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Abstract

This paper studies resilient distributed consensus in networks lacking the structural robustness necessary for achieving consensus in
the presence of misbehaving agents. Existing resilient consensus solutions, including widely adapted weighted mean subsequence
reduced (WMSR) resilient consensus algorithm, present robustness conditions guaranteeing consensus among normal agents. How-
ever, when the graph is less robust than required, they only inform that agents fail to achieve consensus and do not evaluate the
network performance comprehensively in such non-ideal scenarios. To address this limitation, we analyze the performance of
resilient consensus in non-ideal situations by introducing the concept of non-convergent nodes. These nodes/agents cannot achieve
consensus with any arbitrary agent due to the presence of misbehaving agents in the network. This notion enables ordering graphs
that lack required robustness and facilitates the assessment of partial performance. Additionally, we demonstrate that among graphs
with the same level of robustness (measured by their (r, s)-robustness), the number of non-convergent nodes varies significantly,
indicating differing degrees of non-resilience. We also present numerical evaluation of results. Our approach quantifies the network
performance under sub-optimal robustness conditions and offers a comprehensive resilience perspective.

Keywords: Resilient consensus, multiagent networks, graph robustness, distributed algorithms.

1. Introduction

In a networked multiagent system, the presence of a few adversarial or misbehaving agents can severely disrupt
the system’s behavior. Intelligent attacks targeting a subset of agents can impede the system from achieving its desired
performance objectives. Consider the distributed consensus in multiagent systems, a canonical problem with several
applications across various domains, including networked control systems, multi-robot systems, and sensor networks.
The primary goal here is to ensure that all agents update their local states in a way that eventually converges to a com-
mon state. A simple Linear Consensus Protocol (LCP), where each agent updates its state by averaging its neighbors’
states, solves the problem (e.g., [1, 2, 3]). However, a single misbehaving agent–agent that does not adhere to the
LCP–can prevent agents from achieving consensus (e.g., [4]). The primary objective of resilient network systems is
to withstand such disruptive scenarios, guaranteeing the system’s performance objectives despite misbehaving agents.

In a multiagent system, agents collect and incorporate data from neighbors while updating their states and making
decisions. To achieve resilience against misbehaving agents, designing strategies that discard information from ‘bad’
neighbors during data aggregation and prioritize data from ‘good’ neighbors is crucial. Additionally, ensuring that
each agent has a sufficient number of ‘good’ neighbors enhances resilience. Based on these principles, various resilient
distributed strategies and algorithms have been proposed to tackle distributed optimization problems like consensus
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13], diffusion [14, 15, 16], estimation [17, 18, 19, 20], learning and optimization [21, 22, 23,
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24, 25, 26, 27]. In particular, the Weighted-Mean-Subsequence-Reduced (WMSR) algorithm, presented in [4], stands
out as a widely used resilient distributed consensus approach. By ‘trimming’ (ignoring) extreme values collected
from neighbors during aggregation and leveraging structural conditions on the network graph, agents implementing
the WMSR algorithm achieve consensus in the face of misbehaving agents. Considering the wide success of the
trimming approach offered by the WMSR algorithm, several variants of WMSR have been proposed in the literature,
for example, [4, 7, 28, 29, 9, 30, 31, 25, 32, 33, 20, 34, 35, 36, 37, 38]. Additionally, other approaches have been
proposed that assign a ‘score’ to neighbor values and weight them accordingly when updating agent states. (e.g.,
[39, 13, 29, 14]).

In general, to study resilience in a distributed framework, we must consider three aspects: the algorithm, the
structure of the network, and the adversarial attack. The algorithm refers to the state update protocol of the normal
‘good’ nodes in the network. The structure of the network refers to the interconnections among agents and describe
information sharing among agents. Finally, the adversarial model describes the abilities of the misbehaving nodes
and tries to approximate the scale of the attack on the network. Current resilient strategies for multiagent networks
effectively address adversarial scenarios. In particular, the WMSR algorithm guarantees consensus among normal
(i.e., non-adversarial) agents if the number of misbehaving agents is bounded by F and the network graph meets the
required robustness condition, which depends on F.

