

School of Engineering

Discrete Structures CS 2212 (Fall 2020)

14 – Algorithms

© 2020 Vanderbilt University (Waseem Abbas)

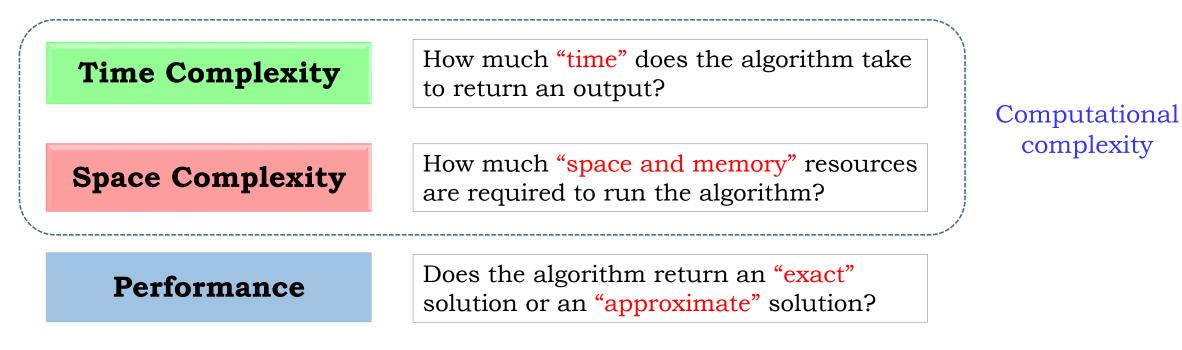
Chapter - 6

Computation and Algorithms

Introduction to Algorithm Analysis

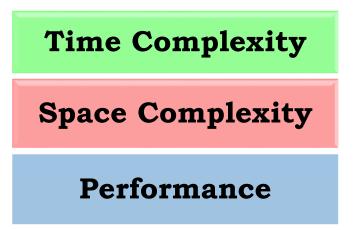
Algorithm Analysis:

- A step-by-step method for solving a problem.
- How do we know it's a "good" or an "efficient" algorithm?
- What does "good" or "efficient" mean here?
- How should we analyze an algorithm?



Introduction to Algorithm Analysis

Algorithms may perform differently, that is more or less efficient in different situations (for instance, for some inputs more efficiently than the other).



- Best Case Scenario
- Worst Case Scenario
- Average Case Scenario

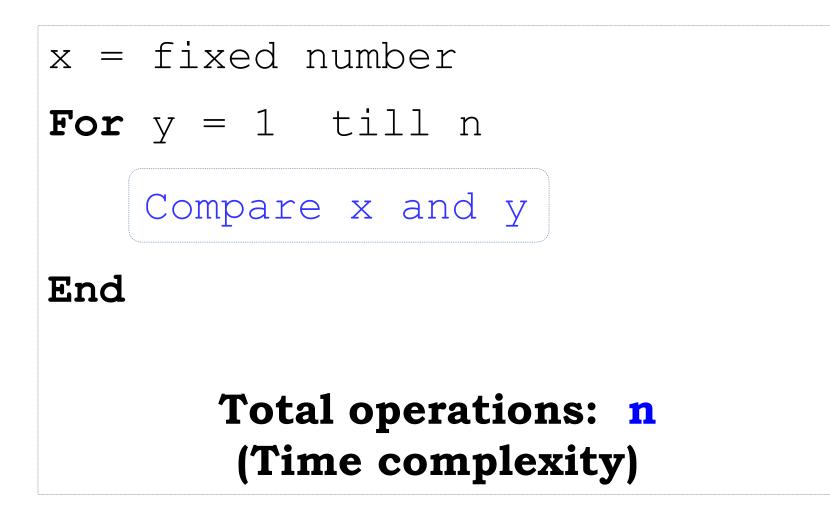
How can we formalize these ideas, and develop tools to quantify the above aspects for any algorithm?

Analyzing Algorithms – Time Complexity

We count the total number of **"atomic operations"** performed by the algorithm. Each atomic operation takes a **unit time**.

The number of operations depend on the **size of input**, and so the time complexity is a function of the input size typically.

Example:

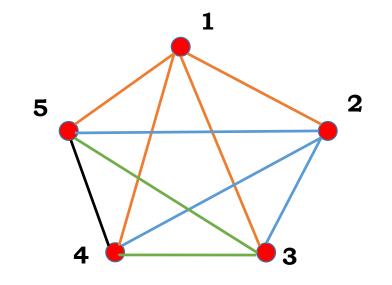


Example:

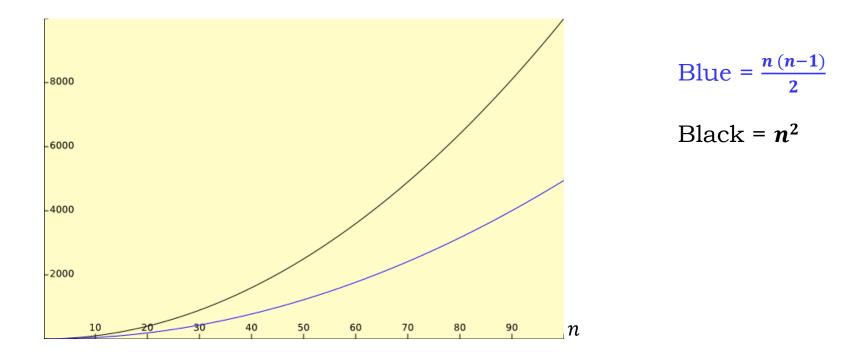
For x = 1 till n For y = 1 till n Some "operation" that depends on x and y. End End Total operations: n² (Time complexity)

