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Abstract The Grätzer-Schmidt theorem of lattice theory states that each algebraic
lattice is isomorphic to the congruence lattice of an algebra. We study the reverse
mathematics of this theorem. We also show that

1. the set of indices of computable lattices that are complete is �1
1-complete;

2. the set of indices of computable lattices that are algebraic is �1
1-complete;

3. the set of compact elements of a computable lattice is�1
1 and can be�1

1-complete;
and

4. the set of compact elements of a distributive computable lattice is �0
3, and there

is an algebraic distributive computable lattice such that the set of its compact
elements is �0

3-complete.
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1 Introduction

TheGrätzer-Schmidt theorem [3], also known as the congruence lattice representation
theorem, states that each algebraic lattice is isomorphic to the congruence lattice of
an algebra. It established a strong link between lattice theory and universal algebra.
In this article we analyze the theorem from the point of view of reverse mathematics
and calibrate the strength of the special case of the theorem for distributive lattices.
The question of the strength of the general case of the theorem remains open.

We use notation associated with partial computable functions, ϕe, ϕe,s , ϕσ
e,s , ϕ

f
e as

in Odifreddi [6]. A�1
1 subset of ω may be written in the form (see, for example, Sacks

[8], page 5)

Ce = {n ∈ ω | ∀ f ∈ ωω ϕ
f

e (n) ↓}.

A subset A ⊆ ω is�1
1-hard if each�1

1 set is m-reducible to A; that is, for each e, there
is a computable function f such that for all n, n ∈ Ce iff f (n) ∈ A. A is �1

1-complete
if it is both �1

1 and �1
1-hard. It is well known that such sets exist. Fix for the rest of

the paper a number e0 so that Ce0 is �1
1-complete. With each n, the set Ce0 associates

a tree T ′
n defined by

T ′
n = {σ ∈ ω<ω | ϕσ

e0,|σ |(n) ↑}.

Note that T ′
n has no infinite path iff n ∈ Ce.

A computable lattice (L ,�) has underlying set L = ω and a computable lattice
ordering � that is formally a subset of ω2.

We will use the symbol � for lattice orderings, and reserve the symbol ≤ for the
natural ordering of the ordinals and in particular of ω. Meets and joins corresponding
to the order� are denoted by∧ and∨. Belowwewill seek to build computable lattices
from the trees T ′

n . Since for many n, T ′
n will be finite, and a computable lattice must

be infinite according to our definition, we will work with the following modification
of T ′

n :

Tn = T ′
n ∪ {〈i〉 : i ∈ ω} ∪ {∅}

where ∅ denotes the empty string and 〈i〉 is the string of length 1 whose only entry
is i . This ensures that Tn has the same infinite paths as T ′

n , and each Tn is infinite.
Moreover the sequence {Tn}n∈ω is still uniformly computable.

2 Computability-theoretic analysis of lattice theoretic concepts

2.1 Index set of complete lattices is �1
1-complete

Definition 2.1 A lattice (L ,�) is complete if for each subset S ⊆ L , both sup S and
inf S exist.

Example 2.2 In set-theoretic notation, (ω + 1,≤) is complete. Its sublattice (ω,≤) is
not, since ω = supω /∈ ω.
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Lemma 2.3 The set of indices of computable lattices that are complete is �1
1.

Proof The statement that sup S exists is equivalent to a first order statement in the
language of arithmetic with set variable S:

∃a[∀b(b ∈ S → b � a) and ∀c((∀b(b ∈ S → b � c) → a � c)].

The statement that inf S exists is similar, in fact dual. Thus the statement that L is
complete consists of a universal set quantifier over S, followed by an arithmetical
matrix. ��
Proposition 2.4 The set of indices of computable lattices that are complete is �1

1-
hard.

Proof Let Ln consist of two disjoint copies of Tn , called Tn and T ∗
n . For each σ ∈ Tn ,

its copy in T ∗
n is called σ ∗. Order Ln so that Tn has the prefix ordering

σ � σ�τ,

T ∗
n has the reverse prefix ordering, and σ ≺ σ ∗ for each σ ∈ Tn . We take the transitive

closure of these axioms to obtain the order of Ln ; see Fig. 1.
Next, we verify that Ln is a lattice. For any σ , τ ∈ Tn we must show the existence

of (1) σ ∨τ , (2) σ ∧τ , (3) σ ∨τ ∗, and (4) σ ∧τ ∗; the existence of σ ∗ ∨τ ∗ and σ ∗ ∧τ ∗
then follows by duality.

We claim that for any strings α, σ ∈ Tn , we have α∗ � σ iff α is comparable
with σ ; see Fig. 1. In one direction, if α � σ then α∗ � α � σ , and if σ � α then
α∗ � σ ∗ � σ . In the other direction, if α∗ � σ then by the definition of � as a
transitive closure there must exist ρ with α∗ � ρ∗ � ρ � σ . Then α � ρ and σ � ρ,
which implies that α and ρ are comparable.

Fig. 1 The lattice Ln from
Proposition 2.4

123



K. Brodhead et al.

Using the claim we get that (1) σ ∨ τ is (σ ∧ τ)∗, where (2) σ ∧ τ is simply the
maximal common prefix of σ and τ ; (3) σ ∨ τ ∗ is σ ∗ ∨ τ ∗ which is (σ ∧ τ)∗; and (4)
σ ∧ τ ∗ is σ ∧ τ .