However, the WMSR algorithm (and its variants) adopts an all or nothing approach to resilience, wherein meeting
specific conditions ensures overall performance (consensus). Nevertheless, even the slightest deviation from these
conditions can lead to significant performance degradation. For example, if there is one more adversary than permitted
in the network, or if the graph slightly lacks the required robustness, agents may move arbitrarily far from their initial
positions, leading to a deterioration in the performance of the resilient consensus algorithm. Consequently, analyzing
the algorithm’s performance under non-ideal situations becomes challenging, making it difficult to determine how
many agents can achieve consensus. This challenge is exacerbated when the actual number of misbehaving agents
exceeds the predefined threshold (F), necessitating the identification of agents that can or cannot achieve consensus.
In more realistic scenarios, it is crucial to assess the partial performance of the network in non-ideal situations – that is,
determining how many agents can still achieve consensus. Therefore, evaluating network performance in a continuous
manner, rather than a binary ‘objective achieved or not achieved’ approach, becomes crucial. This requires exploring
methods to rank networks based on their robustness, particularly when they fall short of desired resilience.

In this paper, we raise and study the following issue: How can we evaluate the performance of the WMSR resilient
consensus algorithm in a network that fails to meet the structural robustness threshold for guaranteeing consensus
when facing F misbehaving agents? To quantify the ‘non-resilience’ of such graphs, we introduce the concept of non-
convergent nodes, which refers to agents in the network that fail to achieve consensus with any arbitrary agent in the
network due to the presence of misbehaving agents (Section 3). This novel concept allows us to order graphs that lack
the robustness criteria for resilience against F misbehaving agents, as Figure 1 illustrates. The graph G (green) in the
figure guarantees consensus despite a single misbehaving agent (i.e., F = 1) due to its (2, 2)-robustness, as explained
later in Section 2.1. In contrast, graphs G1,G2,G3, and G4 are all (2, 1)-robust and fail to meet the required robustness
for resilience against a single misbehaving agent. Current resilience frameworks lack the ability to determine which
of these four graphs is relatively better/worse than the others.

Using the concept of non-convergent nodes, we can rank graphs based on their ’non-resilience,’ allowing us
to evaluate partial performance by quantifying the number of non-convergent nodes. Subsequently, in the paper
(Sections 3.1, 3.2, and 3.3), we show that there is significant variation in the number of non-convergent nodes among
graphs with the same robustness. In particular, we examine various graph families categorized by their robustness and
identify the graphs with the maximum and minimum number of non-convergent nodes within each family. Our results
show that, within a single family of graphs, there can be graphs with no non-convergent nodes, as well as graphs
where nearly all nodes are non-convergent. This underscores a substantial disparity in non-resilience even among
graphs with the same robustness. The main contributions of the paper are summarized below:

• We introduce the idea of non-convergent nodes in graphs to characterize the degree of non-resilience against
misbehaving agents. A non-convergent node refers to a normal node for which attacks exist, preventing it from
converging to any arbitrary node in the graph. By applying this notion, we compare graphs that fail to meet the
required graph robustness conditions for the WMSR resilient consensus algorithm with F misbehaving agents,
enabling the evaluation of partial performance in such networks.

2



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

/ 00 (2024) 1–20 3

non-resilient
least

non-resilient
most

Problem:  Quantify non-resilience?

(No graph is resilient to a single misbehaving node) (Resilient to a
misbehaving node)

(2
,1
)-

ro
bu

st
 g

ra
ph

s

(2
,2
)-

ro
bu

st
 g

ra
ph

Figure 1: G is robust enough against a single misbehaving agent, whereas G1,G2,G3,G4 are not. By measuring the number of non-convergent
nodes (red), we characterize the non-resilience in graphs whose robustness is below the required threshold.

