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Introduction to Algorithm Analysis

Algorithm Analysis: 

• A step-by-step method for solving a problem.

• How do we know it’s a “good” or an “efficient” algorithm?

• What does “good” or “efficient” mean here?

• How should we analyze an algorithm?

Time Complexity

Space Complexity

Performance

How much “time” does the algorithm take 

to return an output?

How much “space and memory” resources 

are required to run the algorithm?

Does the algorithm return an “exact” 

solution or an “approximate” solution?

Computational 

complexity



Introduction to Algorithm Analysis

Time Complexity

Space Complexity

Performance

Algorithms may perform differently, that is more or less efficient in different 

situations (for instance, for some inputs more efficiently than the other).

• Best Case Scenario

• Worst Case Scenario

• Average Case Scenario

How can we formalize these ideas, and develop tools to quantify the 

above aspects for any algorithm?



Analyzing Algorithms – Time Complexity

The number of operations depend on the size of 

input, and so the time complexity is a function of 

the input size typically.

We count the total number of “atomic operations” 

performed by the algorithm. Each atomic operation 

takes a unit time.



Analyzing Algorithms

x = fixed number

For y = 1  till n

Compare x and y

End

Total operations:  n

(Time complexity)

Example:



Analyzing Algorithms

Example:

For x = 1  till n

For y = 1  till n

Some “operation” that depends on x and y.

End

End

Total operations:  n2

(Time complexity)



Analyzing Algorithms

Problem: Given a set of n points, connect every pair of points by drawing 

a line between them.

For i = 1  till n-1

For j = i+1  till n

Draw a line between 

point i and j.

End

End

Total operations: 
𝒏 (𝒏−𝟏)

𝟐

1

2

34

5

Is it ok to say that time 

complexity of the Algorithm is 

n2 instead of  
𝒏 (𝒏−𝟏)

𝟐
?



Analyzing Algorithms

Next, we will see a formal way to represent 

the complexity of an algorithm as a function 

of its input size.

Blue = 
𝒏 (𝒏−𝟏)

𝟐

Black = 𝒏𝟐

𝑛



Time Complexity Analysis

“Exact”
expression

(in terms of input size n)

“Approximate” 
expression

(in terms of input size n)

No. of operations in the algorithm

Could be hard to 

find.

Simple but only 

give bounds.



Asymptotic Growth of Functions

Asymptotic Growth of the function f measures:

how fast the output f(n) grows as the input n

grows. 

The actual expression (closed form) of f may be too complex. 

Our goal is to see if we can represent the limiting behavior of 

f(n) using some simpler functions that can give us a good 

idea of how fast the function grows with n.



Asymptotic Growth of Functions

Asymptotic Growth of the function f measures:

how fast the output f(n) grows as the input n

grows. 

The actual expression (closed form) of f may be too complex. 

Our goal is to see if we can represent the limiting behavior of 

f(n) using some simpler functions that can give us a good 

idea of how fast the function grows with n.

We can go for the upper and lower 

bounds of f(n) under “certain 

conditions”.



Comparing Growth Rates

Big O:

The notation f = O(g) is read “f is big-Oh of g”.

c g(n)f(n) 
Loosely speaking, f is O(g) 

means there is a constant c

such that when f(n) and 

c⋅g(n) are graphed, the graph 

of c⋅g(n) will eventually cross 

f(n) and will remain higher 

than f(n), as n gets large.



Comparing Growth Rates – Big O

Let f and g be two functions from Z+ to Z+. Then f = O(g) if 

there are positive constants c and n0 such that for any n ≥ n0,

f(n) ≤  c g(n).

𝑓 𝑛 = 2𝑛3 + 3𝑛2 + 7

𝑔 𝑛 = 𝑛3

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 , ∀ 𝑛 ≥ 𝑛0

𝑐 = 3 ,  𝑛0 = 4



Big O – Example

𝑓 𝑛 = 20 log 𝑛 + 10 𝑛

𝑔 𝑛 = 𝑛

Example:

• Here c  = 15, and n0 = 10.

• Note that for n  n0, cg(n)

is an upper bound of f(n).

f is O(𝑛)



Comparing Growth Rates – Big O

Rules for Asymptotic Growth:

Let f, g, and h be functions from R+ to R+:

If f = O(h) AND g = O(h), then 

f+g = O(h).

f(n) ≤ c1 h(n), ∀n ≥ n1

f(n)+g(n)  ≤ (c1 + c2 )h, ∀n ≥ (n1 +n2 )

g(n)  ≤ c2 h(n), ∀n ≥ n2

f+g  ≤ ch  f+g  = O(h)



Comparing Growth Rates – Big O

Rules for Asymptotic Growth:

Let f, g, and h be functions from R+ to R+:

• If f = O(h) AND g = O(h), then 

f+g = O(h).

