adaptively, in the service of its survival and expansion. It circumvents the errors accumulated by random amino acid switches that eradicated previous coronaviruses. To date the infectiousness of this pandemic is exponentially increasing, evolving into even more elusive pernicious variants. By apprehending the ACE2 receptors to contaminate human cells, COVID-19 neutralizes our primary antiinflammatory and anti-fibrotic defences. The body counterattacks by unleashing chemokines, interleukins, leukocytes, TNF, CSF, but COVID-19 has a strategy: First, it overwhelms the innate response, then it manoeuvres to avoid exposure by inhibiting the adaptive mechanisms of viral recognition. Undetected, COVID- 19 multiplies, while the immune system is blindly shooting in the dark, ravaging the vital organs of the host that is fatally injured by the cytokine storm. Vaccines' safety and effectiveness is evaluated along with new therapeutics. The focus is on COVID-19 susceptibility factors, hormonal imbalance, elevated glucose and lipids, obesity, and the male gender. Preventive methods designed to empower immunity are explored.

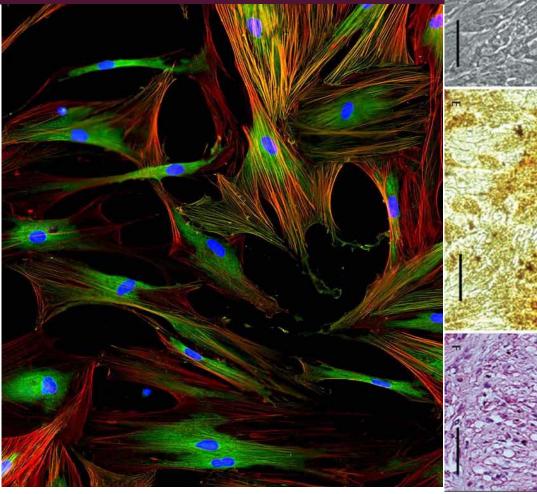
Checkmate by a Protean Invisible Enemy

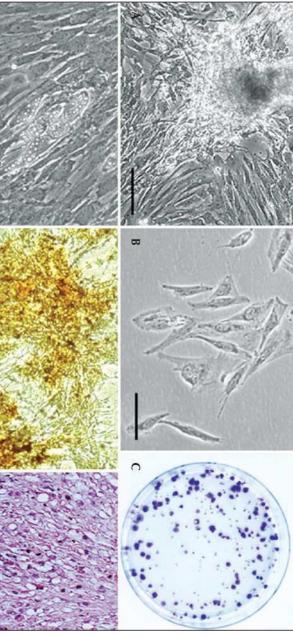
Xanya Sofra

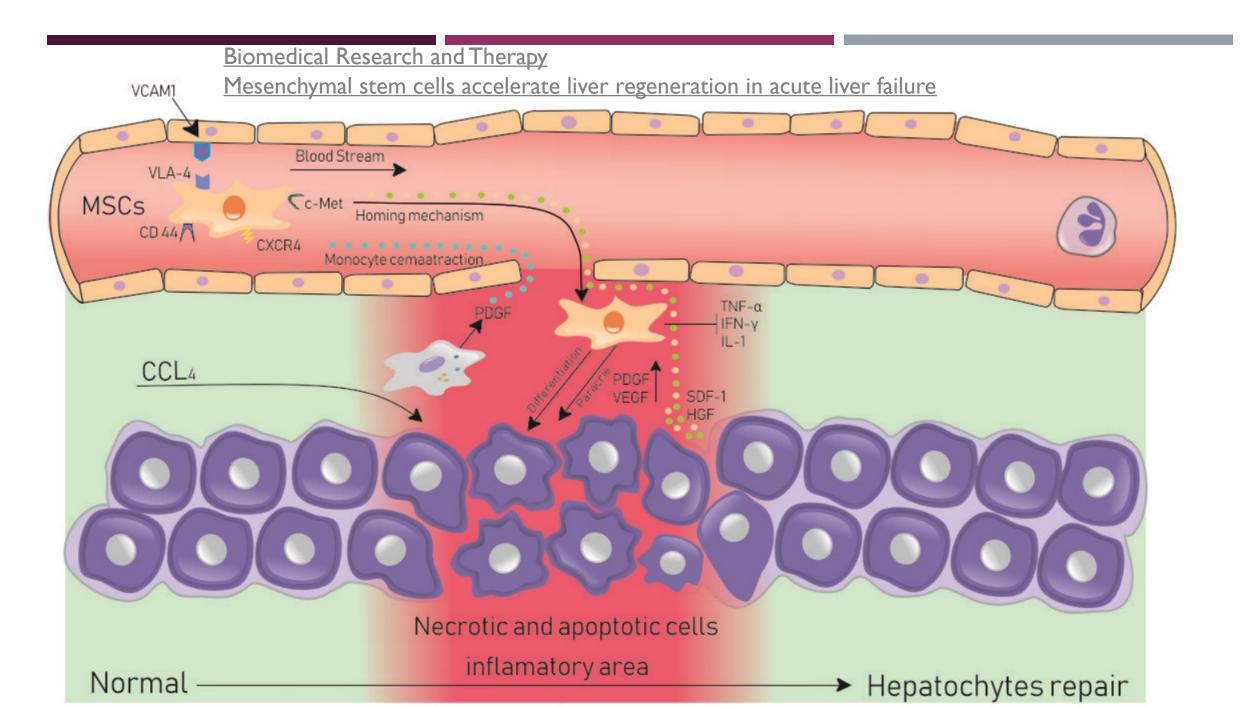
Dr. Xanya Sofra, Ph.D Neurophysiology, UK / Ph.D Clinical Psy NYC, USA. She is an award-winning international speaker, author of several scientific articles, and the inventor of anti-inflammatory nanotechnology for fitness and bio-repair. Her research explores cellular networks, and the dynamics of moleculal mechanisms involved in time reversal.

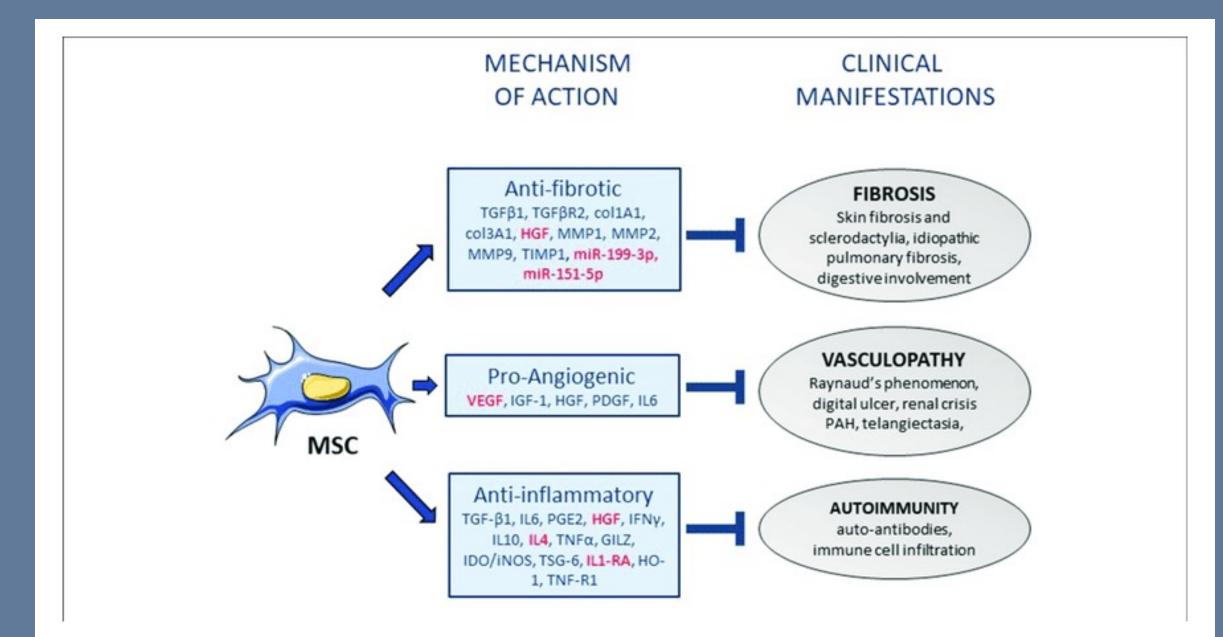
Checkmate by a Protean Invisible Enemy

COVID-19: The Danger Within




Adipose Tissue Derived Mesenchymal Stem Cells


Mesenchymal Stem Cells from Adipose Tissue REPAIR LIVER


MSCs are at a rate of 1 in 100 in adipose tissue in contrast to 1 in 100,000 in the bone marrow

•VIRTUAL GYM RESULTS IN THE NATURAL RELEASE OF THE FAT CONTENTS INTO THE BLOODSTREAM. THESE CONTAIN STEM CELLS THAT DIFFERENTIATE TO MESENCHYMAL STEM CELLS THAT REPAIR THE LIVER AND HEPATOCYTES THAT DETOX THE LIVER

PREDICTORS OF NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD)

 Elevated Alanine Aminotransferase
 (ALT) – an enzyme found in the liver / tests for hepatitis