• To assess the potential number of non-convergent nodes in networks under non-ideal robustness conditions,
we systematically construct graphs designed to maximize the presence of such nodes. This analysis provides
insight into the degree of non-resilience exhibited by networks failing to meet the required robustness criteria,
as measured by the (r, s)-robustness metric. Specifically, we generate extremal cases for various (non-ideal)
robustness conditions, including (F+1, 1), (F, F), and (F+1, F) scenarios, employing circulant graphs, complete
graphs, and their combinations. By doing so, we quantify the worst-case deterioration in network performance
when facing more misbehaving agents than initially anticipated during the network design phase.

• We provide a detailed numerical evaluation of our proposed approach, illustrating our results and highlighting
potential research directions. Through illustrative examples and numerical simulations, we showcase the prac-
tical relevance of our findings and highlight the importance of considering non-ideal conditions in resilience
analysis.

We note that resilience against misbehaving agents hinges on the choice of the distributed algorithm (state update
rule). In our paper, we focus on the WMSR algorithm, a cornerstone in resilient distributed consensus. However,
our approach is not restricted to the WMSR algorithm. Instead, it provides a framework that can readily be adapted
to examine the performance of other resilient distributed algorithms in non-ideal scenarios. The rest of the paper is
organized as follows: Section 2 introduces the preliminaries, provides an overview of the WMSR resilient consensus
algorithm, and explains our problem. Section 3 is the main section introducing the notion of non-convergent nodes. It
also presents graphs that, for given robustness specification, maximize the number of non-convergent nodes. Section 4
illustrates and experimentally evaluates the results. Finally, Section 5 concludes the paper.

2. Preliminaries and Resilient Distributed Consensus

We model a network of agents by an undirected graph G = (V, E), where the vertex set V represents agents and
the edge set E represents interactions and information exchange between agents. We use the terms vertex, node, and
agent interchangeably. An (undirected) edge between nodes u and v is denoted by (u, v). The neighborhood of node
u, denoted by Nu, is {v ∈ V : (u, v) ∈ E}. The degree of node u is the number of nodes in Nu. The cardinality of a
subset of vertices S ⊆ V is the number of nodes in S , and denoted by |S |.

Each agent u ∈ V has a state xu(k) ∈ R at time k that it updates according to a predefined state update rule while
incorporating the state values of its neighbors in the update step. For the distributed consensus of agents, the goal is
to design the state update rule guaranteeing the safety and agreement conditions stated below.

Definition 2.1. (Distributed consensus) A network of agents G = (V, E) achieves consensus if the following conditions
are satisfied:
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1. (Safety) Let xmin(0) and xmax(0) denote the minimum and the maximum of the initial states of nodes in G,
respectively. Then, xmin(0) ≤ xu(k) ≤ xmax(0), ∀u ∈ V, and for all times k.

2. (Agreement) As k → ∞, xu(k) = xv(k) = x for all pairs of nodes u, v ∈ V.

A simple state update rule, Linear Consensus Protocol (LCP), solves the distributed consensus problem under
conditions such as the network is connected. The LCP, defined below, has been extensively studied in the literature
and widely applied.

xu(k + 1) =
∑

v∈(Nu∪{u})
wuv xv(k), (1)

where wuv is some (positive) weight assigned by node u to the state value of v. Since G is undirected in our case,
wuv = wvu. We consider that agents exchange state values with each other in a synchronous manner.

2.1. Resilient Distributed Consensus

It is well-known that (1) is not resilient to misbehaving nodes that deviate from the LCP update rule. In fact, a
single misbehaving node can prevent the network from achieving consensus. Thus, distributed algorithms are designed
to guarantee consensus despite misbehaving nodes. Misbehaving nodes in a network can manifest in different models,
notably the malicious and Byzantine models. A malicious node disregards the LCP to update its state; however, it
consistently sends the same state value to all of its neighbors at each time step k. On the other hand, a Byzantine node
is one that not only disregards the LCP but can also send a different state value to each of its neighbors at each time
step. Similarly, the influence of misbehaving nodes on the network is also determined by their numbers, leading to the
formulation of models like the F-total and the F-local. In the F-total model, the maximum number of misbehaving
nodes in the entire network is bounded by F. Conversely, in the F-local model, the maximum number of misbehaving
nodes in the neighborhood of each node is at most F.