• If f = O(g) and c is a constant greater than 0, then 

c⋅f = O(g).

• If f = O(g) and g = O(h), then 

f = O(h).



Comparing Growth Rates – Big O

Example:



Comparing Growth Rates – Big O

Remark:

Big-O is an upper limit bound that says the algorithm will do 
no worse than such-and-such. 

If you don’t have a good upper bound, the information from 

big-O can be meaningless.

In other words, if an algorithm does 200n operations, it’s O(n), 

but it’s also O(n2) and O(n!) according to the definition. Which 

one tell us the most about the algorithm? 



Comparing Growth Rates – Big O

Summary:

We write ƒ(n) = O(g(n)) 

We say ƒ(n) is big O (“Oh”) of g(n)

Remember O(.) is solely an upper bound

Examples:

200n =   O
𝑛

100
=   O(n)

𝑛(𝑛+1)

2
=   O(n2)

O(n log n)  +  O(n3)  =  O(n3)



Comparing Growth Rates – Big 

Big Omega  :

The notation f = (g) is read “f is Omega of g”.

c g(n)f(n) ≥



Comparing Growth Rates – Big 

Let f and g be two functions from Z+ to Z+. Then f = (g) if 

there are positive constants c and n0 such that for any n ≥ n0,

f(n) ≥  c g(n).



Comparing Growth Rates – Big 

𝑓 𝑛 = 𝑛2 − 7𝑛 − 3

𝑔 𝑛 = 𝑛2

Example:

• Here c  = 1/2, and n0 = 20.

• Note that for n  n0, g(n) is a 

lower bound of f(n).

f is (𝑛2)



Comparing Growth Rates – Big 

Relationship of O and Ω Notations.

Let f and g be two functions from Z+ to Z+. Then, 

f = Ω(g) if and only if g = O(f ).

f = Ω(g)

f  cg

(1/c ) f   g

g  (1/c ) f  

g = O( f )



Comparing Growth Rates – Big 

Rules for Asymptotic Growth:

Let f, g, and h be functions from R+ to R+:

• If f = (h) OR g = (h), then 

f+g = (h).

• If f = (g) and c is a constant greater than 0, then 

c⋅f = (g).

• If f = (g) and g = (h), then 

f = (h).



Comparing Growth Rates – Big 

Remark:

Big-  is a lower limit bound that says the algorithm will do 
at least such-and-such. 

If you don’t have a good lower bound, the information from 

big- can be meaningless.

In other words, if an algorithm does 200n5 operations, it’s 

(n5), but it’s also (n) and (log n) according to the 

definition. Which one tell us the most about the algorithm? 



Comparing Growth Rates – Big O

Summary:

We write ƒ(n) = O(g(n)) 

We say ƒ(n) is big O (“Oh”) of g(n)

Remember O(.) is solely an upper bound

Examples:

200n =   O
𝑛

100
=   O(n)

𝑛(𝑛+1)

2
=   O(n2)

O(n log n)  +  O(n3)  =  O(n3)



Comparing Growth Rates – Big O

Summary:

We write ƒ(n) = O(g(n)) 

We say ƒ(n) is big O (“Oh”) of g(n)

Remember O(.) is solely an upper bound

Examples:

200n =   O
𝑛

100
=   O(n)

𝑛(𝑛+1)

2
=   O(n2)

O(n log n)  +  O(n3)  =  O(n3)



Comparing Growth Rates – Big 

Big Omega  :

The notation f = (g) is read “f is Omega of g”.

c g(n)f(n) ≥



Comparing Growth Rates – Big 

Let f and g be two functions from Z+ to Z+. Then f = (g) if 

there are positive constants c and n0 such that for any n ≥ n0,

f(n) ≥  c g(n).



Comparing Growth Rates – Big 

𝑓 𝑛 = 𝑛2 − 7𝑛 − 3

𝑔 𝑛 = 𝑛2

Example:

• Here c  = 1/2, and n0 = 20.

• Note that for n  n0, cg(n)

is a lower bound of f(n).

f is (𝑛2)



Comparing Growth Rates – Big 

Relationship of O and Ω Notations.