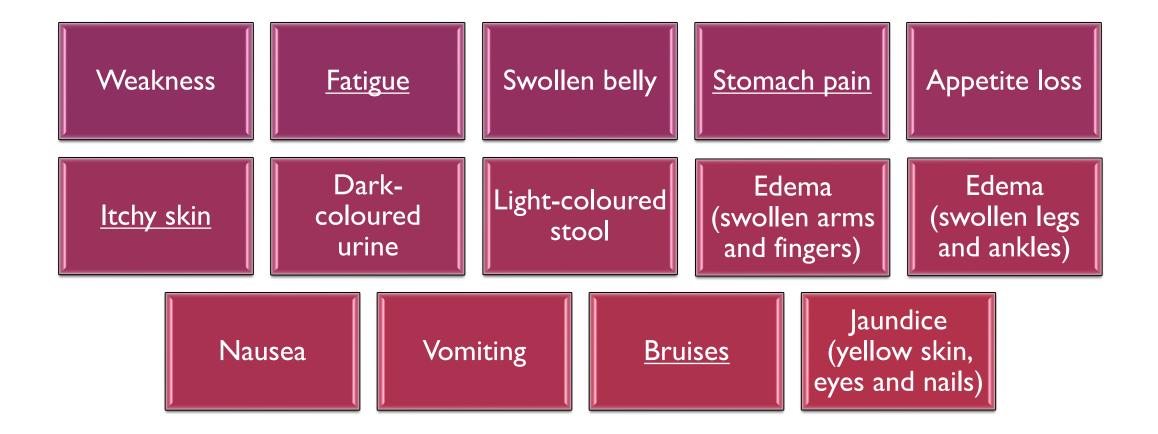
Elevated Aspartate Aminotransferase
 (AST) – enzyme testing for liver
 damage

 Elevated Alkaline Phosphatase, ALP – enzyme flags damage in liver, gallbladder, bones

Elevated Creatinine – a waste product made by the muscles

Elevated Triglycerides

 Increased inflammation as measured by CRP


Insulin Resistance

High Glucose (Diabetes)

Obesity

Metabolic Syndrome

Symptoms of Elevated ALT, AST and ALP NAFLD indicators:

Table 1. Blood Test Results on ALT (SGPT), AST (SGOT), ALP and Albumin

ALT Normal Range: 0-32 IU/L AST Normal Range: 0-40 IU/L ALP Normal Range: 44-121 IU/L Albumin Normal Range: 3.8-4.8

Gender	Medical History	ALT	ALT	AST	AST	ALP	ALP	Albumin	Albumin
Age	-	IU/L	IU/L	IU/L	IU/L	IU/L	IU/L	g/dL	g/dL
		Pre	Post	Pre	Post	Pre	Post	Pre	Post
F/64	Fatty Liver	28	24	38	31	109	89	3.0	3.9
	Prediabetes								
F/58	Fatty Liver	34	25	39	28	117	92	3.4	4.3
	Prediabetes				-*				
F/59	Fatty Liver	33	26	41	30	114	87	3.1	4.1
	Prediabetes								
F/54	Fatty Liver Prediabetes	36	23	39	29	120	105	3.6	4.2
F/62	Fatty Liver	29	22	41	26	122	112	3.2	4.0
1702	Prediabetes	29	22	41	20	122	112	5.2	4.0
M/54	Fatty Liver	27	19	40	22	119	106	3.3	4.3
	Prediabetes								
M/57	Fatty Liver	32	21	36	24	112	98	3.5	4.0
	Prediabetes								
M/59	Fatty Liver Prediabetes	31	26	38	31	118	102	3.1	3.9
M/60	Fatty Liver Prediabetes	27	22	39	18	121	104	3.7	3.9
M/55	Fatty Liver	33	25	42	29.	118	105	3.3	4.0
	Prediabetes								
Mean Total	<u>.</u>	31	23.3	39.3	26.8	117	100	3.32	4.06
		ALT Average D	ecrease:	AST Average D	ecrease:	ALP Average De	ecrease:	Albumin	
		-24.83%		-30.407%		-14.529%		Average Inc	rease
	-24.05 /0				17.52770		-	i cușci	
			Value of t= -8.83				+%22.289		
Value of t=					Value of t=		Value of t=+9347886		
	-8.724				-10.8912 The val	lue is	The value is p<0.00001.		
		The value is p=() 00001			p=0.00001.		Significance: p<0.00001	
		-		The value is p=0.00001.					• h >0.0001
		Significance: p<	0.0001	Significance: p<	<0.0001	Significance: p<	0.0001		

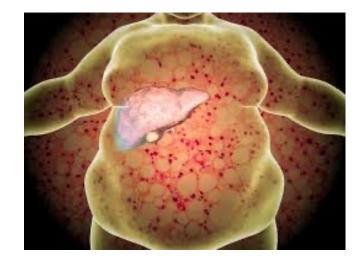

Gender/ Age	Medical History	Creatinine Serum	Creatinine Serum	Bilirubin PRE mg/dL	Bilirubin POST mg/dL	Ultrasonography Results
		PRE mg/dL	POST mg/dL			
F/64	Prediabetes Fatty Liver	1.35	0.94	1.13	1.09	Significantly Improved Liver
F/58	Prediabetes Fatty Liver	1.23	0.87	1.29	1.18	Normal Liver
F/59	Prediabetes Fatty Liver	1.26	1.05	1.23	1.14	Normal Liver
F/54	Prediabetes Fatty Liver	1.33	0.96	1.75	1.19	Normal Liver
F/62	Prediabetes Fatty Liver	1.25	1.02	1.21	1.15	Significantly Improved Liver
M/54	Prediabetes Fatty Liver	1.13	1.01	1.27	1.19	Normal Liver
M/57	Prediabetes Fatty Liver	1.16	0.82	1.23	1.12	Normal Liver
M/59	Prediabetes Fatty Liver	1.18	0.98	1.41	1.15	Significantly Improved Liver
M/60	Prediabetes Fatty Liver	1.11	0.87	1.22	1.17	Normal Liver
M/55	Prediabetes Fatty Liver	1.96	1.23	1.47	1.20	Normal Liver
MEAN TOTAL	1.22 mg/dL	0.98 m	ng/dL	1.321 mg/dL	1.158 mg/dL	
Mean Ave -19.67% mg/dL	rage Creatin	ine	% Decrease	Mean Average Bilirubin % I -12. 33% mg/dL	ncrease	
Value of t=-59420 The value is p=0.0001	1. Significance: p<0.001			Value of t=-3.1911 The value is p=0.00549. Significance: p<0.01		

Table 3. TYPE 2 DIABETICS TWENTY VIRTUAL GYM TREATMENTS Triglycerides, High-Density Protein (HDL), Presence of Fatty Liver on Sonography Reports Pre and Post Treatment.

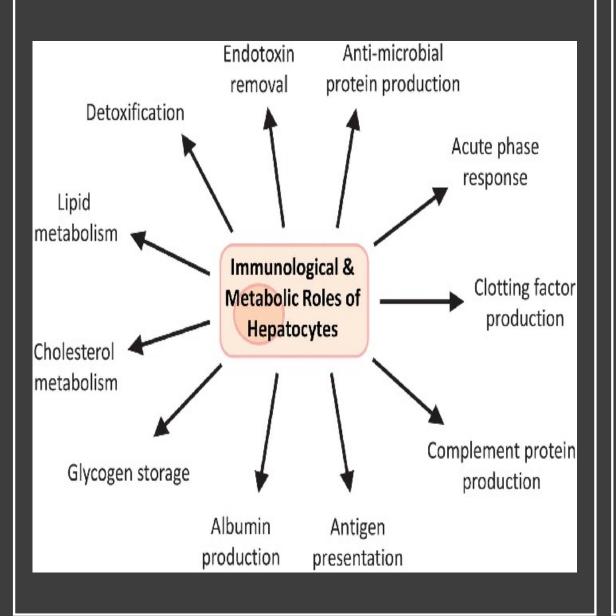
1

Our Results on Fatty Liver

Triglycerides Normal Range: > 150 mg/dL; High-Density Lipoprotein (HDL) Normal Range: Men >60 mg/dL; Women >60 mg/dL High-Density Lipoprotein (HDL) At Risk: Men: < 40 mg/dL; Women < 50 mg/dL

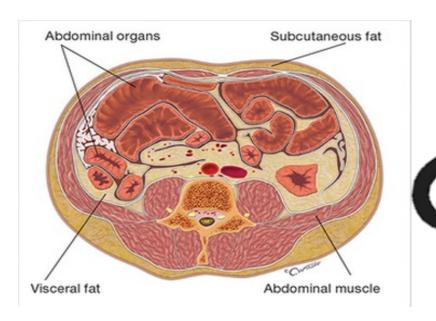
% OF TRIGLYCERIDES DECRE					S DECREASE	-28.56%		% OF HDL INCREASE	+49.12%	
				AVERAGE	HIGH	Improved		LOW	Improved	
					219.84	157.04	Improved	33.24	49.57	Improved
~		559	21400100	TOTAL	4616.7	3298	1 tornati	698.1	1041	1 torritar
20	Male	55y	Diabetes	1	192	112	Normal	42	68	Normal
20	Male	49y 57y	Diabetes	-	197	122	Normal	37	61	Normal
18 19	Male	59y 49y	Diabetes		197	134	Normal	44	71	Normal
17	Male	72y 59y	Diabetes	-	197 202	188	Normal	26	38 62	Improved at risk Normal
16	Male	45y	Diabetes		212	179	Normal	41	45	Improved at risk
15	Female	49y	Diabetes		193	189	Normal	34.5	38	Improved at risk
14	Female	52y	Diabetes]	196.7	147	Normal	47.6	53	Normal
13	Male	46y	Diabetes		230	176	Improved (abnormal)	28	37	Improved at risk
12	Male	69y	Diabetes		215	158	Normal	35	47	Improved at risk
			Fatty Liver	liver						
11	Male	55y	Fatty Liver Diabetes	liver No fatty	223	106	Normal	24	66	Normal
10	Female	61y	Diabetes	No fatty	219	112	Normal	28	52	Normal
9	Female	68y	Diabetes Fatty Liver	No fatty liver	198	122	Normal	31	59	Normal
8	Female	45y	Diabetes Fatty Liver	No fatty liver	214	138	Normal	28	51	Normal
7	Female	45y	Diabetes Fatty Liver	No fatty liver	228	134	Normal	34	58	Normal
6	Female	47y	Diabetes Fatty Liver	No fatty liver	237	188	Improved (abnormal)	31	41	Improved at risk
5	Female	45y	Diabetes Fatty Liver	No fatty liver	225	179	I Improved (abnormal)	33	40	Improved at risk
4	Male	44y	Diabetes Fatty Liver	No fatty liver	283	189	Improved (abnormal)	30	35	Improved at risk
3	Female	48y	Diabetes Fatty Liver	No fatty liver	266	147	Normal	29	41	Improved at risk
2	Female	46y	Diabetes Fatty Liver	No fatty liver	287	176	Improved (abnormal)	32	39	Improved at risk
1	Female	45y	Diabetes Fatty liver	No fatty liver	203	158	Improved (abnormal)	32	39	Improved at risk
			Treatment	Sonograp hy Reports		Post	decrease			
			Diagnosis Pre	Liver Post on	mg/dL Pre	es mg/dL	es mg/dL	mg/dL Pre	mg/dL Post	mg/d Increase
No	Gender	Age	Medical	Fatty	Triglycerides	Triglycerid	Triglycerid	HDL	HDL	(HDL)