The Weighted Mean Subsequence Reduced (WMSR) algorithm in [4] offers a simple and efficient solution to
the resilient distributed consensus problem. WMSR is a type of a ‘trimming’ algorithm, which essentially trims or
ignores some of the extreme (largest and smallest) state values collected from its neighbors during the state update.
The rationale is to prevent potentially malicious or Byzantine-influenced values from impacting the node’s state. The
main steps of the WMSR algorithm are as follows:

1. Each normal node u collects state values of neighbors at each time step k and sorts them.
2. It then removes the F largest (smallest) values strictly greater (smaller) than xu(k). If the number of values

strictly greater (smaller) than xu(k) are less than F, then u removes all the values strictly greater (smaller) than
its own value. Let the set of nodes in Nu whose state values are removed by u at the time step k are denoted by
Ru(k).

3. The node u then updates its state according to the following:

xu(k + 1) =
∑

v∈(Nu∪{u})\Ru(k)

wuv xv(k). (2)

The WMSR algorithm guarantees that normal nodes achieve distributed consensus despite misbehaving nodes,
given that the underlying network graph fulfills certain robustness conditions. These conditions are defined using a
graph robustness metric referred to as (r, s)-robustness. We define the (r, s)-robustness and related notions below, and
then state relevant conditions on the graph (from [4]) guaranteeing resilient consensus despite misbehaving nodes.

Definition 2.2. (r-reachable set of S , Xr
S ) Given a graph G = (V, E), a subset S ⊂ V, and a positive integer r. A node

x ∈ S is r-reachable in S if it has at least r neighbors outside of S . The set of r-reachable nodes in S is

Xr
S = {x ∈ S : |Nx \ S | ≥ r}. (3)

We now define the notion of (r, s)-robustness in graphs.

Definition 2.3. ((r, s)-robust graph [4]) For positive integers r and s, a graph G = (V, E) is (r, s)-robust if for every
pair of non-empty disjoint subsets of nodes S 1, S 2 ⊂ V, at least one of the following conditions is satisfied.

4
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(i) |Xr
S 1
| = |S 1| (i.e., each node in S 1 has at least r neighbors outside of S 1),

(ii) |Xr
S 2
| = |S 2| (i.e., each node in S 2 has at least r neighbors outside of S 2),

(iii) |Xr
S 1
| + |Xr

S 2
| ≥ s (i.e. the number of nodes in S 1 and S 2 having at least r neighbors outside of their respective

sets is at least s).

We illustrate these conditions in Figure 2.

Figure 2: Three conditions for (r, s)-robustness. Blue nodes have at least r neighbors outside of their subset. (a) |Xr
S 1
| = |S 1 |, (b) |Xr

S 2
| = |S 2 |, (c)

|Xr
S 1
| + |Xr

S 2
| ≥ s.

LeBlanc et al. in [4] provide robustness conditions on the network graph to achieve resilient consensus under F-
total/local and malicious/Byzantine models. For example, to guarantee consensus under the F-total malicious model,
a necessary and sufficient condition is stated below.

Theorem 2.1. [4] Consider a network G = (V, E) with |V | = N nodes, of which at most F nodes are malicious (i.e., F-
total malicious model). If each normal node implements the WMSR algorithm with parameter F, then the distributed
consensus of normal nodes is achieved if and only if G is (F + 1, F + 1)-robust.

It means that any graph that is not (F + 1, F + 1)-robust is not ‘good enough’ to achieve resilient consensus in a
network with F malicious nodes, that is, we cannot guarantee that all normal nodes converge to a common state.