Let f and g be two functions from Z+ to Z+. Then, 

f = Ω(g) if and only if g = O(f ).

f = Ω(g)

f  cg

(1/c ) f   g

g  (1/c ) f  

g = O( f )



Comparing Growth Rates – Big 

Rules for Asymptotic Growth:

Let f, g, and h be functions from R+ to R+:

• If f = (h) OR g = (h), then 

f+g = (h).

• If f = (g) and c is a constant greater than 0, then 

c⋅f = (g).

• If f = (g) and g = (h), then 

f = (h).



Comparing Growth Rates – Big 

Remark:

• Big-  is a lower limit bound that says the algorithm will 
do at least such-and-such. 

• If you don’t have a good lower bound, the information from 

big- can be meaningless.

• In other words, if an algorithm does 200n5 operations, it’s 

(n5), but it’s also (n) and (log n) according to the 

definition. Which one tell us the most about the algorithm? 



Comparing Growth Rates – Big 

Summary:

We write ƒ(n)  =  (g(n)) 

We say ƒ(n) is big omega of g(n)

Remember Ω(.) is simply a lower bound

Examples:

200n = Ω
𝑛

100
= Ω(n)

𝑛2 = Ω (n)

𝑛2 = Ω(n log n)



Comparing Growth Rates – Big Theta (Θ)

Big Theta Θ :

The notation f = Θ(g) is read “f is big theta of g”.

Loosely speaking, f is Θ(g) means the algorithm 

sandwiched between the same upper and lower 

bound. This gives us a precise measure of work.



Comparing Growth Rates – Big Theta (Θ)

Let f and g be two functions from Z+ to Z+. Then f = Θ(g) if and 

only if 

f = O(g) and f = Ω(g).

𝑓 𝑛 = 0.5𝑛5 − 100𝑛3 + 3𝑛 − 1

𝑔 𝑛 = 𝑛5

f is Θ(𝑛5)



Comparing Growth Rates – Big Theta (Θ)

We write ƒ(n) = (g(n))

We say ƒ(n) is big theta of g(n)

Translation: If two functions have a running 

time that differs by a constant, we say they 

have the same growth rate.



Comparing Growth Rates – Big Theta (Θ)

Example: Show: 
𝑛(𝑛+1)

2
=  (n2); n ≥ 0

Approach: We need to demonstrate two things. Show that:

1. the function 
𝑛(𝑛+1)

2
does at most n2 work, 

2. the function 
𝑛(𝑛+1)

2
does at least n2 work.

Conclude that n2 is a tight bound on the work and we can 

say it is Θ(n2). 

O(n2)

(n2)



Comparing Growth Rates – Big Theta (Θ)

𝑛(𝑛+1)

2
≤ cn2

How about c = 2,

𝑛(𝑛+1)

2
≤ 2n2

𝑛(𝑛+1)

2
is  O(n2)

???

Example: Show: 
𝑛(𝑛+1)

2
=  (n2); n ≥ 0



Comparing Growth Rates – Big Theta (Θ)

𝑛(𝑛+1)

2
 cn2

How about c = 1/2

𝑛(𝑛+1)

2
 (1/2)n2

𝑛(𝑛+1)

2
is  Ω (n2)

???

Example: Show: 
𝑛(𝑛+1)

2
=  (n2); n ≥ 0



Comparing Growth Rates – Big Theta (Θ)

𝑛(𝑛+1)

2
is  O(n2).

𝑛(𝑛+1)

2
is  Ω(n2).

Conclusion:
𝒏(𝒏+𝟏)

𝟐
is  Θ(n2), which is a tight 

bound on the amount of work.

Example: Show: 
𝑛(𝑛+1)

2
=  (n2); n ≥ 0



Comparing Growth Rates – Big Theta (Θ)

Example: Show: log(n + 1) = (log n) 

Approach: Again, we need to demonstrate two things to 

make our big-theta case...

1. The function does at most log(n) work to say it is 

O(log n).

2. The function does at least log(n) work to say that it is 

Ω(log n).

3. Conclude the function does Θ(log n) work, which is a 

tight bound.



Comparing Growth Rates – Big Theta (Θ)

Example: Show: log(n + 1) = (log n) 

1. Show log (n + 1) is O(log n ). 

• We know 

n < n + 1 < n2 for n ≥ 2. 

• So it follows that 

log n < log (n + 1) < log n2 = 2 log n for n ≥ 2. 