Problem: Given a set of n points, connect every pair of points by drawing a line between them.

```
For i = 1 till n-1
     For j = i+1 till n
           Draw a line between
           point i and j.
     End
End
      Total operations: \frac{n(n-1)}{2}
```



Is it ok to say that time complexity of the Algorithm is n^2 instead of $\frac{n(n-1)}{2}$?



Next, we will see a formal way to represent the complexity of an algorithm as a function of its input size.

Time Complexity Analysis

No. of operations in the algorithm

"Exact" expression (in terms of input size n)

"Approximate" expression (in terms of input size n)

Could be hard to find.

Simple but only give bounds.

Asymptotic Growth of Functions

Asymptotic Growth of the function f measures: how fast the output f(n) grows as the input n grows.

The actual expression (closed form) of f may be too complex.

Our goal is to see if we can represent the limiting behavior of f(n) using some simpler functions that can give us a good idea of how fast the function grows with n.

Asymptotic Growth of Functions

Asymptotic Growth of the function f measures:

how fast the output f(n) grows as the input n

We can go for the upper and lower bounds of *f(n)* under "certain conditions".

f(n) using some simpler functions that can give us a good idea of how fast the function grows with n.

Comparing Growth Rates

Big O:

The notation f = O(g) is read "f is big-Oh of g".

c q(n)t(n) cq n_0

Loosely speaking, *f* is O(g)means there is a constant c such that when f(n) and $c \cdot g(n)$ are graphed, the graph of $c \cdot g(n)$ will eventually cross f(n) and will remain higher than f(n), as n gets large.

Let *f* and *g* be two functions from \mathbb{Z}^+ to \mathbb{Z}^+ . Then f = O(g) if there are positive constants c and n_0 such that for any $n \ge n_0$, $f(n) \le c g(n)$.

$$f(n) = 2n^{3} + 3n^{2} + 7$$

$$g(n) = n^{3}$$

$$f(n) \le c g(n), \quad \forall n \ge n_{0}$$

$$c = 3, n_{0} = 4$$

$$y = \frac{3g(n)}{f(n)}$$

$$f(n) = \frac{3g(n)}{f(n)}$$

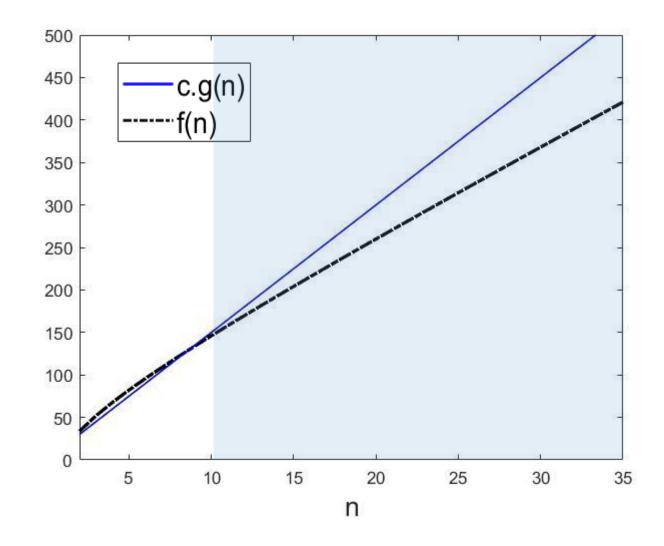
Big O – Example

Example:

$$f(n) = 20 \log n + 10 n$$
$$g(n) = n$$

f is O(n)

- Here c = 15, and $n_0 = 10$.
- Note that for $n \ge n_0$, cg(n) is an upper bound of f(n).



Rules for Asymptotic Growth:

Let *f*, *g*, and h be functions from \mathbf{R}^+ to \mathbf{R}^+ :

If
$$f = O(h)$$
 AND $g = O(h)$, then
 $f+g = O(h)$.

 $\begin{aligned} f(n) &\leq c_1 h(n), \forall n \geq n_1 & g(n) \leq c_2 h(n), \forall n \geq n_2 \\ f(n) + g(n) &\leq (c_1 + c_2)h, \forall n \geq (n_1 + n_2) \\ f + g &\leq ch & \longleftrightarrow & f + g = O(h) \end{aligned}$

Rules for Asymptotic Growth:

Let *f*, *g*, and h be functions from \mathbf{R}^+ to \mathbf{R}^+ :

• If
$$f = O(h)$$
 AND $g = O(h)$, then
 $f+g = O(h)$.

• If f = O(g) and *c* is a constant greater than 0, then $c \cdot f = O(g)$.

• If
$$f = O(g)$$
 and $g = O(h)$, then

f = O(h).