2.2. Main Question

In existing research, results for resilient distributed consensus generally offer a binary view: a network graph under
a specific misbehavior model either satisfies the robustness criterion to guarantee all normal agents’ convergence to
a common point, or falls short. However, this dichotomous approach limits the possibility of a comparative analysis
between network graphs that fail to meet the robustness criteria, thus leaving a gap in our understanding of the relative
suitability of different graphs for consensus. Consider two distinct graphs, G1 = (V, E1) and G2 = (V, E2), both of
which are (F + 1, F)-robust. Under an F-total malicious model, both graphs fall short of the robustness necessary
to confirm resilient consensus per the WMSR algorithm (Theorem 2.1). However, it is plausible that one graph
demonstrates a relative advantage over the other in terms of achieving resilient distributed consensus. This raises an
important question:

How can we evaluate the performance of a network that fails to meet the robustness threshold for guaranteeing
consensus when facing F misbehaving agents under different attack scenarios?

To address this issue, the paper introduces the concept of non-convergent nodes within a network to measure
a network’s degree of non-resilience. As a result, we can assess the network’s inadequacy for resilient consensus
in scenarios where the network robustness falls short. This new methodology enables us to extend the analysis of
network resilience beyond existing frameworks, allowing for comparative evaluation of networks that fall short of the
required robustness. We demonstrate that networks of the same size and with the same (r, s)-robustness may exhibit
varying quantities of non-convergent nodes. We focus on the constructions that lead to the maximum number of
non-convergent nodes under a given (r, s)-robustness condition.
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Remark 2.2. This paper primarily focuses on the F-total malicious nodes model; however, the results can be readily
adapted to other models, including the F-local and Byzantine models. Furthermore, although we consider the resilient
consensus problem here, the approach remains applicable in other resilient distributed optimization setups (e.g., [25,
27, 40]), where the network must meet some connectivity or robustness conditions for resilience against misbehaving
nodes.

3. Quantifying Non-resilience of WMSR Resilient Consensus

In this section, we first define the concept of non-convergent nodes to quantify the degree of ‘non-resilience’ in
networks failing to meet the required robustness condition. Then, we construct networks with the maximal number
of non-convergent nodes. The goal is to demonstrate the significant variation in the number of non-convergent nodes
across graphs with the same robustness. We recall that an (r, s)-robust network, where either r or s is smaller than
F + 1, does not guarantee resilient consensus in the face of F malicious nodes. Therefore, to highlight the extent of
non-resilience in networks under the F-total malicious model, we design (r, s)-robust graphs for different values of
r and s while maximizing the number of non-convergent nodes. Finally, we demonstrate that graphs with the same
(r, s)-robustness may have varying numbers of non-convergent nodes.

At the network level, the adversary aims to disrupt the convergence of all normal nodes at a common point by
utilizing F malicious nodes. At the node level, the adversary’s influence can be determined by its ability to prevent
a normal node u from converging with another arbitrary normal node. For example, consider a normal node u in a
network G = (V, E). An attack consisting of F malicious nodes may exist, preventing u and some other normal node,
say v, from converging; however, no such attack might be possible that hinders the convergence of u and a different
normal node, say w. Hence, we evaluate the adversary’s impact at the node level by measuring its ability to prevent a
normal node u from converging with any other arbitrary normal node. This concept is formally defined as follows:

Definition 3.1. (Non-convergent node) A normal node u is non-convergent (under the F-total model) if for every
v ∈ V \ {u} there is a set of at most F malicious nodes from V \ {u, v} preventing u and v from converging at a common
point. We denote the number of non-convergent nodes in G by αF(G).

If a graph is (F + 1, F + 1)-robust, there are no non-convergent nodes under the F-total malicious nodes model
(by Theorem 2.1). However, when the graph’s robustness is lower, that is, G is (r, s)-robust for r, s < F + 1, then
the network may have multiple non-convergent nodes depending on the structure of G. A detailed illustration of a
non-convergent node is presented in Section 4. Non-convergent nodes signify lack of guaranteed convergence to any
other node, directly reflecting the network’s vulnerability and non-resilience to F malicious nodes. As the robustness
of the graph increases, the number of non-convergent nodes generally decreases. Figure 3 illustrates this, where none
of the three graphs is (4, 4)-robust.

(a) (4, 1)-robust (b) (4, 2)-robust (c) (4, 3)-robust

Figure 3: The number of non-convergent nodes (highlighted red) in (a), (b), and (c) are 6, 3, and 1, respectively.