It remains to show that (Ln,�) is complete iff Tn has no infinite path. So suppose
Tn has an infinite path S. Then sup S does not exist, because S has no greatest element,
S∗ has no least element, each element of S∗ is an upper bound of S, and there is no
element above all of S and below all of S∗.

Conversely, suppose Tn has no infinite path and let S ⊆ Ln . If S is finite then sup S
exists. If S is infinite then since Tn has no infinite path, there is no infinite linearly
ordered subset of Ln , and so S contains two incomparable elements σ and τ . Because
Tn is a tree, σ ∨τ is in T ∗

n . Now the set of all elements of Ln that are above σ ∨τ is finite
and linearly ordered, and contains all upper bounds of S. Thus S has a supremum.
Since Ln is self-dual, i.e. (Ln,�) is isomorphic to (Ln,�) via σ �→ σ ∗, infs also
always exist. So Ln is complete. ��

2.2 Compact elements of a lattice can be �1
1-complete

Definition 2.5 An element a ∈ L is compact if for each subset S ⊆ L , if a � sup S
then there is a finite subset S′ ⊆ S such that a � sup S′. Thus, if a � sup S but for
each finite subset S′ ⊆ S, a �� sup S′, then S is a witness for the non-compactness of
a.

Lemma 2.6 In each computable lattice L, the set of compact elements of L is �1
1.

Proof Similarly to the situation in Lemma 2.3, the statement that a is compact consist
of a universal set quantifier over S followed by an arithmetical matrix. ��
Example 2.7 Let L[a] = ω + 1∪ {a} be ordered by 0 ≺ a ≺ ω, and let the element a
be incomparable with the positive numbers. Then a is not compact, because a � supω

but a �� sup S′ for any finite S′ ⊆ ω (Fig. 2).

Definition 2.8 A lattice (L ,�) is compactly generated if every element is the supre-
mumof a set of compact elements. A lattice is algebraic if it is complete and compactly
generated.

Fig. 2 The lattice L[a] from
Example 2.7
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Fig. 3 The lattice L from Proposition 2.9

Proposition 2.9 There is a computable complete lattice L such that the set of compact
elements of L is �1

1-hard. Moreover, L is not algebraic.

Proof Let L consist of disjoint copies of the trees Tn , n ∈ ω, each having the prefix
ordering; least and greatest elements 0 and 1; and elements an , n ∈ ω, such that
σ ≺ an for each σ ∈ Tn , and an is incomparable with any element not in Tn ∪ {0, 1}
(see Fig. 3).

Suppose Tn has an infinite path S. Then an = sup S but an �� sup S′ for any finite
S′ ⊆ S, since sup S′ is rather an element of S. Thus an is not compact.

Conversely, suppose Tn has no infinite path, and an � sup S for some set S ⊆ L . If
S contains elements from Tm ∪{am} for at least two distinct values ofm, saym1 �= m2,
then sup S = 1 = σ1 ∨ σ2 for some σi ∈ S ∩ (Tmi ∪ {ami }), i = 1, 2. So an � sup S′
for some S′ ⊆ S of size two. If S contains 1, there is nothing to prove. The remaining
case is where S is contained in Tm ∪ {am, 0} for some m. Since an � sup S, it must
be that m = n. If S is finite or contains an , there is nothing to prove. So suppose S is
infinite. Since Tn has no infinite path, there must be two incomparable elements of Tn

in S. Their join is then an , since Tn is a tree, and so an � sup S′ for some S′ ⊆ S of
size two.

Thus we have shown that an is compact if and only if Tn has no infinite path. There
is a computable presentation of L where an is a computable function of n, for instance
we could let an = 2n. Thus letting f (n) = 2n, we have that Tn has no infinite path iff
f (n) is compact, i.e. {a ∈ L : a is compact} is �1

1-hard.
It remains to show that L is not algebraic. Fix n such that Tn has an infinite path

P , and also some nontrivial finite paths that do not extend to infinite paths. Let σ be
on such a finite path. Then each element of P is compact. However, σ is below the
supremum of P , but not below any join of finitely many elements of P , so σ is not
compact. Moreover, σ is join irreducible, being located on the tree Tn . Thus σ is not
a join of compact elements below it, and so L is not compactly generated. ��

From the proof of Proposition 2.9 we obtain the following corollary.

Corollary 2.10 (RCA0) The following principle is equivalent to �1
1-CA0: “For each

countable lattice L, there is a set consisting of exactly the compact elements of L.”
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Question 2.11 Is there a computable algebraic lattice such that the set of its compact
elements is �1

1-complete?

2.3 Index set of algebraic lattices is �1
1-complete

Lemma 2.12 The set of indices of computable lattices that are algebraic is �1
1.

Proof Let L be a computable lattice and C the set of its compact elements. L is
algebraic if it is complete (this property is �1

1 by Lemma 2.3) and each element is the
supremum of its compact predecessors, i.e., any element that is above all the compact
elements below a is above a:

∀a(∀b(∀c(c ∈ C and c � a → c � b) → a � b))

Equivalently,

∀a(∀b(∃c(c ∈ C and c � a and c �� b) or a � b))

This is equivalent to a �1
1 statement since, by the Axiom of Choice, any statement of

the form ∃c ∀S A(c, S) is equivalent to ∀(Sc)c∈ω ∃c A(c, Sc). ��
Example 2.13 The lattice (ω + 1,≤) is compactly generated, since the only noncom-
pact element ω satisfies ω = supω. The lattice L[a] from Example 2.7 and Fig. 2 is
not compactly generated, as the noncompact element a is not the supremum of {0}.
Proposition 2.14 The set of indices of computable lattices that are algebraic is �1

1-
hard.