Example:

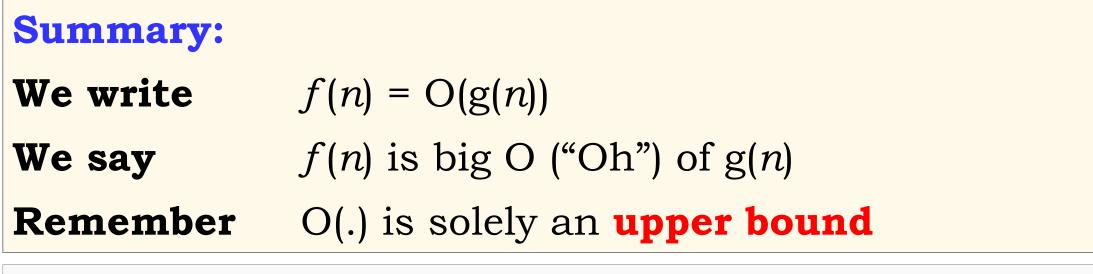
 $f(n) = 5n^{3} + 16(n \log n) + 5 \cdot 2^{n}$ $5n^{3} \text{ is } O(n^{3}) \text{ and } n^{3} \text{ is } O(2^{n}) \qquad \Rightarrow 5n^{3} \text{ is } O(2^{n})$ $16(n \log n) \text{ is } O(n \log n) \text{ and } (n \log n) \text{ is } O(2^{n}) \qquad \Rightarrow 16(n \log n) \text{ is } O(2^{n})$ $5 \cdot 2^{n} \text{ is } O(2^{n})$ $f(n) = 5n^{3} + 16(n \log n) + 5 \cdot 2^{n} \text{ is } O(2^{n})$

Remark:

Big-O is an **upper limit bound** that says the algorithm will do **no worse** than such-and-such.

If you don't have a **good** upper bound, the information from big-O can be meaningless.

In other words, if an algorithm does 200n operations, it's O(n), but it's also $O(n^2)$ and O(n!) according to the definition. Which one tell us the most about the algorithm?



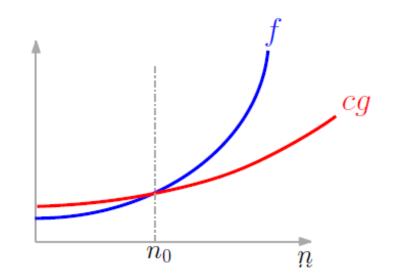
Examples:

$$200n = O\left(\frac{n}{100}\right) = O(n)$$
$$\frac{n(n+1)}{2} = O(n^2)$$
$$O(n \log n) + O(n^3) = O(n^3)$$

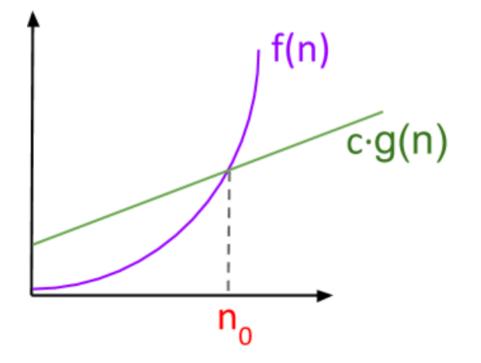
Big Omega Ω :

The notation $f = \Omega(g)$ is read "f is Omega of g".

 $f(n) \geq c g(n)$



Let *f* and *g* be two functions from \mathbb{Z}^+ to \mathbb{Z}^+ . Then $f = \Omega(g)$ if there are positive constants c and n_0 such that for any $n \ge n_0$, $f(n) \ge c g(n)$.

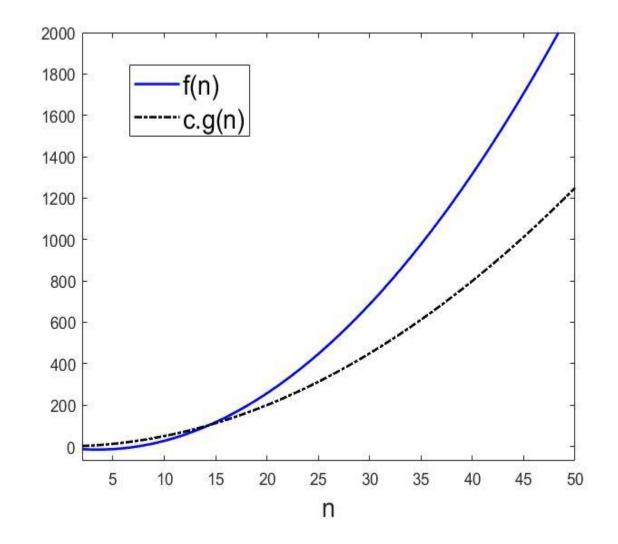


Example:

$$f(n) = n^2 - 7n - 3$$
$$g(n) = n^2$$

$$f$$
 is $\Omega(n^2)$

- Here c = 1/2, and $n_0 = 20$.
- Note that for $n \ge n_0$, g(n) is a lower bound of f(n).



Relationship of O and Ω Notations.