However, it is important to note that graphs with the same (r, s)-robustness can still have different numbers of
non-convergent nodes, as discussed in Section 4 (Figure 10). Thus, graphs with the same (r, s)-robustness can exhibit
varying levels of ability (or inability) to handle adversarial attacks, as indicated by the number of non-convergent
nodes. To systematically study this, we consider various graph families in which all graphs within a given family have
the same (r, s)-robustness for some r and s. We then examine the maximum and minimum values of α(G) within each
family. This approach will reveal the extent of variation in the number of non-convergent nodes among graphs with
identical (r, s)-robustness. To formalize this, we define the following:

6
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Definition 3.2. Let G(N, r, s) represent the family of all graphs consisting of N nodes that are (r, s)-robust. For a
positive integer F, we define

αF (G(N, r, s)) = max
G∈G(N,r,s)

αF(G), (4)

αF (G(N, r, s)) = min
G∈G(N,r,s)

αF(G), (5)

where αF(G) is the number of non-convergent nodes in G under the F-total model.

Since αF in (4) represents the maximum number of non-convergent nodes a graph can have within a given family,
it characterizes the worst-case scenario from a non-resilience perspective. Conversely, αF represents the best-case
scenario. Here, we consider three distinct graph families: G(N, F + 1, 1), G(N, F, F), and G(N, F + 1, F). Note that all
these families contain graphs lacking the necessary robustness to be resilient against F malicious nodes. We explain
the choice of these cases below.

• G(N, F, F): This family contains (F, F)-robust graphs that demonstrate resilience up to F − 1 malicious agents.
This case, therefore, assesses the existence of non-convergent nodes when the network faces one additional
malicious node beyond its design capacity.

• G(N, F + 1, F): This family contains (F + 1, F)-robust graphs, which are positioned closely to the ideal (F +
1, F + 1)-robust graphs; however, they fail to ensure resilience against F malicious nodes. Our examination
here revolves around understanding the potential number of non-convergent nodes in graphs that narrowly miss
meeting the desired robustness criteria.

• G(N, F + 1, 1): This group contains (F + 1, 1)-robust graphs, which are considered because the parameter r
in (r, s)-robustness generally takes precedence in the partial order that determines relative robustness. So, we
consider the case where r condition is satisfied (i.e., r = F + 1); however, the s condition is completely relaxed.

These diverse cases offer valuable insights into the trade-offs and implications of varying levels of graph robust-
ness, shedding light on the nuanced relationship between structural properties and resilience in distributed consensus
scenarios. Note that if a graph G is (r̂, ŝ)-robust for some r̂ and ŝ, then it must also be (r, s)-robust for r ≤ r̂ and s ≤ ŝ.
Thus, G(N, r̂, ŝ) ⊆ G(N, r, s) for r̂ ≥ r and ŝ ≥ s. For instance, consider a family G(N, F, F), and a graph G, where G
is an (F + 1, F + 1)-robust graph with N nodes. Since G must also be (F, F)-robust, G ∈ G(N, F, F). More generally,
G(N, F+1, F+1) ⊆ G(N, F, F). Furthermore, an (F+1, F+1)-robust graph G will not have any non-convergent node,
and therefore, αF(G) = 0, which means αF (G(N, F + 1, F + 1)) = 0. This directly implies that αF (G(N, F, F)) = 0.
By a similar argument and observing that G(N, F+1, F+1) ⊆ G(N, F+1, F), and G(N, F+1, F+1) ⊆ G(N, F+1, 1),
we deduce, αF (G(N, F + 1, F)) = 0 and αF (G(N, F + 1, 1)) = 0.

Next, we focus on finding the maximum number of non-convergent nodes a graph can have within a graph family,
i.e., αF (G(N, F + 1, 1)), αF (G(N, F, F)), and αF (G(N, F + 1, F)). For this, we construct (F + 1, 1), (F, F), and (F +
1, F)-robust graphs with the maximal number of non-convergent nodes under the F-total malicious nodes model. Our
constructions leverage the circulant graph, empty graph, and graph join operations, which we define below.