Proof Let the lattice Tn[a] consist of Tn with the prefix ordering, and additional
elements 0 ≺ a ≺ 1 such that a is incomparable with each σ ∈ Tn , and 0 and 1 are
the least and greatest elements of the lattice. Note that Tn[a] is always complete, since
any infinite set has supremum equal to 1. We claim that Tn[a] is algebraic iff Tn has
no infinite path.

Suppose Tn has an infinite path S. Then a � sup S, but a �� sup S′ for any finite
S′ ⊆ S. Thus a is not compact, and so a is not the sup of its compact predecessors
(0 being its only compact predecessor), which means that Tn[a] is not an algebraic
lattice (Fig. 4).

Conversely, suppose Tn[a] is not algebraic. Then some element of Tn[a] is not the
join of its compact predecessors. In particular, some element of Tn[a] is not compact.
So there exists a set S ⊆ Tn[a] such that for all finite subsets S′ ⊆ S, sup S′ < sup S. In
particular S is infinite. Since each element except 1 has onlyfinitelymanypredecessors,
we have sup S = 1. Notice that Tn[a]\{1} is actually a tree, so if S contains two
incomparable elements then their join is already 1, contradicting the defining property
of S. Thus S is linearly ordered, and infinite, which implies that Tn has an infinite
path. ��
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Fig. 4 The lattice Tn [a] from
Proposition 2.14

3 Lattices of equivalence relations

Let Eq(A) denote the set of all equivalence relations on A. Ordered by inclusion, Eq(A)

is a complete lattice. In a sublattice L ⊆ Eq(A), we write supL for the supremum in
L when it exists, and sup for the supremum in Eq(A), and note that sup ≤ supL .

A complete sublattice of Eq(A) is a sublattice L of Eq(A) such that supL = sup
and infL = inf. A sublattice of Eq(A) that is a complete lattice is not necessarily
a complete sublattice in this sense. The following lemma is well known. A good
reference for lattice theory is the monograph of Grätzer [4].

Lemma 3.1 Suppose A is a set and (L ,⊆) is a complete sublattice of Eq(A). Then
an equivalence relation E in L is a compact member of L if and only if E is finitely
generated in L.

Proof One direction only uses that L is a sublattice of Eq(A) and L is complete as a
lattice. Suppose E is not finitely generated in L . Let C(a,b) denote the infimum of all
equivalence relations in L that contain (a, b). Then E ⊆ supL{C(a,b) : aEb}, but E
is not below any finite join of the relations C(a,b). So E is not compact.

Suppose E is finitely generated in L . So there exists an n and pairs (a1, b1),. . .,
(an, bn) such that ai Ebi for all 1 ≤ i ≤ n, and for all equivalence relations F in L ,
if ai Fbi for all 1 ≤ i ≤ n then E ⊆ F . Suppose E ⊆ supL{Ei : 1 ≤ i < ∞} for
some E1, E2, . . . ∈ L . Since L is a complete sublattice of Eq(A), supL = sup, so
E ⊆ sup{Ei : 1 ≤ i < ∞}. Note that sup{Ei : 1 ≤ i < ∞} is the equivalence relation
generated by the relations Ei under transitive closure. So there is some j = jn < ∞
such that {(ai , bi ) : 1 ≤ i ≤ n} ⊆ ⋃ j

i=1 Ei and hence E ⊆ ⋃ j
i=1 Ei . Thus E is

compact. ��
A computable complete sublattice of Eq(ω) is a uniformly computable collection

E = {Ei }i∈ω of distinct equivalence relations on ω such that (E,⊆) is a complete
sublattice of Eq(ω). We say that the lattice L = (ω,�) is computably isomorphic to
(E,⊆) if there is a computable function ϕ : ω → ω such that for all i , j , we have
i � j ↔ Eϕ(i) ⊆ Eϕ( j).
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Lemma 3.2 The indices of compact congruences in a computable complete sublattice
of Eq(ω) form a 
0

2 set.

Proof Suppose the complete sublattice is E = {Ei }i∈ω. By Lemma 3.1, Ek is compact
if and only if it is finitely generated, i.e.,

∃n ∃a1, . . . , an ∃b1, . . . , bn

[
n∧

i=1

ai Ekbi & ∀ j

(
n∧

i=1

ai E j bi → Ek ⊆ E j

)]

.

Here Ek ⊆ E j is �0
1: ∀x∀y (x Ek y → x E j y), so the formula is 
0

2 . ��

3.1 Congruence lattices

An algebra A consists of a set A and functions fi : Ani → A. Here i is taken from an
index set I which may be finite or infinite, and ni is the arity of fi . Thus, an algebra
is a purely functional model-theoretic structure. A congruence relation of A is an
equivalence relation on A such that for each unary fi and all x, y ∈ A, if x Ey then
fi (x)E fi (y), and the natural similar property holds for fi of arity greater than one.
The congruence relations ofA form a lattice under the inclusion (refinement) order-

ing. This lattice Con(A) is called the congruence lattice of A.
The following lemma is well-known and straight-forward.