Table 3. Blood Test Results on TG,VLDL and CRP TG Normal Range: 0-149 mg/dL VLDL Normal Range: 5-40 mg/dL CRP Normal Range: 0-10 mg/L											
Gender Age	Medical History	TG mg/dL Pre	TG mg/dL Post	VLDL mg/dL Pre	VLDL mg/dL Post	CRP mg/L Pre	CRP mg/L Post				
F/64	Fatty Liver Prediabetes	195	146	45	32	14	9				
F/58	Fatty Liver Prediabetes	193	147	43	35	12	7				
F/59	Fatty Liver Prediabetes	167	123	41	34	П	8				
F/54	Fatty Liver Prediabetes	156	129	38	31	12	9				
F/62	Fatty Liver Prediabetes	178	134	48	36	15	10				
M /54	Fatty Liver Prediabetes	188	139	40	29	13	8				
M/57	Fatty Liver Prediabetes	183	141	42	32	15	9				
M/59	Fatty Liver Prediabetes	191	146	37	28	10	7				
M/60	Fatty Liver Prediabetes	172	132	39	29	11	8				
M/55	Fatty Liver Prediabetes	159	115	43	32	13	9				
Mean Avera	age	178.2	135.2	41.6	31.8	12.6	8.4				
		TG % decrea -24.130%	ase:	VLDL % dee -23.55%	crease:	CRP % decre -33.333%	ase:				
			Value of t=-7.431 The value is p=0.00002. Significance: p<0.0001		Value of t=-9.175 The value is p<0.00001. Significance: p<0.00001		Value of t=-11.698 The value is p<0.00001. Significance: p<0.00001				


TABLE 5. BLOOD TEST RESULTS ON CORTISOL (F), TESTOSTERONE (T) AND MUSCLE MASS (MM) CORTISOL NORMAL RANGE MEN AND WOMEN: 80-477 NMOL/L TESTOSTERONE NORMAL RANGE MEN: 10-35 NMOL/L TESTOSTERONE NORMAL RANGE WOMEN: 0.5 – 2.4 NMOL/L MUSCLE MASS MALE AND FEMALE AGES 54-64: AVERAGE; 33-55 LOW: < 33 HIGH:>55

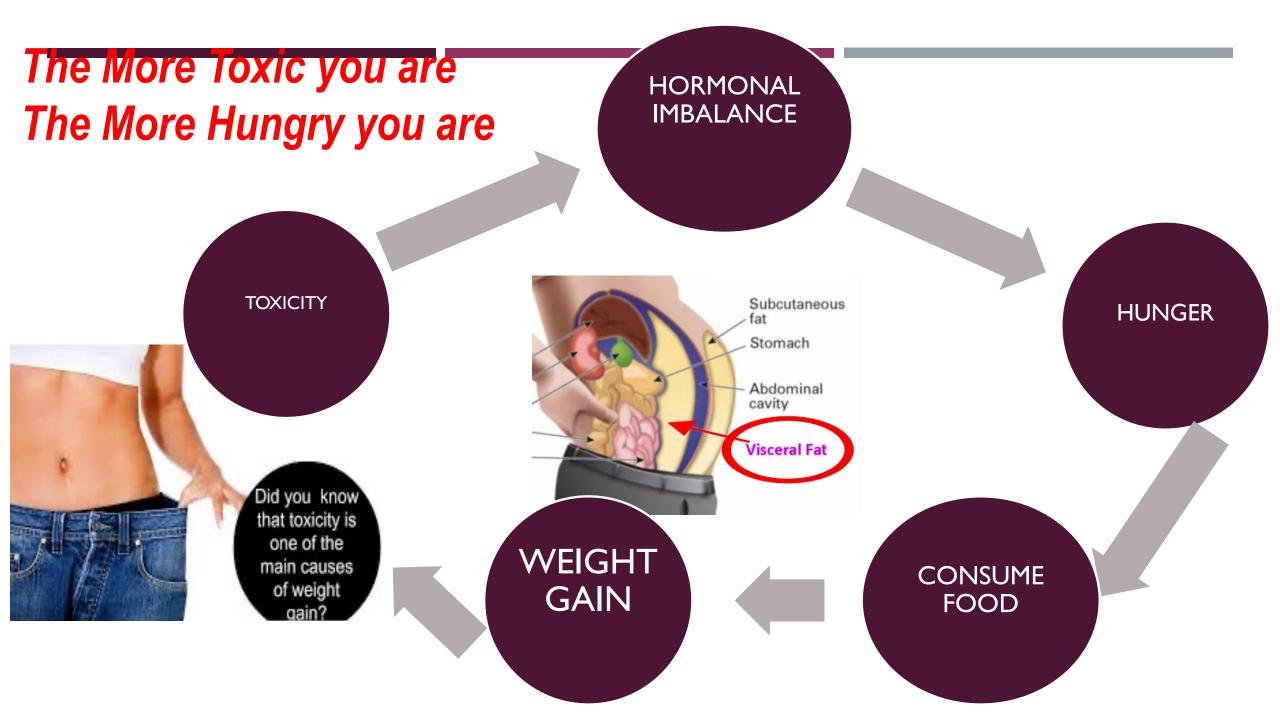
Gender Age	Medical History	Cortisol Pre	Cortisol Post	T Pre	T Post	MM Pre	MM Post
F/64	Fatty Liver Prediabetes	481	319	0.4	1.27	24	36
F/58	Fatty Liver Prediabetes	455	247	0.6	1.26	29	38
F/59	Fatty Liver Prediabetes	462	325	0.5	1.38	26	40
F/54	Fatty Liver Prediabetes	449	354	0.8	1.44	25	39
F/62	Fatty Liver Prediabetes	396	286	0.7	1.22	23	42
M/54	Fatty Liver Prediabetes	476	368	11.99	18.54	29	49
M/57	Fatty Liver Prediabetes	451	312	12.89	19.33	30	51
M/59	Fatty Liver Prediabetes	479	347	11.92	17.62	29	46
M/60	Fatty Liver Prediabetes	478	366	12.12	17.57	26	38
M/55	Fatty Liver Prediabetes	429	325	14.7	20.33	31	52
Mean Avera	age	455.6	324.9	6.36	9.996	27.2	43.1
		Cortisol % decrease: -28.687%		Testosterone % INC +50.04%	REASE:	Muscle Mass % INCREA +58. 45%	ASE:
		Value of t=-14.01212.1 The value is p<0.00001	90 Significance: p<0.00001	Value of t=+3.786 The value is p=0.002	15 Significance: p<0.01	Value of t=+11.746 The value is p<0.00001	Significance: p<0.00001

TABLE 4. BMI, BMR AND VAT BMI NORMAL RANGE MEN (DEPENDING ON WEIGHT AND HEIGHT): 1-24 BMI NORMAL RANGE WOMEN (DEPENDING ON WEIGHT AND HEIGHT): 1-23 BMR NORMAL RANGE MEN: 1600-1800 CAL/ PER DAY. BMR NORMAL RANGE WOMEN: 1550. CAL/PER DAY VAT (RANGES FROM 1-59) NORMAL RANGE: 1-12