• Since log (n + 1) < 2 log n , we conclude that 

log (n + 1) = O(log n ). 



Comparing Growth Rates – Big Theta (Θ)

Example: Show: log(n + 1) = (log n) 

2. Show log (n + 1) is Ω(log n )

• We observe that 

log (n + 1) > log n ; 

• So we can conclude it is Ω(log n ).

3. Since log (n + 1) is both O(log n ) and Ω(log n ) we conclude 

that the function log(n + 1) = (log n).



Comparing Growth Rates – Big Theta (Θ)

Theorem: If  lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= c and c ≠ 0 and c ≠ , then 

𝑓 𝑛 = Θ (𝑔 𝑛 )

Translation: If two functions have a running time that differs 

by a constant, we say they have the same growth rate.

n = 32 n = 1000 n = 10,000 n = 1,000,000 n = 100,000,000

f(n) = 
𝑛(𝑛−1)

2
496 499,500 49,995,000 499,999,500,000 4,999,999,950,000,000

g(n) = n2

1024 106 108 1012 1018

𝒇(𝒏)

𝒈(𝒏) 0.4843 0.4995 0.49995 0.4999995 0.499999995



Comparing Growth Rates – Big Theta (Θ)

Let’s look at how the ratio of rates of growth change with algorithms 

that run at different rates.

n = 1000 n = 10,000 n = 1,000,000 n = 100,000,000

g(n) = 𝑛;
𝑓(𝑛)

𝑔(𝑛) 499 49,995 499,999 4,999,999

g(n) = 𝑛;
𝑓(𝑛)

𝑔(𝑛) 15,795 499,950 499,999,500 499,999,995,000

g(n) = log 𝑛 ;
𝑓(𝑛)

𝑔(𝑛) 166,500 12,498,750 83,333,250,000 555,555,550,111,111

g(n) = 𝒏𝟐;
𝒇(𝒏)

g (𝒏)
0.4995 0.49995 0.4999995 0.499999995

𝑓 𝑛 =
𝑛(𝑛 + 1)

2



Comparing Growth Rates – Big Theta (Θ)

Order of

If f = Θ(g), then f is said to be order of g.

Constant function

A function that does not depend on n at all is called 

a constant function.

Polynomial

A function f(n) is said to be polynomial if f(n) is 

Θ(nk) for some constant k ≥ 1.



Comparing Growth Rates – Big Omega ()

Function Name

Θ(1) Constant

Θ(log log n) Log log

Θ(log n) Logarithmic

Θ(n) Linear

Θ(n log n) n log n

Θ(n2) Quadratic

Θ(n3) Cubic

Θ(cn), c > 1 Exponential

Θ(n!) Factorial



Comparing Growth Rates



Comparing Growth Rates

Exercise:

Indicate the “order of growth” relationships 

between the following expressions from lowest 

order to highest order. If two expressions have the 

same order, place them in a set together.

n!, n2, log n, 3n, n3, n log n, log(log n), 2n  

log(log n), log n, n log n, n2, n3, 2n, 3n, n! 



Comparing Growth Rates

Exercise (Round 2):

Indicate the “order of growth” relationships 

between the following expressions from lowest 

order to highest order. If two expressions have the 

same order, place them in a set together.

n2, n log n, 2n, log(n2), (log n)2, 2n, n3, log n, log(log n)

log(log n), log(n), log (n2),  (log n)2 , 2n, n log n, n2 , n3, 2n



Algorithms Analysis

Example: Algorithm to find the smallest in a sequence of numbers.

1 assignment op

loop iterated n - 1 times

For loop tests i and increments i (2 ops)

1 op for comparison + 1 op (in worst-case) 

for assignment

1 op for return



Algorithms Analysis

Example: Analysis of the algorithm SearchSequence.

1 assignment op

3 ops

1 assignment op

2 ops

if a:≠x for all:, number 

of iterations = n-1



Algorithms Analysis

Example: Worst-case time complexity - finding the maximum value 

of a function.

• All we know about M is that it takes three positive 

integers as inputs and outputs a positive integer.

• We can assume that it takes O(1) operations to 

compute the value of M on any input.

• At least one operation is performed in the innermost 

loop, so the time complexity of the algorithm is Ω(n3).

• The number of operations performed in the worst 

case is at most cn3 + 2, which is O(n3). 

• The worst-case time complexity of the algorithm is 

Θ(n3).