Lemma 3.3 If A is an algebra on A, then Con(A) is a complete sublattice of Eq(A).

Theorem 3.4 (Grätzer-Schmidt [3]) Each algebraic lattice is isomorphic to the con-
gruence lattice of an algebra.

Remark 3.5 Let A be a set, and let L be a complete sublattice of Eq(A). Then L is
algebraic [4], and so by Theorem 3.4 L is isomorphic to Con(A) for some algebra A
on some set, but it is not in general possible to find A such that L is equal to Con(A).
In fact, it suffices to take any finite lattice table that is not Malcev homogeneous in the
sense of Definition 3.1 of [5].

3.2 Principal congruences can be Turing complete

Let A be an algebra. The least congruence relation ∼ on A with a ∼ b is denoted by
CA(a, b) and is called the principal congruence relation generated by the pair (a, b).

Definition 3.6 We say that the algebra A = { fn | n ∈ ω} is computable if the set

{〈〈x1, . . . , xk〉, y, n〉 | fn(x1, . . . , xk) = y}

is computable.

Theorem 3.7 There is a computable algebra A and a, b ∈ A such that the Turing
degree of CA(a, b) is 0′.
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Proof Let 0′ = {g(n) | n ∈ ω} where g is computable, and let the operations of
A be unary functions { fs}s∈ω. Let fs(a0) = ag(s) and fs(b0) = bg(s), where A =
{an | n ∈ ω} ∪ {bn | n ∈ ω}, a union of two disjoint infinite sets; let fs be the
identity on A\{a0, b0}. Then for k > 0, (ak, bk) ∈ CA(a0, b0) iff k ∈ 0′. So we can
let (a, b) = (a0, b0). ��

4 Reverse mathematics

We consider the following standard axiom systems of reverse mathematics [9]:

• RCA0 (recursive comprehension axiom);
• ACA0 (arithmetical comprehension axiom);
• �1

1-CA0 (�
1
1-comprehension axiom);

• WKL0 (weak König’s lemma);
• RT2

2 (Ramsey’s theorem for pairs).

Definition 4.1 The axiom system GS (Grätzer-Schmidt) consists of RCA0 plus the
following axiom: For each algebraic lattice L there exists

1. an algebra A,
2. a set {Ei }i∈ω of congruences of A such that each congruence of A is one of the Ei ,

and
3. an isomorphism ϕ between L and {Ei }i∈ω.

Remark 4.2 For this theorem to fall within the scope of reverse mathematics, for each
countable lattice L , there must exist a countable algebra A satisfying the properties
above. That this is the case can be seen from Pudlák’s proof [7] of the Grätzer-Schmidt
theorem, which we discuss in more detail below.

Definition 4.3 LetGSDbe theGrätzer-Schmidt theorem for distributive lattices: every
distributive algebraic lattice is isomorphic to the congruence lattice of an algebra.

5 Compact elements in algebraic lattices of restricted kinds

5.1 Distributive lattices

As a contrast to the case of arbitrary lattices (Proposition 2.9), in the distributive case
the complexity of the set of compact elements reduces from �1

1 to �0
3 (Theorem 5.3).

This is also sharp (Theorem 5.5), which will enable us to show thatWKL0 +RT2
2 does

not imply GSD (Corollary 5.12). We first need a proposition.

Proposition 5.1 (ACA0) If L is a countable algebraic lattice and a ∈ L is not compact
then there is a witness C ⊆ {x | x < a}. Moreover, we can assume that C = {ci | i ∈
ω} where the ci are strictly increasing.

Proof Let C = {di } witness the fact that a is not compact. Thus a ≤ supC but for
each finite C ′ ⊂ C , a �≤ supC ′. By closing under finite joins of initial segments and
thinning out the sequence, we can assume that the di are strictly increasing.
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As L is algebraic, a is the join of the compact elements ≤ a. Since moreover a is
not itself compact, a is the join of the compact elements c < a.

Since a ≤ supi di , each compact c ≤ a is below some d0 ∨ · · · ∨ di = di , and
hence c ≤ di ∧ a < a.

Thus a = ∨
i (di ∧ a). Finally, let {ci }i∈ω be a strictly increasing subsequence of

the sequence {di ∧ a}i∈ω. ��
Definition 5.2 We say that b is a coatom relative to a, written b � a, if

b < a and ¬∃y(b < y < a).

Theorem 5.3 (ACA0) In an algebraic countable distributive lattice L, the set {a ∈
L | a is compact} has the �0

3(L) form

{a ∈ L | (∀x < a)(∃b)(x ≤ b � a)}.

Proof Fix a ∈ L . Let B = {b j } = {b | b � a}. We must show that a is compact if
and only if

(∀x < a)(∃b)(x ≤ b � a).

Only if direction: Assume that there is an z < a with no b ∈ B above it. Let

D = {x < a | x is not below any b ∈ B} = {di }.