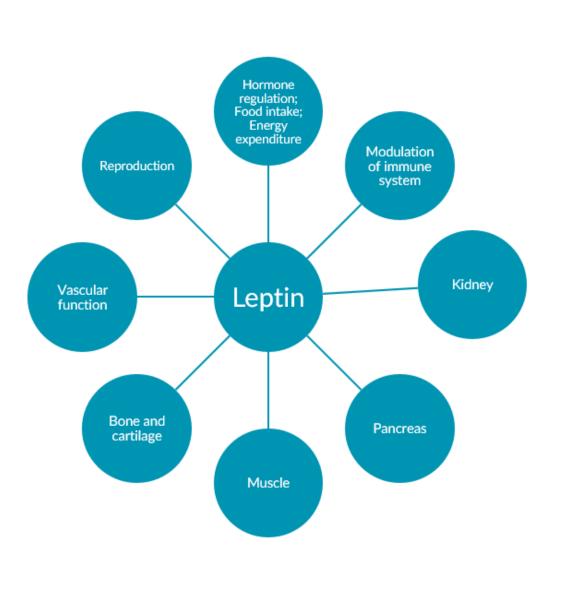

Gender Age	Medical History	BMI Pre	BMI Post	BMR Pre	BMR Post	VAT Pre	VAT Post	
F/64	Fatty Liver Prediabetes	34.2	26.5	920	1490	39	27	
F/58	Fatty Liver Prediabetes	33.5	25.9	1005	1510	33	21	
F/59	Fatty Liver Prediabetes	30.4	24.7	1156	1499	51	32	
F/54	Fatty Liver Prediabetes	32.3	26.6	1098	1620	39	23	
F/62	Fatty Liver Prediabetes	30.8	24.9	953	1457	42	29	
M/54	Fatty Liver Prediabetes	31.6	25.7	1167	1663	48	31	
M/57	Fatty Liver Prediabetes	31.1	24.8	1249	1833	35	26	
M/59	Fatty Liver Prediabetes	32.4	27.4	1055	1692	39	28	
M/60	Fatty Liver Prediabetes	31.2	26.3	1012	1757	41	27	
M/55	Fatty Liver Prediabetes	32.4	25.3	1179	1633	43	29	
Mean Averag	je	31.9	25.81	1079.4	1615.4	41	27.3	
		BMI % decrease:		BMR% INCREASE:		VAT % decrease:		
		-19.09%		+49.650%		-33.41%		
	Value of t=-14.012			Value of t=+15.685		Value of t=-12.064		
			001 Significance	The value is p<0.000	01 Significance	The value is p<0.00001 Significance:		
	The value is p<0.00001. Sign p<0.00001		oor. orgininearice.	p<0.00001	or orginicalice.	p < 0.00001 Significance: p < 0.00001		

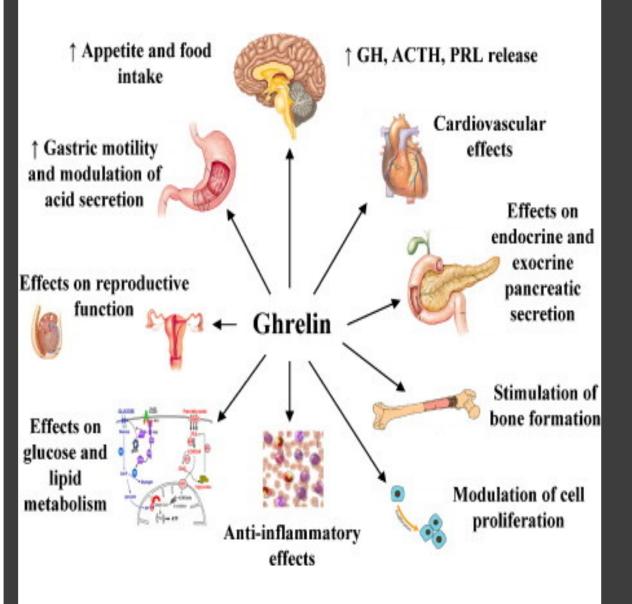
MSCs differentiate into Hepatocytes

Toxicity in Visceral Adiposity Increases HUNGER


Toxicity that is inherent in visceral adiposity, overloads & compromises hepatic detoxification systems, promoting insulin and leptin resistance / increasing ghrelin, one of the central stimulators of appetite, ultimately promoting increased hunger


ONETREATMENT


DETOX & INFLAMMATION DECREASE CLINICAL STUDY


Virtual Gym Detox – A very Important Function

LEPTIN & GHRELIN IMBALANCE = HUNGER

Gender	Age	Ethnicity	Leptin pre ng/mL	Leptin post ng/mL	Normal range ng/mL	% increase ng/mL	Ghrelin pre pg/mL	Ghrelin post pg/mL	Normal range pg/mL	% decrease pg/mL
Male	36	Asian	3.69	3.98	1.2 - 9.5	7.86%	687	602	520 - 700	12.37%
Male	39	Caucasian	4.43	4.98	1.2 - 9.5	9.78%	695	634	520 - 700	8.77%
Male	43	Caucasian	5.62	6.22	1.2 - 9.5	10.68%	598	552	520 - 700	7.69%
Male	35	Asian	6.15	6.83	1.2 - 9.5	11.05%	629	587	520 - 700	6.68%
Female	42	Asian	9.16	9.74	4.1 - 25.0	6.33%	577	542	520 - 700	6.06%
Female	45	Indian	5.23	6.09	4.1 - 25.0	16.44%	659	613	520 - 700	6.99%
Female	49	Caucasian	7.22	8.17	4.1 - 25.0	13.15%	644	617	520 - 700	4.19%
Female	38	Caucasian	12.34	13.22	4.1 - 25.0	7.13%	569	536	520 - 700	5.79%
Female	37	Asian	11.38	13.08	4.1 - 25.0	14.93%	499	461	520 - 700	7.62%
Mean Average Leptin Increase						+10.82%	Mean A	verage Ghrelii	n Decrease	-7.35%

Table 6. Blood Plasma Results on Leptin and Ghrelin for each subject.

There was an inverse relationship between leptin and ghrelin where leptin significantly increased and ghrelin significantly decreased within the normal range. Mean average percentage leptin increase was +10.82% and ghrelin decrease was -7.35%.

SLIMMING VS FITNESS

Lasers / RF Slimming - Do NOT increase Metabolism - Do NOT balance Hormones - Do NOT decrease Hunger

Results Rebound

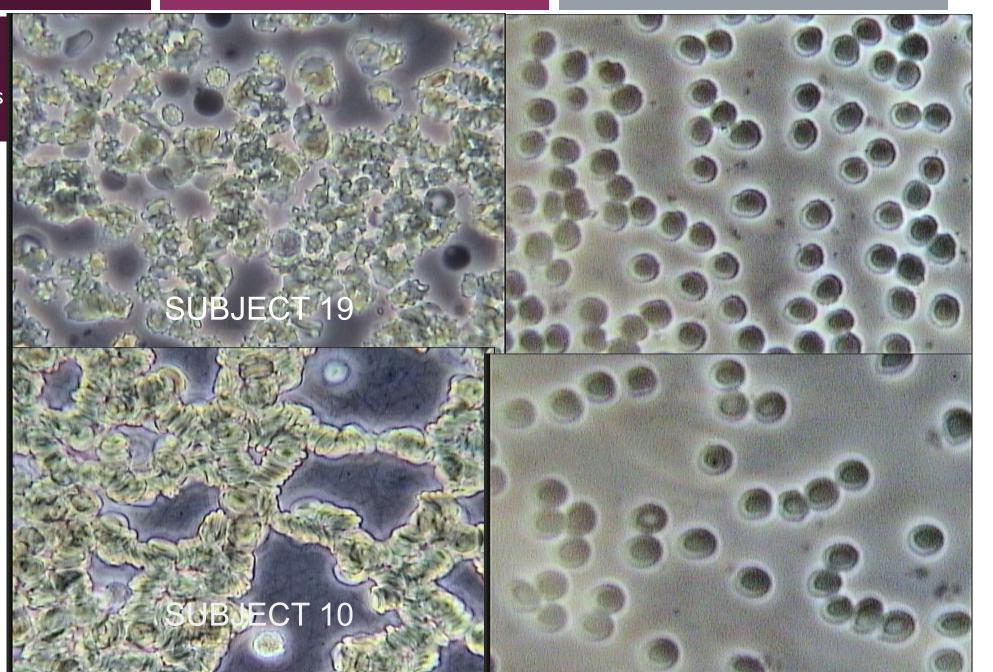
FITNESS

- Increases Metabolism
- Balances Hormones
- Reduces Hunger

NO Rebound

ONE TREATMENT

19 SUBJECTS: TREATMENT I


TREATMENT 6

Why you don't need Cardiovascular exercises

Normally you use cardiovascular exercises to increase heart rate. These increase the PUMPING RATE of the heart which STRAINS the heart –

Dangerous to seniors!

The Virtual Gym Separates RBCs. You don't have to increase the rate with which the heart pumps the blood because the blood flows without the heart being strained by excessive pumping

19 SUBJECTS	Erythrocyte Aggregation	Rouleau	Fungal Forms	Thrombocyte Aggregation	Bacteria	Poikilocy- tosis	Rouleau & Separate RBCs	Only Separate RBCs
Before Treatment	15	4	8	8	9	8	0	0
After First Treatment	1	6	6	7	8	6	9	3
Before Last Treatment	0	0	3	4	5	2	11	8
After Last Treatment	0	0	2	2	2	0	3	16