Definition 3.3. (Circulant graph) A circulant graph C1,2,··· ,M
Nc

is an undirected graph with Nc nodes, denoted by
{u0, u1, · · · , uNc−1}, where each ui is adjacent to ui± j (mod Nc) for all j ∈ {1, · · · ,M}.

We note that the degree of each node in C1,2,··· ,M
Nc

is 2M.

Definition 3.4. (Empty graph) An empty graph, denoted by EN , is a graph with N nodes and an empty edge set.

Definition 3.5. (Graph Join) Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the join graph, denoted by G1⊕G2 =

(V1 ∪ V2, E1 ∪ E2 ∪ {(a, b) : a ∈ V1, b ∈ V2}). In other words, each node u in G1 is adjacent to all the nodes in G2.

Figure 4 illustrates the circulant graph C1,2
7 (blue), empty graph E2 (gray) and their join G = E2 ⊕ C1,2

7 .
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3.1. (F + 1, 1)-robust Graphs

In this sub-section, we consider the graph family G(N, F + 1, 1) and examine the (F + 1, 1)-robustness condition
that is considerably less restrictive compared to the (F + 1, F + 1)-robustness (which guarantees the absence of non-
convergent nodes as well as resilient consensus despite F malicious nodes). We show that there are (F + 1, 1)-robust
graphs, wherein almost all the nodes are non-convergent, thus, showing that αF(G(N, F + 1, 1)) is close to N.

Lemma 3.1. For given integers F ≥ 2 and Nc ≥ 2F + 1, the graph G = E2 ⊕ C1,··· ,F−1
Nc

is (F + 1, 1)-robust.

Proof. Let U and V denote the set of nodes in C1,··· ,F−1
Nc

and E2, respectively. Let S 1 and S 2 be two disjoint non-empty
sets of nodes in G. We show that at least one of these subsets is (F + 1)-reachable. There are three cases.

(a) At least one of the subsets contains nodes from V only. Without the loss of generality (w.lo.g.), assume S 1 ⊆ V .
Since |U | = Nc ≥ 2F +1 and each v ∈ S 1 is adjacent to all nodes in U, we get XF+1

S 1
= S 1 (recall Definition 2.3).

(b) At least one of the subsets, say S 1, contains nodes from U only, i.e., S 1 ⊆ U. There are two choices for S 2.

(b-1) S 2 ∩ V = ∅: In this case, at least one of the subsets S 1 and S 2 have at most F nodes as |U | ≥ 2F + 1.
W.l.o.g., assume |S 1| ≤ F. Each node in U, and hence in S 1, has at 2F − 2 neighbors in U. Thus, each
u ∈ S 1 has at least (2F − 2) − (F − 1) = F − 1 neighbors in U \ S 1. Also, each u ∈ S 1 is adjacent to both
nodes in V . Thus, u ∈ S 1 has at least F − 1 + 2 = F + 1 neighbors outside of S 1, thus, the subset S 1 is
(F + 1)-reachable.

(b-2) S 2 ∩ V , ∅: If |S 1| ≤ F, then S 1 is (F + 1)-reachable by the above case (b-1). So, assume |S 1| ≥ F + 1.
Since V ∩ S 2 , ∅, let v ∈ (S 2 ∩ V). Note that v is adjacent to all nodes in S 1, which means the subset S 2
is (F + 1)-reachable.

(c) S 1 and S 2 contain nodes from both U and V . Let v1 ∈ (S 1 ∩ V) and v2 ∈ (S 2 ∩ V). Since |U | ≥ 2F + 1, at least
one of the subsets S 1 ∩ U and S 2 ∩ U has at most F nodes. Assume w.l.o.g. that |S 1 ∩ U | ≤ F. Then, v1 has at
least F + 1 neighbors outside of S 1 (as v1 is adjacent to all the nodes in U). As a result, S 1 is (F + 1)-reachable.
This completes the proof.