Let f and g be two functions from Z^+ to Z^+ . Then, $f = \Omega(q)$ if and only if q = O(f).

f)

$$f = \Omega(g) \qquad \qquad g \le (1/c) f$$

$$f \ge cg \qquad \qquad g = O(f)$$

$$(1/c) f \ge g$$

Rules for Asymptotic Growth:

Let f, g, and h be functions from \mathbf{R}^+ to \mathbf{R}^+ :

• If
$$f = \Omega(h)$$
 OR $g = \Omega(h)$, then
 $f+g = \Omega(h)$

- If $f = \Omega(g)$ and c is a constant greater than 0, then $c \cdot f = \Omega(g)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then

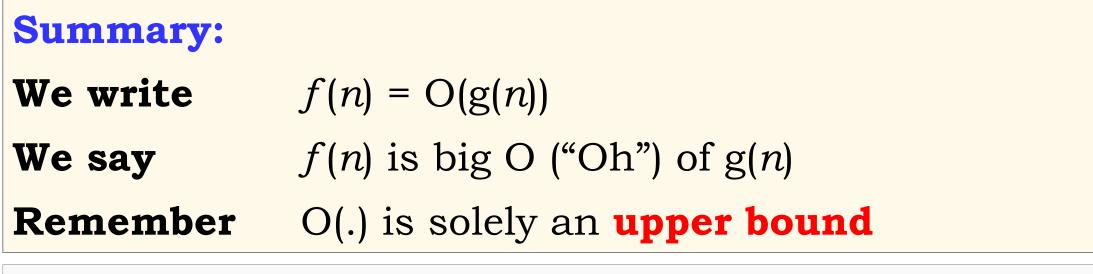
 $f = \Omega(h).$

Remark:

Big- Ω is a **lower limit bound** that says the algorithm will do **at least** such-and-such.

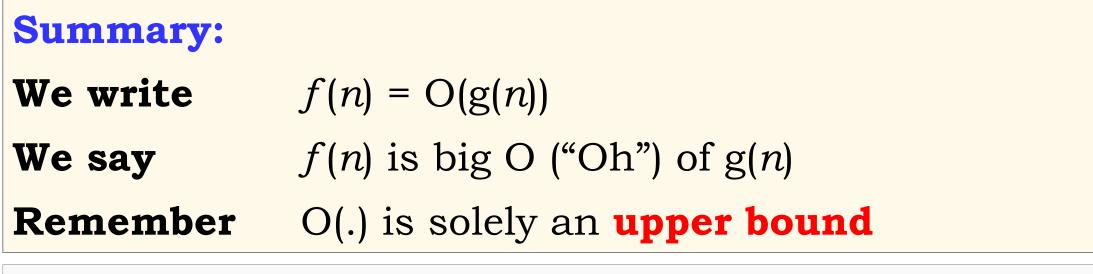
If you don't have a **good** lower bound, the information from big- Ω can be meaningless.

In other words, if an algorithm does $200n^5$ operations, it's $\Omega(n^5)$, but it's also $\Omega(n)$ and $\Omega(\log n)$ according to the definition. Which one tell us the most about the algorithm?



Examples:

$$200n = O\left(\frac{n}{100}\right) = O(n)$$
$$\frac{n(n+1)}{2} = O(n^2)$$
$$O(n \log n) + O(n^3) = O(n^3)$$



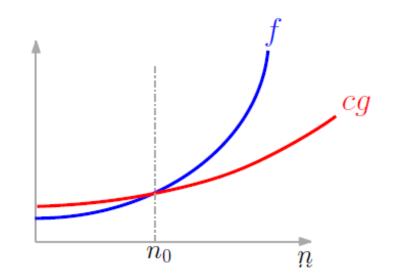
Examples:

$$200n = O\left(\frac{n}{100}\right) = O(n)$$
$$\frac{n(n+1)}{2} = O(n^2)$$
$$O(n \log n) + O(n^3) = O(n^3)$$

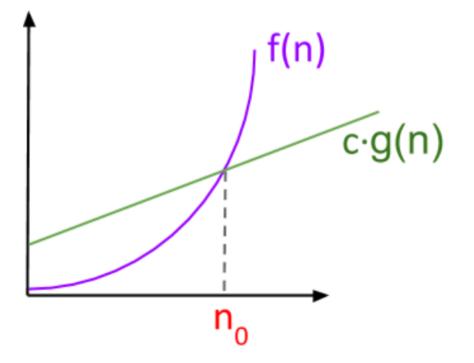
Big Omega Ω :

The notation $f = \Omega(g)$ is read "f is Omega of g".

 $f(n) \geq c g(n)$



Let f and g be two functions from Z^+ to Z^+ . Then $f = \Omega(g)$ if there are positive constants c and n_0 such that for any $n \ge n_0$, $f(n) \ge c g(n)$.