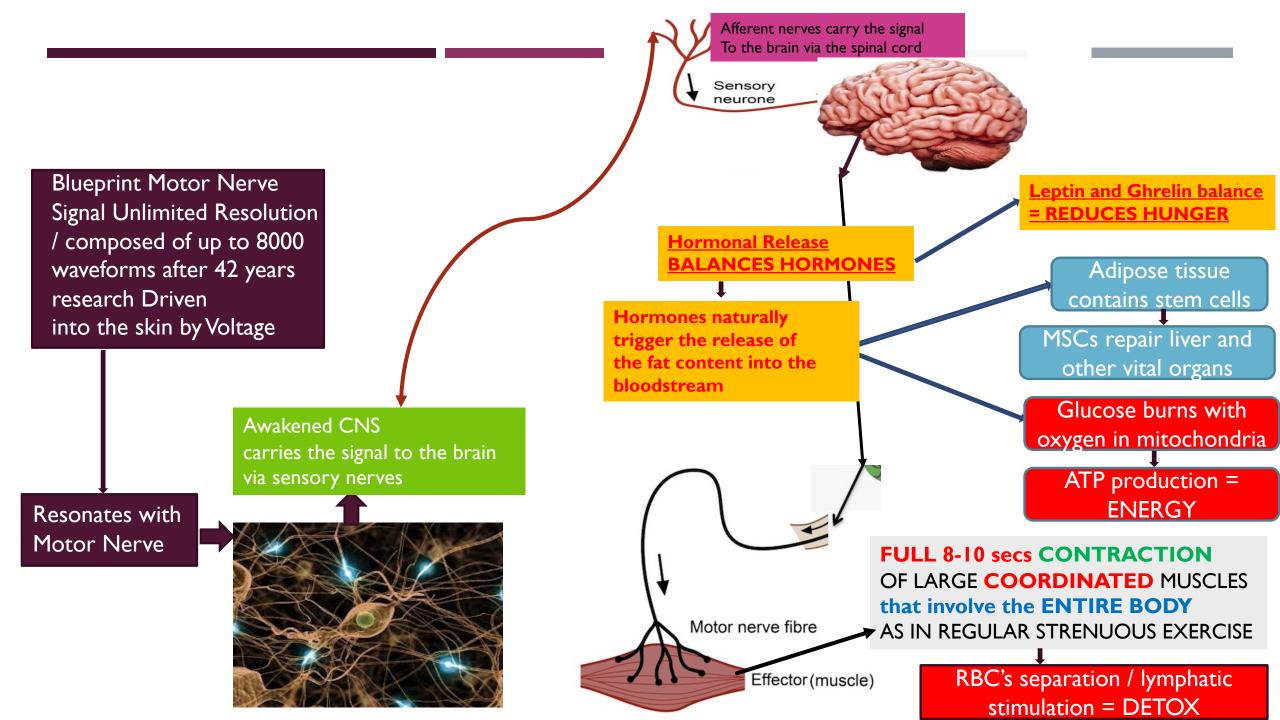
VIRTUAL GYM TREATMENTS SEPARATE

ERYTHROCYTES (RBCs)

- OXYGEN TO CELLS
- **NUTRIENTS TO CELLS**
- ANTIBODIES TO SITES OF ACTION
- ENHANCES IMMUNITY
- **CARRIES WASTE PRODUCTS TO LIVER &**

KIDNEYS

FOR DETOXIFICATION



VIRTUAL GYM

HOW DOES IT WORK?

Motor Nerve Blueprint Signals enter the body

HOW THE VIRTUAL GYM ENHANCES HEALTH

- I. Unlimited Resolution Composite signal, orchestrated out of up to 8,000 waveforms
- Contraction is caused by the brain brain orders the motor nerves to contract the body / Full 8-10 contraction of the entire body
- 3. Brain releases hormones (as it does during regular strenuous exercise / but at high speed!)
- 4. Natural release of fat via hormones into the bloodstream maintains the integrity of stem cells to repair the liver and other organs (Seen in CRP, Bilirubin and Creatinine normalization)
- 5. Hormonal release leads to HORMONAL BALANCE
- 6. Hormonal balance: Growth Factors / Metabolism / Testosterone increase / Cortisol decrease
- 7. Leptin / Ghrelin balance = suppresses excessive hunger
- 8. RBC's separation / lymphatic system stimulation = Detox = Decreases cravings
- 9. Visceral fat decrease / subcutaneous fat decrease / BMI decrease / VLDL and Triglycerides decrease
- 10. Increased Muscle Mass / FITNESS

OPTIMAL CHOLESTEROL

¤		ب	T·Value¤	p.←	1	€
	Mean	$S^2 = SS/df$		Value	Probability	<i>Comments</i>
VLDL 🛀	-1.19¤	0.31	-9.35¤	<0.00001	P<0.00001	VLDL was
25 HA / 20						Reduced by -
PMD						41.59%¤
Triglycerides	-1.25	0.61	-6.94¤	<0.00001	P<0.00001	Triglycerides were
25 HA / 40						reduced by -31.96
PMD						
HDL	9.34¤	23.66	10.52¤	<0.00001	P<0.00001	HDL was
30 PMD						increased by +19%

METABOLISM INCREASE = RESULTS DO NOT REBOUND

Free T-3 45 HA / 10 PMD	0.93¤	0.13	11.62	<0.00001¤	P<0.00001¤	Free T3 was increased by +41.07% WNR

BODY SCULPTING

VISCERAL FAT, OVERALL FAT, BMI DECREASE

FITENESS INCREASE BMR, SMM, IGF-I INCREASE

VAT 35 HA /	-4.68¤	7.12¤	-13.6	<0.0001	P<0.00001¤	VAT decreased by ¶
Overall Fat← 50 PMD¤	-4.98	6.43¤	-13.88¤	<0.00001	P<0.00001¤	Overall Fat decreased by - 13.42%
BMI 60 PMD	-2.3¤	1.28¤	-15.73¤	<0.0001	P<0.00001	BMI decreased by -10%
BMR 4 10 HA¤	91.6¤	3782.04	4.71¤	0.00055¤	P<0.001¤	BMR increased by +91.60%
SMM	+4.3¤	0.45¤	+13.49¤	<0.00001	P<0.00001¤	SMM increased by +40.7%
IGF-1∉ 35 HA¤	¤	¤	¤	<0.00001	P<0.00001¤	IGF-1 increased by +19.68

BMR: BASAL METABOLIC RATE: BODY BURNS MORE CALORIES WHILE YOU ARE SLEEPING / TURN CLOCK BACK TO YOUTH

Albumin
Average Increase: +%22.289
5
Value of t=+9347886
The value is p<0.00001.
Significance: p<0.00001
U

NO FATTY LIVER LIVER REPAIR DUE TO:

I. SIGNIFICANT VISCERAL FAT REDUCTION

2. LIVER REPAIR BY THE ADIPOSE TISSUE STEM CELLS – MSCs & HEPATOCYTES

ALT Average Decrease: -24.83%	AST Average Decrease: -30.407	ALP Average Decrease: -14.529
(p<0.001)	(p<0.0001)	(p<0.01)

Creatinine¶ 10 PMD [□]	-0.24	0.04¤	-4.06	0.00143¤	P<0.01¤	Creatinine decreased by - 19.67% WNR
CRPe 10 PMD	-0.59¤	0.16¤	-4.72¤	0.00055¤	P<0.001¤	CRP decreased by ← □ -36.87% WNR□

Diabetes

Blood Glucose	-61.88¤	7675.12	-8.11	<0.00001	P<0.00001	50% normal after	a
Fasting 15 D						12 treatments	
Blood Glucose PP 15 D¤	-63.07¤	7353.79	-845¤	<0.00001¤	P<0.00001¤	33% normal after 12 treatments	a

Prediabetes

Insulin Fasting 20 PD	¶ -30.71¤	5961.47°¤	-2.97 °¤	0.01031°¤	P≪0.01¤	100% normal after 12 treatments
Insulin PP↔ 20 PD¤	−129.43°¤	18065.62°¤	−7.20 ^{°¤}	0.00009°¤	P < 0.0001	100% normal after 12 treatments

STRESS REDUCTION

ENERGY INCREASE / FAT REDUCTION

Cortisole 35 HA¤	-18.26¤	142.98	-6.66	<0.00001	P<0.00001¤	Cortisol decreased by -13.08% WNR	a
Testosterone↔ 35 HA¤	2.9	4.6	6.05¤	<0.00001	P<0.00001¤	Testosterone increased by +43% WNR	¤

HUNGER REDUCTION / NO CRAVINGS = RESULTS DO NOT REBOUND

Leptin 10 HA / 10 PMD	1.82¤	2.68¤	4.98¤	0.00004¤	P<0.0001¤	Leptin increased by +13.41% WNR
Ghrelin	-43.55¤	962.79¤	-6.28¤	<0.00001¤	P<0.00001	Ghrelin decreased

THE VIRTUAL GYM 8888 FITNESS MAX OFFERS 256 EXERCISES REPEATED 1000 TIMES IN ONE HOUR FOR A TOTAL OF 25,600 EXERCISES. THESE INCLUDE

STRENGTH EXERCISES (CONTRACTION TIME SETTING ON 10 / REST DURATION 2)

RESISTANCE EXERCISES (CONTRACTION TIME SETTING ON 10 / REST DURATION 2)

STRETCH EXERCISES (CONTRACTION TIME SETTING ON 10 / REST DURATION 2)

AEROBICS / JUMPING / RUNNING (CONTRACTION TIME SETTING ON 2 / REST DURATION 2)

EXERCISES TO RELIEVE BACK PAIN (CONTRACTION TIME SETTING ON 10 / REST DURATION 2)

THE SUNDA INNOVATION

im without the effort of exercise; the Araryy units, already used in besuity salous, could be put to work in hospitals to tone the muscles of bedridden patienties Fighting the flab without sweat

pacemaker, ensures the muscles are

exercised at the correct speed for the

This involves controlling electrical impulse to avoid suddenly jerky

muscle movements. To achieve this

Arasys generates smooth rather than

spiked electrical signals so that the

muscle is stretched in a manner more

"We only discovered how long and

similar to way it behaves during real

intense the signal should be through

five-year development." says Pollock.

"Just passing any old electrical signal

across a muscle simply doesn't work."

Pollock believes his machine could be

used to return strength to the elderly

Besides helping the disabled,

trial and error during the system's

optimum duration.

exercise

A SCIENTIST has invented a machine he claims will keep people trim without the need for exercise and could help reverse muscle-wasting conditions such as multiple seleroiss, writes Sean Hargrave.