Note that D is nonempty by assumption and has no maximal elements by definition.
We build an increasing sequence c j ∈ D such that for each i , di �= ∨c j . Again by our
assumptions this guarantees that ∨c j = a as required to show that it is not compact.
Let c0 = z and suppose we have defined ck . We want to choose ck+1 > ck in D so as
to guarantee that dk will not be the join of all the c j . If dk � ck then dk cannot be the
join of the c j and we can take any c ∈ D with c > ck as ck+1. If dk ≥ ck we can take
any c ∈ D with c > dk as once again we have guaranteed that dk �= ∨c j .
If direction: We suppose that every x < a is below some b ∈ B and, for the sake
of a contradiction, that a is not compact. Then by Proposition 5.1, some C = {ci }
(a strictly increasing sequence of elements below a) witnesses that a is not compact.
If ∃ j∀i(ci ≤ b j ) then ∨ci ≤ b j < a for any such j contradicting our choice of C .
Thus ∀ j∃i(ci � b j ). If B is finite, there is an i such that ∀ j (ci � b j ) as the ci are
increasing. This would contradict our case assumption.

Finally, we suppose that B is infinite. We build a nondecreasing sequence dn of ele-
ments strictly below a with d0 = c0 which has no join in L below a for a contradiction
to the completeness of L . Each dk+1 will be of the form b j1 ∧ b j2 ∧ · · · ∧ b jk ∧ clk and
its choice will guarantee that xk is not the join of all the dn where L = {xk}.

Suppose we have dk and want to define dk+1. First ask if (∃b ∈ B)(b ≥ dk & b �

xk). If so, we let b jk+1 be such a b and lk+1 = lk . In this case dk+1 = dk and, by
the intended form of our dn , we have guaranteed that b ≥ dn for every n and so that
b ≥ ∨dn . As b � xk , xk �= ∨dn as required. Otherwise, for every b ∈ B with b ≥ clk ,

123



The strength of the Grätzer-Schmidt theorem

b ≥ xk . Choose one such b not equal to any b jm , m ≤ k, and a p > lk such that
b � cp.

Note that { j | b j ≥ ci } is nonempty for every i by our case assumption. Thus
∀i∃∞ j (b j ≥ ci ) since otherwise (as the ci are increasing) there would be a finite set
F such that ∀i∀ j ∈ F(b j ≥ ci ) and so ∨ci ≤ ∧{b j | j ∈ F} < a contradicting our
choice of C . Also note that ∀n∃i∀ j ≥ i(c j � bn) as otherwise ∀ j (c j ≤ bn) and so
∨ci ≤ bn again contradicting our choice of C .

Now let jk+1 = jk and clk+1 = cp. As cp ≥ clk , dk+1 ≥ dk . As b ≥ clk , b ≥ xk .
On the other hand, b is not any of the b jm for m ≤ k + 1 and so is not above any of
them. Moreover, it is not above cp = clk+1 . Thus it is not above

dk+1 = b j1 ∧ · · · ∧ b jk+1 ∧ clk+1

by distributivity, as we now show:
As b ∈ B, b ∨ b jm = a = clk+1 ∨ b for m ≤ k + 1. But if

b ≥ b j1 ∧ · · · ∧ b jk+1 ∧ clk+1

then

b =
((

k+1∧

i=1

b ji

)

∧ clk+1

)

∨ b = (b ∨ b j1) ∧ · · · ∧ (b ∨ b jk+1) ∧ (b ∨ clk+1)

but as b ∈ B each of these terms (and so their join) is equal to a for the desired
contradiction. Thus x �= ∨dn as required. ��
Proposition 5.4 (Folklore) For every �0

3 predicate P, there is a computable function
h(x, y) such that for all x and y, Wh(x,y) is an initial segment of ω, and

P(x) ⇒ (∀y)(Wh(x,y) is finite)

and

¬P(x) ⇒ (∃!y)(Wh(x,y) = ω).

Proof It is well-known (see, for example, Soare [10], Theorem 4.3.4) that there is a
function g(x, y) such that

P(x) ⇔ (∀y)(Wg(x,y) is finite).

Wedescribe a uniform sequence {Ci }i∈ω of c.e. sets. At each stage s of the enumeration
of this sequence, for each y ≤ s, there is a designated “destination” iy,s ∈ ω for
Wg(x,y). By a “new destination”, we mean the least n ∈ ω that has not yet been used
as a destination.

At stage s, choose a new destination is,s . If it exists, let z < s be the least such that
a new element has just entered Wg(x,z). Then
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• enumerate into Ciz,s the least element not already in it, and
• choose new destinations for Wg(x,y) for all y such that z < y ≤ s.

This describes the enumeration of {Ci }i∈ω.
We verify that this sequence has the desired properties. If there is a y such that

Wg(x,y) is infinite, then let it be the least such. After some stage s, new elements will
cease to appear in Wg(x,y′) for y′ < y, and iy,s will never again be redefined. Thus
Ciy,s = ω. If j �= iy,s is ever a destination for some Wg(x,z) for some z > y, it will
cease to be so when a new element is enumerated into Wg(x,y), hence C j will be finite.
On the other hand, if Wg(x,y) is finite for all y, C j is finite for all j , since each such j
is ever a destination for Wg(x,y) for exactly one value of y.

Finally, let Wh(x,y) = Cy . ��
Theorem 5.5 There is a computable distributive algebraic lattice for which the set of
compact elements is complete �0

3.