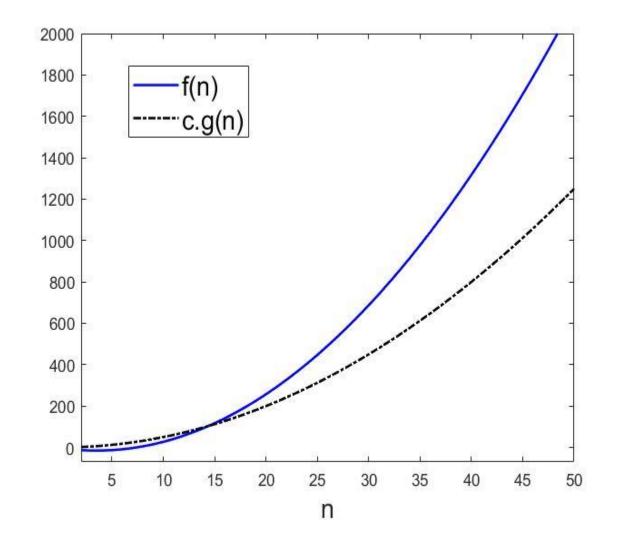


Example:

$$f(n) = n^2 - 7n - 3$$
$$g(n) = n^2$$

f is $\Omega(n^2)$

- Here c = 1/2, and $n_0 = 20$.
- Note that for $n \ge n_0$, cg(n) is a lower bound of f(n).



Relationship of O and Ω Notations.

Let f and g be two functions from Z^+ to Z^+ . Then, $f = \Omega(q)$ if and only if q = O(f).

f)

$$f = \Omega(g) \qquad \qquad g \le (1/c) f$$

$$f \ge cg \qquad \qquad g = O(f)$$

$$(1/c) f \ge g$$

Rules for Asymptotic Growth:

Let f, g, and h be functions from \mathbf{R}^+ to \mathbf{R}^+ :

• If
$$f = \Omega(h)$$
 OR $g = \Omega(h)$, then
 $f+g = \Omega(h)$

- If $f = \Omega(g)$ and c is a constant greater than 0, then $c \cdot f = \Omega(g)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then

 $f = \Omega(h).$

Remark:

- Big- Ω is a **lower limit bound** that says the algorithm will do **at least** such-and-such.
- If you don't have a **good** lower bound, the information from big- Ω can be meaningless.
- In other words, if an algorithm does $200n^5$ operations, it's $\Omega(n^5)$, but it's also $\Omega(n)$ and $\Omega(\log n)$ according to the definition. Which one tell us the most about the algorithm?

Summary:We write $f(n) = \Omega(g(n))$ We sayf(n) is big omega of g(n)Remember $\Omega(.)$ is simply a lower bound

Examples:

$$200n = \Omega\left(\frac{n}{100}\right) = \Omega(n)$$
$$n^{2} = \Omega(n)$$
$$n^{2} = \Omega(n \log n)$$

Comparing Growth Rates – Big Theta (Θ)

Big Theta Θ :

The notation $f = \Theta(g)$ is read "*f* is big theta of g".

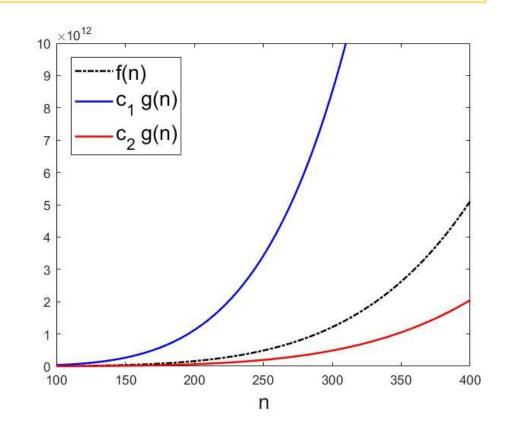
Loosely speaking, f is $\Theta(g)$ means the algorithm sandwiched between the <u>same</u> upper and lower bound. This gives us a precise measure of work.

Let f and g be two functions from Z^+ to Z^+ . Then $f = \Theta(g)$ if and only if

$$f = O(g)$$
 and $f = \Omega(g)$.

$$f(n) = 0.5n^5 - 100n^3 + 3n - 1$$
$$g(n) = n^5$$

$$f$$
 is $\Theta(n^5)$



We write $f(n) = \Theta(g(n))$

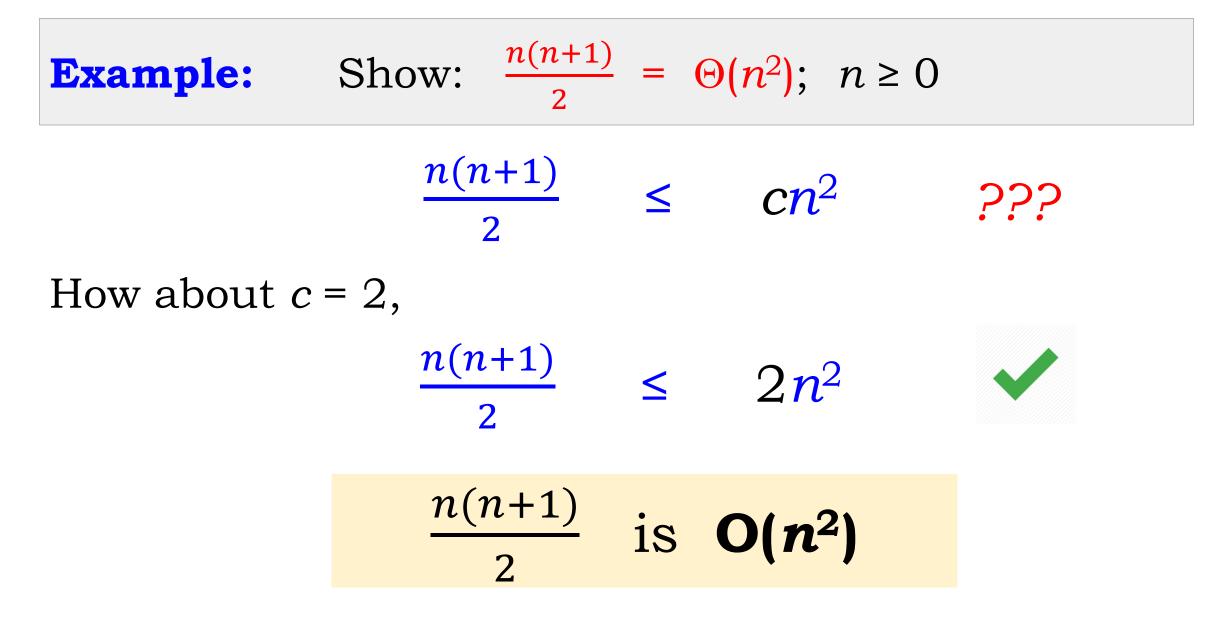
We say f(n) is big theta of g(n)