The Arasys exerciser unite (fA-RAdic SYStem), developed at London's as much benefit as from a shorter South Bank University Technopark, is already being sold to health clubs and beauty salons for those who want to lose weight without putting in the effort.

Now the machine's designer. Gerry Pollock, is searching for hospitals and clinics that could hello him test the system on disabled patients who are unable to exercise. He believes Arasys could prevent the muscle wastage common among those confined to bed

or a wheelchair The machine flexes muscle by passing tiny electric currents through nerve endings at either end of muscle

weight-loss because of the electric groups. This makes the tissue contract wave form he designed. He says for two seconds, as if it were being put his electronics expertise, that was through a gym workout. used in the development of the first

A typical session with the machine lasts 17 minutes. Pollock says this is because people can feel tired if they have a longer stint and do not notice session. He claims each treatment is the equivalent of doing 300 sit-ups and that three sessions are all that are needed until weight loss can be

measured. The Arasys system can treat four sets of muscle simultaneously. In cosmetic use these are normally the stomach, bottom, thighs and calves. In medical use, this would change to exercise the parts of the body a patient

cannot move Pollock, a chemist, claims his technology is superior to machines that make similar claims of effortless and those who suffer from multiple selerosis.

His niece, Angela Sylvester, a qualified nurse, regularly uses Arasys on four ME sufferers who are unable to exercise. She claims they all report they feel stronger.

"One of the ladies used to be a fitness instructor, but because of her condition she cannot work out any more," says Sylvester. "she benefits from being able to stay trim and exercise muscles that would otherwise be hardly used.

Pollock hopes his invention will soon be put to its original healthcare use and is keen to talk with clinics and hospitals that believe they could help him tailor the system for individual conditions

"I need to talk with experts so that we can decide if the present electrical signal is appropriate or if it needs changing," he says.

LONDON UNIVERSITY

BY DR GERRY POLLOCK THE CO-INVENTOR OF THE FIRST PACEMAKER

Sunday Times, UK and other journals

published several articles about Gerry

Pollock's invention of SIMULATED

EFFORTLESS EXERCISE

in London University

Dr. Pollock spent 27 years of laboratory

empirical (trial & error) research on this

invention.

Dr Gerry Pollock's London University Research (1990)

Goldpink's research on Gene Expression

- Rapid muscular hypertrophy
- 250% increase in the RNA content of the muscles
- Repression of the fast-type genes and activation of the SKELETAL slow-type genes.

Stretch and force generation induce rapid hypertrophy and myosin isoform gene switching in adult skeletal muscle

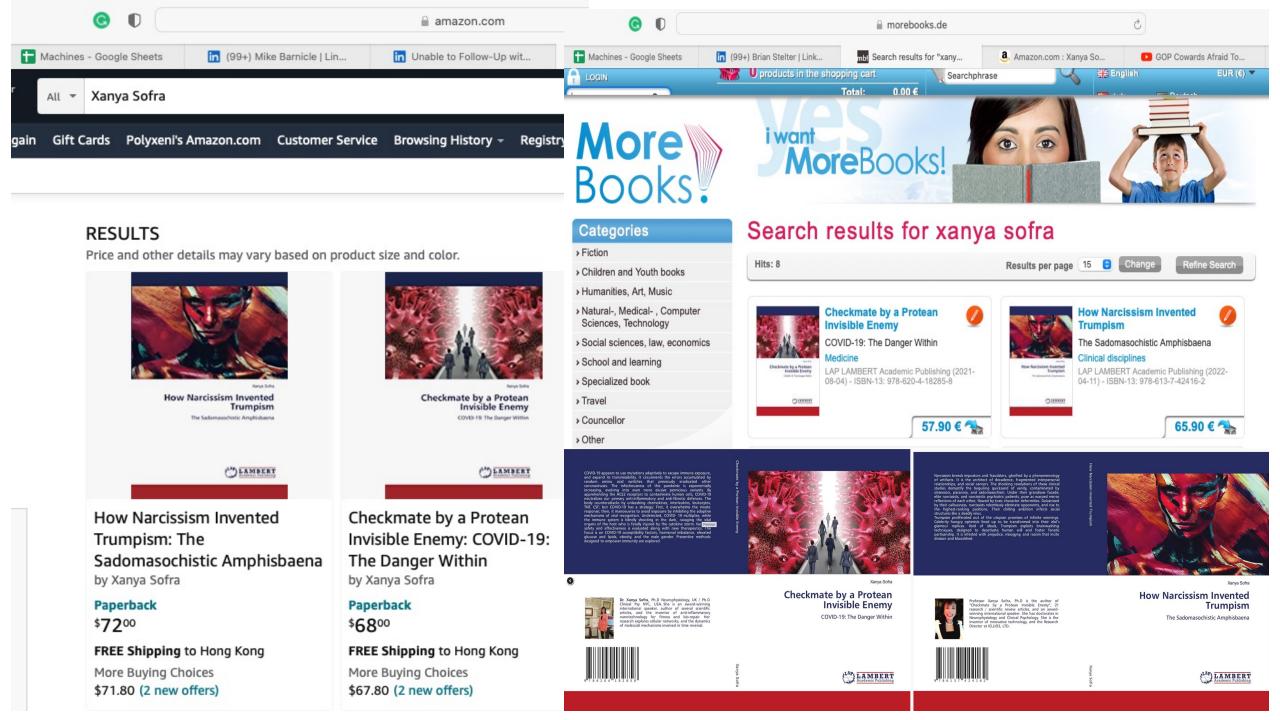
Geoffrey Goldspink, Andrew Scutt, Jane Martindale, Thomas Jaenicke, Lucien Turay and Gerald-F. Gerlach Unit of Molecular and Cellular Biology, The Royal Veterinary College, London University, Royal College Street, London NWI 0TU, U.K.

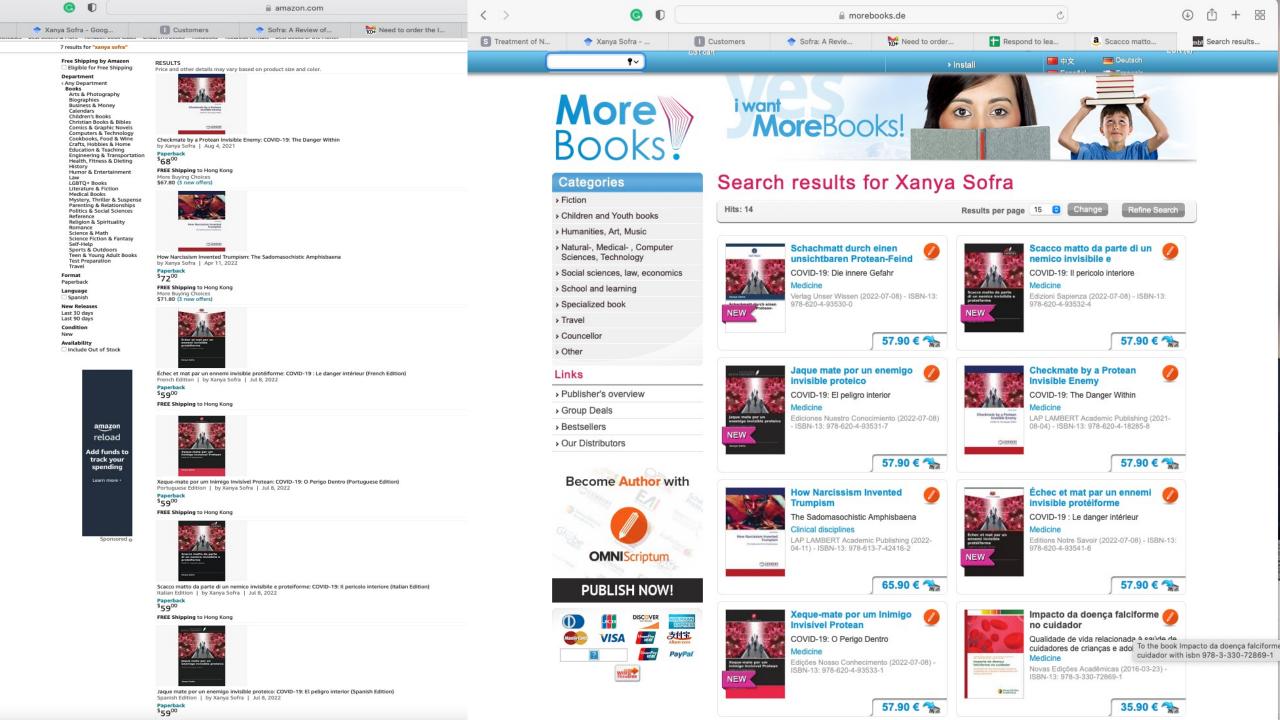
Summary

Using electrical stimulation to control force generation and limb immobilization to alter the degree of stretch, we have studied the role of mechanical activity in inducing hypertrophy and in determining fast and slow muscle fibre phenotype. Changes in gene expression were detected by analysing the RNA in hybridization studies employing cDNA probes specific for fast and slow myosin heavy chains and other genes. As a result of overload in the stretched position, the fast contracting tibialis anterior muscle in an adult rabbit is induced to synthesize much new protein and to grow by as much as 30% within a period as short as 4 days. This very rapid hypertrophy was found to be associated with an increase of up to 250% in the RNA content of the muscles and an abrupt change in the species of RNA produced. Both stretch alone and electrical stimulation alone caused repression of the fast-type genes and activation of the slow-type genes. It appears that the fast-type IIB genes are the default genes, but that the skeletal slow genes are expressed as a response to overload and stretch. These findings have implications as far as athletic training and rehabilitation are concerned.