Proof Given a complete �0
3 set P , let h be as in the proposition above. Our lattice

shall contain elements ai for each i < ω, and elements ai, j,k for each triple (i, j, k)

such that k ∈ Wh(i, j). The plan is that ai will be compact iff P(i) holds. Let

αi = {ai, j,k | k ∈ Wh(i, j) and j ∈ ω},

and � = {0, 1} ∪ ⋃
i {ai } ∪ ⋃

i αi .
The ordering among the elements of � is specified by

ai, j,k ≤ aı̂,ĵ ,k̂ ⇐⇒ i = ı̂ and j = ĵ and k ≤ k̂;
ai ≤ aı̂ ⇐⇒ i = ı̂;

ai, j,k ≤ aı̂ ⇐⇒ i = ı̂;

and no aı̂ is below any ai, j,k . The top element 1 is above all others in �, while 0 is
below.

This determines joins betweens pairs of elements of �:

ai ∨ aı̂ = 1 for i �= ı̂

aı̂ ∨ ai, j,k =
{
1 for i �= ı̂ and

aı̂ if i = ı̂ ;

ai, j,k ∨ aı̂,ĵ ,k̂ =

⎧
⎪⎨

⎪⎩

1 if i �= ı̂ ;

ai if i = ı̂ and j �= ĵ ; and

ai, j,k if i = ı̂ , j = ĵ and k̂ ≤ k.

These relations extend to arbitrary joins as follows: Let �0 ⊆ �. If �0 contains a
pair that join up to 1 then

∨
�0 = 1. Otherwise, all elements of �0 have the same i .

If there are two with different j (or ai itself occurs) then
∨

�0 = ai . Otherwise, they
are all of the form ai, j,k for a fixed i and j . If sup{k | ai, j,k ∈ �0} = ω, then

∨
�0 is

again ai . If it is k̂ ∈ ω, then
∨

�0 = ai, j,k̂ . Thus, � is closed under arbitrary joins.
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To each element x in �, we now associate a subset (x) of ω. Let B and C be
infinite uniformly computable sets such that B ∪ C = ω, and let {Bi }i∈ω and {Ci }i∈ω

be partitions of B and C , respectively, into infinite computable pairwise disjoint sets.
Let fi : ω2 → Ci be a uniform family of computable bijections. Now let

(0) = ∅
(1) = ω

(ai ) = Ai = ω\Bi

(ai, j,k) = Ai, j,k = ω\(Bi ∪ { fi ( j, k̂) | k̂ > k}).

The following claims are easily verified:

Claim 5.6 For all x, y ∈ �, x ≤ y ⇔ (x) ⊆ (y).

Claim 5.7 For any �0 ⊆ �, (
∨

�0) = ⋃
x∈�0

(x).

Let L be the collection of sets obtained by closing the image of  under finite
intersections. The distributivity of union and intersection ensures that L is also closed
under finite unions. Thus L is a distributive lattice, and its order extends the ordering
on � (which we identify with its image under ). The domain of our computable
presentation of L will be ω: we can assume that only finitely many elements are
enumerated into the uniformly c.e. sequence Wh(i, j) at every stage, and for each such
element and the finitely many new intersections it gives rise to, we allocate as yet
unused natural numbers while ensuring that every natural number will be eventually
allocated. We must now verify that

1. the relations and operations on L are computable, and
2. L is algebraic.

To this end, we derive a normal form for the finite meets making up the lattice.
Suppose x ∈ L is neither 0 nor 1. It is an intersection of finitely many elements of the
form Ai and the form Ai, j,k . For each i , if any Ai, j,k appears, we may eliminate all
terms of the form Ai and Ai, j,k̂ except for the smallest k̂ so occurring. We now have
a normal form of x given by

x =
∧

i∈F

Ai ∧
∧

i∈G

∧

j∈Gi

Ai, j,ki, j

with F, G, Gi finite nonempty sets and F and G disjoint. We say that x is represented
by 〈F, G, 〈Gi | i ∈ G〉〉. It can be verified that the normal form representation of an
element is unique.

Claim 5.8 L is computable as a lattice.

Proof Suppose we have

x =
∧

i∈F

Ai ∧
∧

i∈G

∧

j∈Gi

Ai, j,ki, j and x̂ =
∧

i∈F̂

Ai ∧
∧

i∈Ĝ

∧

j∈Ĝi

Ai, j,k̂i, j
.
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We claim that

x ≤ x̂ ⇐⇒ F̂\F ⊆ G and Ĝ ⊆ G and (∀i ∈ Ĝ)(Ĝi ⊆ Gi )

and (∀i ∈ Ĝ)(∀ j ∈ Ĝi )(k̂i, j ≥ ki, j ). (∗)

The conditions on the right hand side guarantee that every term in the meet forming x̂
is greater than or equal to one of the terms whose meet is x , yielding the right-to-left
implication. And if any of the conditions fails, then by the definitions of the sets Ai

and Ai, j,k , there is some element n ∈ x such that n /∈ x̂ , so x � x̂ . Next, note that

x < x̂ ⇐⇒ x ≤ x̂ & x �= x̂ ⇐⇒
(∗) and F̂ �= F or (F̂ = F and G\Ĝ �=∅) or (∃i ∈ Ĝ)(∃ j ∈ Ĝi )(k̂i, j >ki, j ).