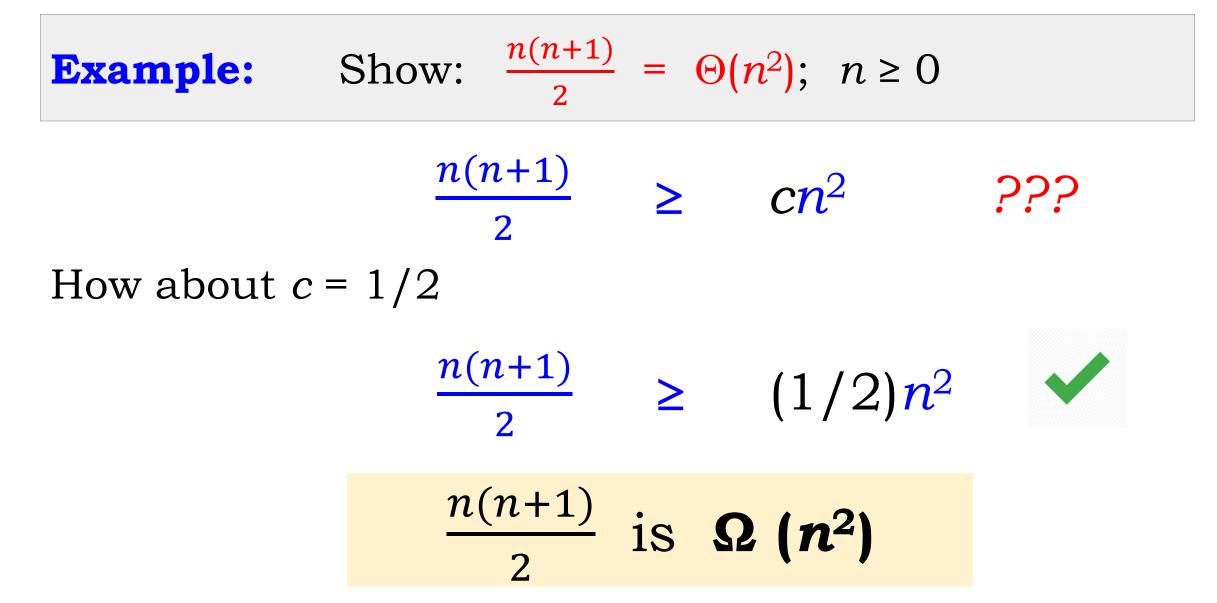
Translation: If two functions have a running time that differs by a constant, we say they have the same growth rate.

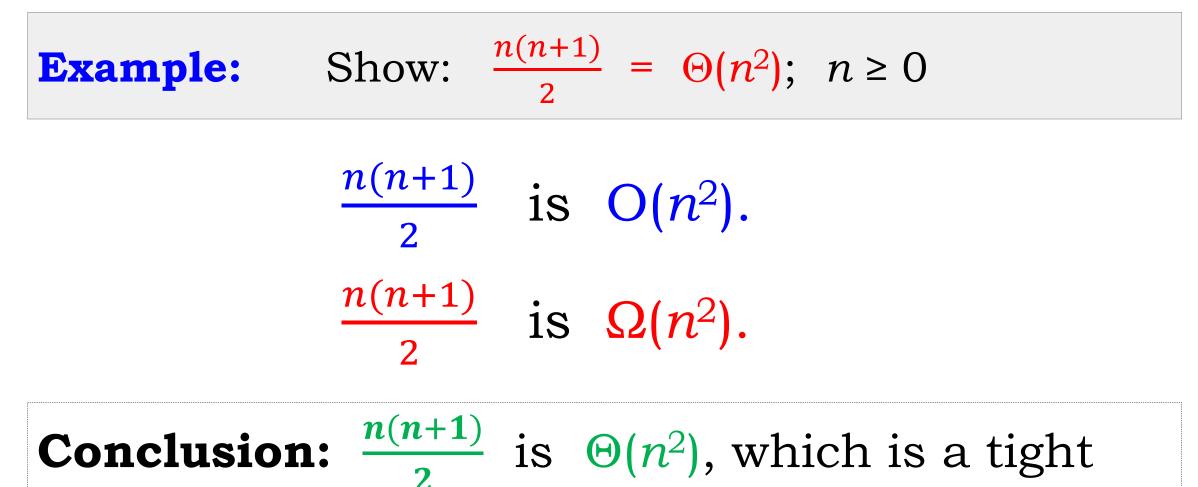
Example: Show:
$$\frac{n(n+1)}{2} = \Theta(n^2); n \ge 0$$