Introduction

Muscle is a tissue in which gene expression is regulated to a large extent by mechanical signals. Mammalian muscle consists of populations of slow-contracting, oxidative fibres and fast-contracting fibres which are characterized by different protein isoforms. Therefore, post-natal growth and the differentiation into the fast type or the slow type of fibres must presumably involve the regulation of expression of different subsets of genes. Here we have focused on the expression of myosin heavy chain genes and their response to mechanical stimuli.


The intrinsic velocity of contraction (V_{max}) of muscle fibres is related to the specific activity of their myosin ATPase [1]. Myosin is a double molecule that consists of two heavy chains each of about 220 kDa. The actin-attachment site and the ATPase site are located in the S1 region (head of the myosin molecule) of each heavy chain. Associated with the S1 fragment are smaller polypeptides called light chains which are believed to modulate the cross-bridge ATPase activity [2]. Subtypes of fast muscle fibre have been identified histochemically and these may exist because of different combinations of myosin heavy and light chains and different mitochondrial content. Slow fibres differ in several ways from fast fibres in that they have many more mitochondria, different cytoplasmic isoenzymes, as well as different isoforms of myofibrillar proteins. The isoforms of myosin have been shown to be the product of a multigene family and their expression is tightly regulated in a stage-specific and tissuespecific manner [3, 4]. Phenotypic expression of muscle genes is known to be influenced by thyroid hormone [5, 6] and altered patterns of innervation [7]. However, the influence of physical activity at the gene level was unclear. We have, therefore, studied changes in transcriptional levels of the fast and slow myosin heavy chain genes in response to stretch and force generation.


Methods

Stimulation and acute-stretch procedures

Tibialis anterior (TA) muscles in adult Netherland dwarf rabbits were stimulated using Teflon-coated stainless-steel electrode wires implanted into the popliteal fossa [8] under valium/Hypnorm anaesthesia. The electrode wires were externalized at the back of the neck and attached to a miniature stimulation circuit which was held in position by a small saddle fashioned out of an elastic bandage. Several circuit designs were used which generated biphasic pulses at frequencies ranging from 2 Hz continuous to 120 Hz intermittent. A 30 Hz intermittent circuit was designed to give the same number of pulses/min as a 2 Hz continuous, and a 120 Hz and 60 Hz intermittent circuit gave the same number of pulses/min as a 10 Hz continuous circuit. In this way, the hypothesis that it is the number of pulses delivered which determines muscle fibre phenotype could be tested. The pulse length was 0.1 ms and the pulse amplitude was adjustable from 1 to 3 V and each miniature stimulator was fitted with an on/off switch. Muscle

Abbreviation used: TA, tibialis anterior.

Dynamics of Female Sexuality; Hidden Emotional Issues

<u>reann</u> <u>vol.12 (0.0</u>), suite 29, 2020

DOI: 10.4236/health.2020.126051 145 Downloads 366 Views

 <u>The Importance of Systemic Balance in Safeguarding Health: A</u> <u>Randomized Double-Blind Clinical Trial on VLDL, Triglycerides,</u> <u>Free T3, Leptin, Ghrelin, Cortisol and Visceral Adipose Tissue</u>

Xanya Sofra

Health Vol.12 No.8 , August 28, 2020

DOI: 10.4236/health.2020.128078 228 Downloads 513 Views Citations

The Dark Reflection of Sadism within the Brilliance of the Narcissistic Persona

Xanya Sofra

Health Vol.12 No.9, September 29, 2020

DOI: 10.4236/health.2020.129092 332 Downloads 864 Views

Vaccines' Safety and Effectiveness in the Midst of Covid-19 Mutations

Xanya Sofra

Health Vol.13 No.3 , March 18, 2021

DOI: 10.4236/health.2021.133023 240 Downloads 606 Views

<u>Technological Advances in Accelerated Wound Repair and Regeneration</u>

Xanya Sofra, Nuris Lampe

Health Vol.12 No.7, July 6, 2020

DOI: 10.4236/health.2020.127053 270 Downloads 854 Views

<u>A Randomized Longitudinal Double-Blind Clinical Trial on Long-Term Neuropathic</u>

Symptomatology Relief & Pain Analgesia

Xanya Sofra, Nuris Lampe

Health Vol.12 No.7, July 8, 2020

DOI: 10.4236/health.2020.127054 343 Downloads 685 Views

• Adverse Effects of Sedentary Lifestyles: Inflammation, and High-Glucose Induced Oxidative Stress—A Double Blind Randomized Clinical Trial on Diabetic and Prediabetic Patients

Xanya Sofra, Sheetal Badami

Health Vol.12 No.8 , August 19, 2020

DOI: 10.4236/health.2020.128076 372 Downloads 942 Views Citations

Biography: Dr Sofra has a doctorate from in Neurophysiology from City University London, UK, and a doctorate in Clinical Psychology from the New School for Social Research, New York City, USA. She is an awardwinning international speaker in several Medical and Anti-aging societies and author of several published research and scientific review articles. She was been in clinical practice for years prior to be involved in the invention of advanced anti-inflammatory nanotechnology designed for wound healing, pain relief and systemic balance. Her current research is on signalling pathways, hormonal interactions, and the investigation of existing biological molecular mechanisms involved in time reversal.

How to get rid of visceral fat: a randomised double-blind clinical trial

Xanya Sofra

Journal of Aesthetic NursingVolume 9, Issue 702 Sep 2020

Abstract

ArticleNO ACCESS

Gain without pain: beyond sport effortless exercise solutions

Xanya Sofra

Journal of Aesthetic NursingVolume 9, Issue 502 Jun 2020

Abstract

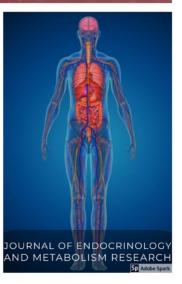
ArticleNO ACCESS

Empowering the woman: a comprehensive model of sexual anti-ageing

• Xanya Sofra,

• Nuris Lampe

Journal of Aesthetic NursingVolume 9, Issue 302 Apr 2020



We aim to accelerate scientific discoveries in modern scholarly communications through the effective use of editorial and publishing polices Photomore

<u>The Affinity between Obesity and COVID-19</u> Research Article - Journal of Endocrinology and Metabolism Research Oct 16, 2020

A Review of COVID19 associated factors: CRP, Creatinine, Bilirubin, VLDL, HDL, Triglycerides, Cortisol and Thyroid Function Research Article - Journal of Endocrinology and Metabolism Research Oct 16, 2020

The War Against SARS-CoV-2: The Immune Giant Collapsing Under Its Own Rampaging Cytokine Storm Research Article - Journal of Endocrinology and Metabolism Research Feb 11, 2021

Covid-19 Mutations and How the Vaccine Enhances Immune Intelligence

Review Article - Journal of Endocrinology and Metabolism Research Feb 11, 2021

<u>Female Social Empowerment and the Psychological Expression of Endocrinological Issues during</u> <u>Menopause</u>

Review Article - Journal of Endocrinology and Metabolism Research Apr 11, 2021

Biography: Dr Sofra has a doctorate from in Neurophysiology from City University London, UK, and a doctorate in Clinical Psychology from the New School for Social Research, New York City, USA. She is an award-winning international speaker in several Medical and Anti-aging societies and author of several published research and scientific review articles. She was been in clinical practice for years prior to be involved in the invention of advanced anti-inflammatory nanotechnology designed for wound healing, pain

<u>Abstract</u>

Biography: Dr Sofra has a doctorate from in Neurophysiology from City University London, UK, and a doctorate in Clinical Psychology from the New School for Social Research, New York City, USA. She is an award-winning international speaker in several Medical and Anti-aging societies and author of several published research and scientific review articles. She was been in clinical practice for years prior to be involved in the invention of advanced anti-inflammatory nanotechnology designed for wound healing, pain relief and systemic balance. Her current research is on signalling pathways, hormonal interactions, and the investigation of existing biological molecular mechanisms involved in time reversal.

ABOUT LOGIN REGISTER SEARCH

🕋 +65 65881289

f 🕲 🛩 in

Home	About Us	Journals	Guidelines -	Join as -	Membership	Peer Review System

Gi		estinal 1 2582-10 1 Pactor: 0		irs.
		N I I I I I I I I I I I I I I I I I I I		
(6	ACTA	SCIENT	IFIC	

AC	TA SCIENTIFIC GAST	ROINTESTINAL DISORDERS
	Publisher	: Acta Scientific
	Current Issue	: Volume 4 Issue 6 - 2021
	ISSN	: 2582-1091
	Impact Factor	: 0.622
	Issue Release Date	: June 01, 2021
	Frequency	: Monthly
	Language	: English
	Format	: Online
	Review	: Double Blinded Peer Review
	Email	: gastro@actascientific.com

Research Article

Exercise Solutions for the Optimal Metabolic Control of Type 2 Diabetes

- Xanya Sofra, Ph.D and Sheetal Badami
- Published: May 25, 2021; Volume 4 Issue 6: 54-69.