Thus the relations≤ and< on L are computable from the normal forms of the elements
of L . Meets can also be computed from the normal forms. Let

G ′ = G ∪ Ĝ

F ′ = (F ∪ F̂)\G ′

G ′
i =

⎧
⎪⎨

⎪⎩

Gi for i ∈ G\Ĝ

Ĝi for i ∈ Ĝ\G

Gi ∪ Ĝi for i ∈ G ∩ Ĝ

k′
i, j =

⎧
⎪⎨

⎪⎩

ki, j if k̂i, j is undefined

k̂i, j if ki, j is undefined

min(ki, j , k̂i, j ) if both are defined.

Then

x ∧ x̂ =
∧

i∈F ′
Ai ∧

∧

i∈G ′

∧

j∈G ′
i

Ai, j,k′
i, j

.

Joins can be computed by converting to a meet of joins of elements of � using
distributivity, then applying the rules for joins of elements of �, and finally reducing
the meet to normal form. ��
Claim 5.9 L is complete.

Proof First, we consider an arbitrary (infinite) meet
∧

n xn . We may assume that
xn+1 ≤ xn and if the sequence is not eventually constant (and so its meet a finite
one) that xn+1 < xn . We claim any such meet is 0. Suppose xn is represented by〈
Fn, Gn,

〈
Gn

i | i ∈ Gn
〉〉
. If the Fn are not eventually constant then there is an infinite

set of i that eventually appear in them and so the meet is below Ai for infinitely many
i . The only such element is 0. Next, say the Fn are eventually equal to F . If after they
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have settled down the Gn are not eventually constant, and say equal to G, then there
are infinitely many i eventually appearing in the Gn and so the meet is below some
Ai, j,k for infinitely many i and so also below infinitely many Ai . Therefore, it is once
again 0. So suppose Fn and Gn have stabilized by n0. The only way xn+1 < xn for
n > n0 is for some kn+1

i, j to be smaller than kn
i, j for some i ∈ G. But this can happen

only finitely often and so the meet eventually stabilizes, which is a contradiction.
Next, consider an infinite join

∨
n xn . Let

y =
∧

{z | ∀n(z ≥ xn)}

which exists by the argument above. Clearly, y is the least element of L above every
xn . ��
Claim 5.10 L is algebraic.

Proof We determine the compact elements of L . It is easy to see that 1 and 0 are
among them. If P(i) fails let ji denote the unique witness such that Wh(i, ji ) is infinite.
Suppose x �= 0, 1 has the normal form

∧

i∈F

Ai ∧
∧

i∈G

∧

j∈Gi

Ai, j,ki, j .

We claim that x is compact if and only if

(∀i ∈ F)(P(i)) and (∀i ∈ G)(P(i) or ji ∈ Gi ). (†)

First, suppose that x is compact. If there is an i ′ ∈ F such that P(i ′) fails, then let yk

be obtained by replacing the term Ai ′ by Ai ′, ji ′ ,k in x , i.e.,

yk = Ai ′, ji ′ ,k ∧
∧

i∈F,i �=i ′
Ai ∧

∧

i∈G

∧

j∈Gi

Ai, j,ki, j .

It is clear that each yk < x and so
∨

k yk ≤ x . On the other hand, if z is such that
yk ≤ z < x , then, by our characterizations of the relations ≤ and <, it must be some
yk′ for k′ ≥ k. It follows that

∨
k yk = x , but no finite join suffices.

Next, suppose that P(i ′) fails for some i ′ ∈ G and ji ′ /∈ Gi ′ . Let yk = x ∧ Ai ′, ji ′ ,k .
An argument similar to the one above shows that

∨
k yk = x while no finite join is x .

Next, we argue that if the condition (†) holds then x is compact. Consider any∨
n xn ≥ x . We may assume that if the join is not achieved at any finite stage then the

xn are strictly increasing. Suppose

xn =
∧

i∈Fn

Ai ∧
∧

i∈Gn

∧

j∈Gn
i

Ai, j,kn
i, j

.

It is clear from the characterization of < that the Fn , Gn and Gn
i must eventually

stabilize, say to F̄ , Ḡ and Ḡi for i ∈ Ḡ. After stabilization, for i ∈ Ḡ such that P(i)
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holds, or such that P(i) fails but j ∈ Ḡi is not equal to ji , the kn
i, j are also eventually

constant (since in either case, there are only finitely many of them). However, there
must be some i ∈ Ḡ such that P(i) fails and ji ∈ Ḡi , and for at least one such i , the
kn

i, ji
must be unbounded. Let

H = {i | (∀m)(∃n > m)(kn
i, ji > m)} and K = H ∩ {i | Ḡi = { ji }}.

It is not difficult to see that
∨

n xn is represented by
〈
F̄ ∪K , Ḡ\K ,

〈
Ĝi | i ∈ Ḡ\K

〉〉
,

where Ĝi = Ḡi\{ ji } if i ∈ H and Ĝi = Ḡi if i /∈ H . Now,

• F̄\F ⊆ G, since
∨

n xn ≥ x , and so (F̄ ∪ K )\F ⊆ G
• Ḡ ⊆ G, since otherwise, there is an i ∈ K such that i /∈ G, which means that

i ∈ F , contradicting (†)
• (∀i ∈ Ḡ\K )(Ḡi ⊆ Gi ), since if P(i) holds, then i /∈ H , and so Ĝi = Ḡi ⊆ Gi ,
and if ji ∈ Gi , then Ḡi ⊆ Ĝi ∪ { ji } ⊆ Gi

• (∀i ∈ K )(Ḡi ⊆ Gi ), since for all i ∈ K , P(i) fails and therefore, by (†), ji ∈ Gi ,
and Ḡi = { ji }.