Approach: We need to demonstrate <u>two</u> things. Show that:

1. the function
$$\frac{n(n+1)}{2}$$
 does at most n^2 work, O(n^2)
2. the function $\frac{n(n+1)}{2}$ does at least n^2 work. O(n^2)
Conclude that n^2 is a tight bound on the work and we can say it is $\Theta(n^2)$.







bound on the amount of work.

Example: Show:
$$\log(n + 1) = \Theta(\log n)$$

Approach: Again, we need to demonstrate two things to make our big-theta case...

- The function does at most log(n) work to say it is O(log n).
- 2. The function does at least log(n) work to say that it is $\Omega(log n)$.
- 3. Conclude the function does $\Theta(\log n)$ work, which is a tight bound.

Example: Show:
$$\log(n + 1) = \Theta(\log n)$$

- 1. Show log (n + 1) is O(log n).
 - We know

$$n < n + 1 < n^2$$
 for $n \ge 2$.

• So it follows that

 $\log n < \log (n + 1) < \log n^2 = 2 \log n \quad \text{for } n \ge 2.$

• Since $\log (n + 1) < 2 \log n$, we conclude that

 $\log (n + 1) = O(\log n).$

Example: Show:
$$\log(n + 1) = \Theta(\log n)$$

- 2. Show log (n + 1) is $\Omega(\log n)$
 - We observe that

 $\log (n + 1) > \log n;$

• So we can conclude it is $\Omega(\log n)$.

3. Since log (n + 1) is both O(log n) and $\Omega(\log n)$ we conclude that the function $\log(n + 1) = \Theta(\log n)$.

Theorem: If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ and $c \neq 0$ and $c \neq \infty$, then $f(n) = \Theta(g(n))$

Translation: If two functions have a running time that differs by a constant, we say they have the same growth rate.

	<i>n</i> = 32	<i>n</i> = 1000	<i>n</i> = 10,000	<i>n</i> = 1,000,000	<i>n</i> = 100,000,000
$f(n) = \frac{n(n-1)}{2}$	496	499,500	49,995,000	499,999,500,000	4,999,999,950,000,000
$g(n) = n^2$	1024	10 ⁶	10 ⁸	1012	10 ¹⁸
$\frac{f(n)}{g(n)}$	0.4843	0.4995	0.49995	0.4999995	0.499999995

Let's look at how the ratio of rates of growth change with algorithms that run at different rates.

$$f(n) = \frac{n(n+1)}{2}$$

	<i>n</i> = 1000	<i>n</i> = 10,000	<i>n</i> = 1,000,000	<i>n</i> = 100,000,000
$g(n) = n; \qquad \frac{f(n)}{g(n)}$	499	49,995	499,999	4,999,999
$g(n) = \sqrt{n};$ $\frac{f(n)}{g(n)}$	15,795	499,950	499,999,500	499,999,995,000
$g(n) = \log n;$ $\frac{f(n)}{g(n)}$	166,500	12,498,750	83,333,250,000	555,555,550,111,111
$g(n) = n^2;$ $\frac{f(n)}{g(n)}$	0.4995	0.49995	0.4999995	0.499999995

Order of If $f = \Theta(g)$, then f is said to be order of g.

Constant function

A function that does not depend on n at all is called a constant function.

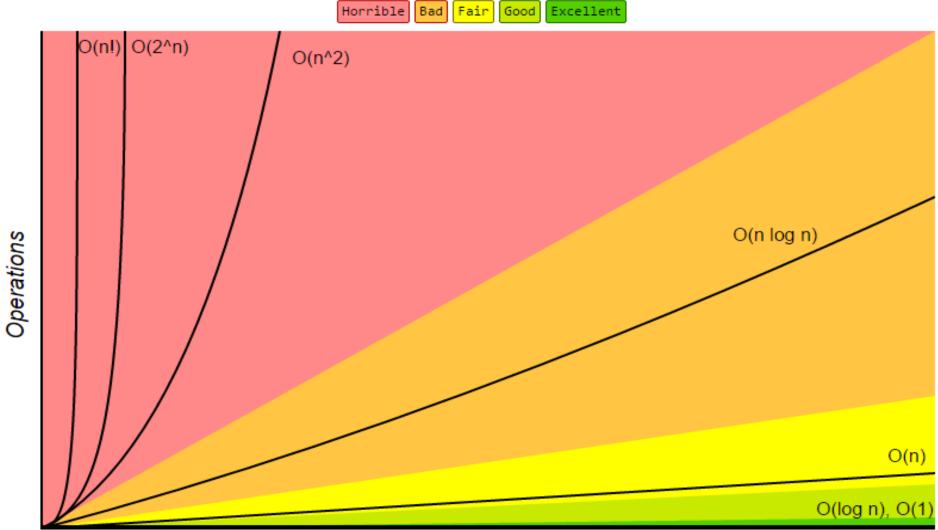
Polynomial

A function f(n) is said to be polynomial if f(n) is $\Theta(n^k)$ for some constant $k \ge 1$.