Google ScholarPDFFull Text www.actascientific.com/ASGIS-4-6.php

JOURNAL	ISSUE	TITLE	
Journal of Endocrinology Research	<u>Vol 2, No 1</u> (2020)	The Danger within: Covid-19 Affinity for ACE2 Receptors in Adipose Tissue and Testes. The Protective Effects of <u>Estradiol</u> , Fitness, and Weight Management	ABSTRACT PDF
Xanya Sofra			
Journal of Endocrinology Research	<u>Vol 2, No 1</u> (2020)	SARS-CoV-2-the Unforeseen Peril of David Winning Against Goliath: the Immune Giant Collapsing Under Its Own Rampaging Cytokine Storm	ABSTRACT PDF
<u>Xanya</u> Sofra			
<u>Journal of</u> Endocrinology <u>Research</u>	<u>Vol 3, No 1</u> (2021): Online <u>First</u>	Covid-19 Mutations and How the Vaccine Enhances Immune Intelligence	ABSTRACT PDF

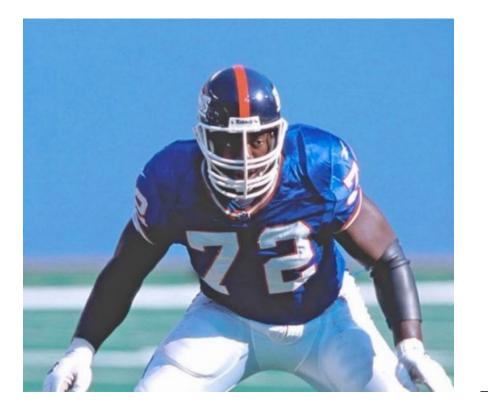
Xanya Sofra

Virtual Gym Increases Stamina, Core Strength and Speed

OTHER NFLAND EUROPEAN FAMOUS SPORTS ATHLETES HAVE BOUGHT The virtual gym For personal use to increase stamina, core strength & speed. Most of them have not given us consent to reveal their names.

Raphael Timo, Dutch football player testimonial – Played with Croft (pic right):

"40% more fit after one virtual gym treatment!"

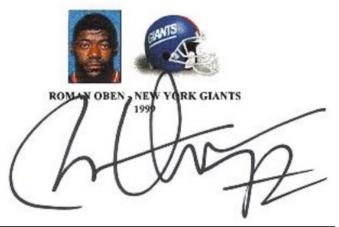


IS THERE A WAY OF **EXERCISING WITHOUT EXERCISING**?

Hormones are interconnected with Exercise

Hormones trigger the fat burning processes to form the energy that sustains exercise and build muscle

The brain is responsible for all movement including the full muscle contractions during exercise



Lets use SIGNALING to activate the Motor Nerves

Motor Nerves (part of the CNS) MUST involve the Brain that can cause the full body contractions

The Brain will order the necessary Hormones to produce the energy that will never exceed hormonal balance due to negative feedback mechanisms

Result : SIMULATED EXERCISE or exercising without exercising

Effortless Simulated Exercise

8 Seconds Whole Body Contraction

About Us

Home

Journals

ArticleNO ACCESS

How to get rid of visceral fat: a randomised double-blind clinical trial

Xanya Sofra

Journal of Aesthetic NursingVolume 9, Issue 702 Sep 2020

Abstract

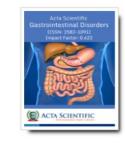
ArticleNO ACCESS

Gain without pain: beyond sport effortless exercise solutions

Xanya Sofra

Journal of Aesthetic NursingVolume 9, Issue 502 Jun 2020

Abstract


ArticleNO ACCESS

Empowering the woman: a comprehensive model of sexual anti-ageing

- Xanya Sofra,
- <u>Nuris Lampe</u>

Journal of Aesthetic NursingVolume 9, Issue 302 Apr 2020

Abstract

ACTA SCIENTIFIC GASTROINTESTINAL DISORDERS

Join as -

Membership

Peer Review System

Guidelines -

Publisher	: Acta Scientific	
Current Issue	: Volume 4 Issue 6 - 2021	
ISSN	: 2582-1091	
Impact Factor	: 0.622	
Issue Release Date	: June 01, 2021	
Frequency	: Monthly	
Language	: English	
Format	: Online	
Review	: Double Blinded Peer Review	
Email	: gastro@actascientific.com	

Research Article

Exercise Solutions for the Optimal Metabolic Control of Type 2 Diabetes

Dynamics of Female Sexuality; Hidden Emotional Issues

Xanya Sofra

Health Vol.12 No.6 , June 29, 2020

DOI: 10.4236/health.2020.126051 145 Downloads 366 Views

<u>The Importance of Systemic Balance in Safeguarding Health: A Randomized Double-Blind</u>
 <u>Clinical Trial on VLDL, Triglycerides, Free T3, Leptin, Ghrelin, Cortisol and Visceral Adipose</u>
 <u>Tissue</u>

Xanya Sofra

Health Vol.12 No.8 , August 28, 2020

DOI: 10.4236/health.2020.128078 228 Downloads 513 Views Citations

The Dark Reflection of Sadism within the Brilliance of the Narcissistic Persona

Xanya Sofra

Health Vol.12 No.9 , September 29, 2020

DOI: 10.4236/health.2020.129092 332 Downloads 864 Views

Vaccines' Safety and Effectiveness in the Midst of Covid-19 Mutations

Xanya Sofra

Health Vol.13 No.3 , March 18, 2021

DOI: 10.4236/health.2021.133023 240 Downloads 606 Views

Technological Advances in Accelerated Wound Repair and Regeneration

Xanya Sofra, Nuris Lampe

Health Vol.12 No.7 , July 6, 2020

DOI: 10.4236/health.2020.127053 270 Downloads 854 Views

 <u>A Randomized Longitudinal Double-Blind Clinical Trial on Long-Term Neuropathic</u> Symptomatology Relief & Pain Analgesia

Xanya Sofra, Nuris Lampe

Health Vol.12 No.7, July 8, 2020

DOI: 10.4236/health.2020.127054 343 Downloads 685 Views

 Adverse Effects of Sedentary Lifestyles: Inflammation, and High-Glucose Induced Oxidative

 Stress—A Double Blind Randomized Clinical Trial on Diabetic and Prediabetic Patients

Xanya Sofra, Sheetal Badami

Health Vol.12 No.8, August 19, 2020

DOI: 10.4236/health.2020.128076 372 Downloads 942 Views Citations

We aim to accelerate scientific discoveries in modern scholarly communications through the effective use of editorial and publishing polices • Read more

.....

The Affinity between Obesity and COVID-19 Research Article - Journal of Endocrinology and Metabolism Research Oct 16, 2020

A Review of COVID19 associated factors: CRP, Creatinine, Bilirubin, VLDL, HDL, Triglycerides, Cortisol and Thyroid Function Research Article - Journal of Endocrinology and Metabolism Research Oct 16, 2020

The War Against SARS-CoV-2: The Immune Giant Collapsing Under **Its Own Rampaging Cytokine Storm** Research Article - Journal of Endocrinology and Metabolism Research Feb 11, 2021

Covid-19 Mutations and How the Vaccine Enhances Immune

Intelligence

Review Article - Journal of Endocrinology and Metabolism Research

Feb 11, 2021

Female Social Empowerment and the Psychological Expression of Endocrinological Issues during Menopause

Review Article - Journal of Endocrinology and Metabolism Research Apr 11, 2021

JOURNAL OF ENDOCRINOLOGY

AND METABOLISM RESEARCH

Sp Adobe Sr

BILINGUAL

ABOUT

HOME

PUBLISHING CO.

LOGIN

REGISTER

SEARCH

Covid-19 Mutations Enhances Immune Intelligence

Xanya Sofra

JOURNAL ISSUE TITLE Vol 2, No 1 The Danger within: Journal of ABSTRACT PDF Endocrinology (2020)Covid-19 Affinity for ACE2 Receptors in Research Adipose Tissue and Testes. The Protective Effects of Estradiol. Fitness, and Weight Management Xanya Sofra Journal of Vol 2, No 1 SARS-CoV-2-the ABSTRACT PDF Unforeseen Peril of (2020)**David Winning Against** Goliath: the Immune Giant Collapsing Under Its Own Rampaging **Cytokine Storm** Vol 3, No 1 ABSTRACT PDF (2021): Online and How the Vaccine First

CURRENT RESEARCH PROJECTS BY CLINICIANS

Gerald Pollock, Ph.D **Technology Inventor** London University Co-inventor of the First Pacemaker in the UK. Pioneer in Ultra Violet Light. EU **Funded Centre BIC**

XANYA SOFRA, PhD Specific Waveform **Composition Research and** Development, Ph.D in Neurophysiology Ph.D in Clinical Psy Faculty Member & International Speaker.

NURIS LAMPE, MD Dermatologist Anti-aging Physician Senior Consultant

THOMAS BARNARD. MD Anti-aging Physician CANADA

BOB MARSHALL, PhD Biochemical Research Energy Specialist, USA

DR. SHEETAL BADAMI M.B.B.S., D.A. **Certified Bariatric** Physician, INDIA

HIROYUKI OTOMO

MD, JAPAN Anti-Aging Doctor **Pain Management**

FIONA MAK.

MBChB (Leic)

DPD (Wales),

Anti-aging Physician

General Medicine

VERONICA YAP

Lymphatic Disorders **SINGAPORE**

Dr. Lok Ngai Sang

Anti-aging

Physician

Senior Consultant

Hong Kong

YUKO KAWAMURA, MD, **JAPAN Antiaging Physician** **Diabetic Neuropathy / Pain Relief/ Increased Mobility**

Visceral Fat Reduction/ Fatty liver / Increased Muscle Mass

Hormonal Balance / Metabolism

Hunger / Appetite Control

Lipids and Cholesterol

Inflammation / Oxidative Stress

Increased RBC's separation /Detox / Lymphatic Drainage

Diabetes - Insulin / Glucose levels

Increased Sexual Drive / Increased Self Confidence.

Wound Healing

Stretchmarks

Incontinence

SCIENCE@IELLIOS.COM

THANKYOU

SCIENCE@IELLIOS.COM