Therefore, for sufficiently large n, xn ≥ x .
The above analysis shows that if x is not compact it is the join of the compact

elements below it: Define yn by replacing in the meet producing x each Ai (i ∈ F)
such that P(i) fails by Ai, ji ,n and, for each i ∈ G for which P(i) fails and ji /∈ Gi ,
adding Ai, ji ,n to the meet. Our characterization of the compact elements shows that
each yn is compact. Our analysis of the order shows that

∨
yn = x . ��

This completes the proof of the theorem. ��
Corollary 5.11 (RCA0) The following principle is equivalent to ACA0: “For each
countable distributive lattice L, there is a set consisting exactly of the compact elements
of L.”

Proof Sketch To prove ACA0 from this principle, use the following construction. Let
Ln have a top element tn preceded by a finite sequence if n ∈ 0′ and an ω-sequence if
n /∈ 0′. Let L be the sum of the linear orders, so that tn is compact iff n ∈ 0′. Then L
is a linear order, and hence in particular a distributive lattice (Fig. 5).

Corollary 5.12 WKL0 +RT2
2 �|$ GSD.

Proof As the set of compact elements of a computable congruence lattice is 
0
2 , the

construction for Theorem 5.5 guarantees that any standard model of GSD includes a
set C such that the complete �0

3 set is 
0
2 in C and so C ′′ ≥T 0′′′. There are, however,

standard models of WKL0 +RT2
2 in which all sets are low2 [2], so C ′′ ≡T 0′′. ��

Remark 5.13 Let L be a countable algebraic lattice and let K be the set of its compact
elements, which is an upper semilattice. Pudlák’s proof [7] of the Grätzer-Schmidt
Theorem proceeds by constructing a “K -valued graph” (A, r, h), where A is a set of
vertices, r a set of (undirected) edges, and h : r → K a surjective “coloring” of each
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Fig. 5 Reverse mathematics of
the Grätzer-Schmidt theorem
over RCA0

edge by a compact element. A mapping f : A → A is said to be stable if it respects
the coloring in the following sense: for every edge {a, b} ∈ r , either f (a) = f (b) or
h({a, b}) = h({ f (a), f (b)}). Then letting F be the family of all stable mappings on
A, the unary algebra (A, F) satisfies the requirements of the theorem, i.e., Con(A, F)

is isomorphic to L .
An inspection of this construction reveals that the K -valued graph (A, r, h) is

computable in K . Further, it suffices to choose a countable subfamily { fn | n ∈ ω} ⊆ F
of stable mappings that are uniformly computable in K , so that Con(A, { fn | n ∈
ω}) ∼= L .

For a, b ∈ A, let a ∼x b if there is a path in (A, r, h) connecting a and b all
of whose edges are colored with compact elements that are less than or equal to x .
It can then be shown that the map ϕ : x �→ ∼x is an isomorphism between L and
Con(A, { fn | n ∈ ω}). Moreover, ϕ is 
0

1-definable in K . In particular, there is a
presentation of Con(A, { fn | n ∈ ω}) that is arithmetical in K .

Proposition 5.14 We have the following provability results:

1. �1
1-CA0 & GS.

2. ACA0 & GSD.

Proof For (1), note that �1
1-CA0 guarantees the existence of the set K of compact

elements in a given lattice L , and by the remark above, the congruence lattice and the
isomorphism can be chosen to be arithmetical in K .

For (2), Theorem 5.3 shows that the set of compact elements of a computable
algebraic distributive lattice is�0

3, and thus the congruence lattice and the isomorphism
are, in this case, arithmetical. ��

5.2 Modular lattices

While we do not know whether the set of compact elements in a modular lattice must
be�0

3, we do know that the characterization of compact elements in Theorem 5.3 does
not extend from distributive to modular lattices.

The following fact is well-known:

Lemma 5.15 In an algebraic lattice, each element is the supremum of the compact
elements below it.
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Remark 5.16 An example to keep in mind: consider (ω + 1) × 2. Let a = (ω, 1).
Then a is not compact.

Theorem 5.17 Let L be a modular algebraic lattice and a be in L. If a is compact,
then for each interval (b, a), there is a c ∈ (b, a) such that the interval (c, a) is empty
(we say that a covers c). However, the converse does not hold.

Proof If a does not cover any element in (b, a), one can construct an infinite chain
whose supremum is a but for any finite subchain, the supremum is strictly below a,
contradicting compactness.

For a counterexample to the converse, consider the countably-infinite dimensional
vector space V over Z/2Z consisting of all finite subsets of N, viewed as finite char-
acteristic functions, with mod-two addition or equivalently:

A + B = (A\B) ∪ (B\A).

Let Vn be the subspace of V consisting of subsets of {1, . . . , n}. Then the supremum
of {Vn : n ∈ ω} is V but clearly the supremum of any finite subset of the Vn is
contained in some Vk . On the other hand each proper subspace of V is contained in a
codimension 1 subspace. ��
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