Comparing Growth Rates – Big Omega (Ω)

Function	Name	
$\Theta(1)$	Constant	
$\Theta(\log \log n)$	Log log	
$\Theta(\log n)$	Logarithmic	
$\Theta(n)$	Linear	
$\Theta(n \log n)$	$n \log n$	
$\Theta(n^2)$	Quadratic	
$\Theta(n^3)$	Cubic	
$\Theta(\mathbf{c}^n), \mathbf{c} > 1$	Exponential	
$\Theta(n!)$	Factorial	

Comparing Growth Rates



Elements

Comparing Growth Rates

Exercise:

Indicate the "order of growth" relationships between the following expressions from lowest order to highest order. If two expressions have the same order, place them in a set together.

 $n!, n^2, \log n, 3^n, n^3, n \log n, \log(\log n), 2^n$

 $\log(\log n)$, $\log n$, $n \log n$, n^2 , n^3 , 2^n , 3^n , n!

Comparing Growth Rates

Exercise (Round 2):

Indicate the "order of growth" relationships between the following expressions from lowest order to highest order. If two expressions have the same order, place them in a set together.

 n^2 , $n \log n$, 2n, $\log(n^2)$, $(\log n)^2$, 2^n , n^3 , $\log n$, $\log(\log n)$

 $\log(\log n)$, $\log(n)$, $\log(n^2)$, $(\log n)^2$, 2n, $n \log n$, n^2 , n^3 , 2^n

Algorithms Analysis

Example: Algorithm to find the smallest in a sequence of numbers.

Input: $a_1, a_2, ..., a_n$, n the length of the sequence

Output: the smallest number in the sequence

min := a_1	1 assignment op loop iterated n - 1 times		
For i = 2 to n			
if ($a_i < min$) min := a	li	For loop tests i and increments i (2 ops) 1 op for comparison + 1 op (in worst-case)	
End-for		for assignment	
Return (min)	1 op for re	eturn	

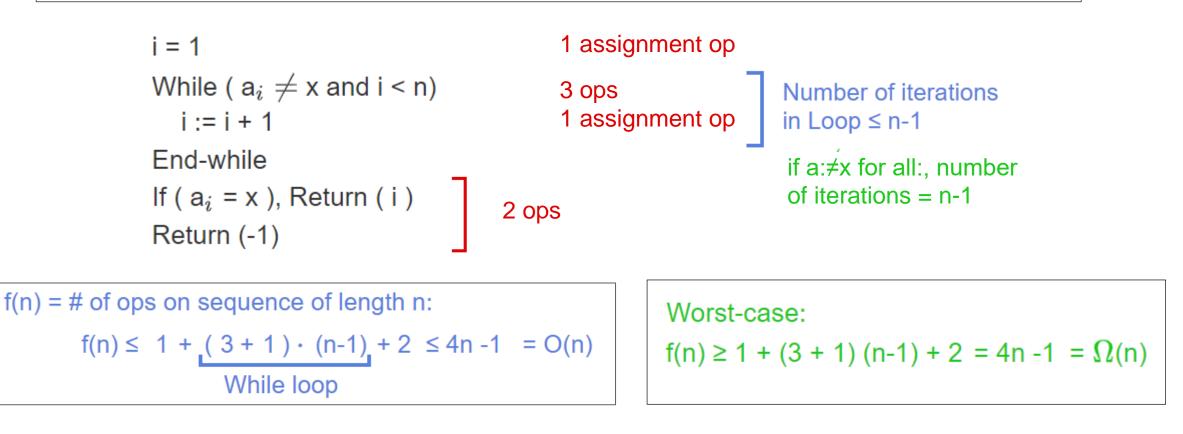
f(n) = # of operations on a sequence of length n:

 $f(n) = (n-1)c + d = cn - c + d = \Theta(n)$

Algorithms Analysis

Example: Analysis of the algorithm SearchSequence.

Input: a₁,...,a_n, the sequence, n, length of sequence, x, a number to search for Output: Index of first occurence of x in the sequence or -1 if x does not occur in the sequence



Algorithms Analysis

Example: Worst-case time complexity - finding the maximum value of a function.

Input: a₁, a₂,...,a_n n, the length of the sequence. Output: The largest values of M on input values from the sequence. max := M(a₁, a₁, a₁)

```
For i = 1 to n

For j = 1 to n

For k = 1 to n

new := M(a<sub>i</sub>, a<sub>j</sub>, a<sub>k</sub>)

If ( new > max ), max := new

End-for

End-for

End-for

End-for

Return( max )
```

- All we know about \mathbf{M} is that it takes three positive integers as inputs and outputs a positive integer.
- We can assume that it takes **O(1)** operations to compute the value of **M** on any input.
- At least one operation is performed in the innermost loop, so the time complexity of the algorithm is $\Omega(n^3)$.
- The number of operations performed in the worst case is at most $cn^3 + 2$, which is $O(n^3)$.
- The worst-case time complexity of the algorithm is $\Theta(n^3)$.