Figure 4 illustrates an example of such a graph for F = 3 and Nc = 7. Next, we show that all except two nodes in
the graph considered in Lemma 3.1 are non-convergent, thereby showing that αF(G(N, F + 1, 1)) ≥ N − 2.

u0 u1

u2

u3u4u5

u6

v1 v2
E2

C1,2
7

Figure 4: G = E2 ⊕ C1,2
7 is (4, 1)-robust.

Theorem 3.2. For given integers F ≥ 2 and N ≥ 2F + 3, let G(N, F + 1, 1) be a family of all (F + 1, 1)-robust graphs
with N nodes, then

αF(G(N, F + 1, 1)) ≥ N − 2.

Proof. We prove the statement by showing that there exists a graph in G(N, F + 1, 1) that has N − 2 non-convergent
nodes. For this, let Nc = N − 2, and consider the graph G = E2 ⊕ C1,··· ,F−1

Nc
, which is (F + 1, 1)-robust by Lemma 3.1.

Let U = {u0 · · · , uNc−1} denote the set of nodes in C1,··· ,F−1
Nc

and V = {v1, v2} denote the two nodes in E2. Note that

8
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|U |+ |V | = N. We will show that each ui ∈ U is a non-convergent node under the F-total attack model. First, we show
that G is not (F + 1, F + 1)-robust.

Consider two disjoint subsets S 1 and S 2, where S 1 = {u0, · · · , uF−1} ∪ {v1}, and S 2 = (U \ S 1) ∪ {v2}. Note that
each u j ∈ U has 2(F − 1) neighbors in U. Also, each ui ∈ S 1 ∩ U has at most F − 1 neighbors in U \ S 1 and only
one neighbor in V \ S 1. Thus, each node in S 1 ∩ U has at most F neighbors outside of S 1. Since v1 is adjacent to
all nodes in U \ S 1 and |U \ S 1| ≥ F + 1, we have XF+1

S 1
= {v1}. Similarly, each u j ∈ S 2 ∩ U has at most F neighbors

outside of S 2. Also, v2 has at most F neighbors outside of S 2 (as |S 1| = F + 1 and v2 is not adjacent to v1 ∈ S 1). Thus,
XF+1

S 2
= ∅, which means |XF+1

S 1
∪ XF+1

S 2
| = 1 < F + 1, and G is not (F + 1, F + 1)-robust.

Next, we proceed to show that the number of non-convergent nodes in G is N − 2, i.e., αF(G) = N − 2. For this,
assign some value a ∈ R to all the nodes in S 1, and some value b > a to all the nodes in S 2. Let v1 ∈ S 1, which is
the only node having F + 1 neighbors outside of S 1, be the malicious node, and all the remaining nodes in S 1 and
S 2 are normal. Then, each normal node has at most F neighbors outside of its respective subset (i.e., S 1 and S 2). It
means each normal node in S 1 has at most F neighbors with values strictly greater than the node’s value. Similarly,
each normal node in S 2 has at most F neighbors with values strictly smaller than the node’s value. By implementing
the WMSR algorithm, each normal node in S 1 ∪ S 2 removes values from all of its neighbors that are outside of its
respective subset, and hence, never updates its value. This means normal nodes in S 1 and S 2 maintain the values a
and b, respectively, and do not converge at a common value.

In particular, consider u0 ∈ S 1, and observe that it does not converge to any of the nodes in S 2 = {uF , · · · , uNc−1, v2}.
Now, we select again two disjoint nonempty subsets, S ′1 and S ′2, as following:

Let S ′1 = {u0, uNc−F+1, · · · , uNc−1} ∪ {v2} (i.e., in S ′1, include the nodes in U that are on the ‘left’ of u0 compared
to the previous case of S 1, where nodes to the ‘right’ of u0 were included). Note that |S ′1| = F + 1. Moreover, let
S ′2 = (U \S ′1)∪{v1}, and assume v2 ∈ S ′1 to be the malicious node. Then, by the same argument used above (i.e., in the
case of S 1 and S 2), we can ensure that u0 does not converge to any of the nodes in S ′2. Since S 2 ∪ S ′2 = (U ∪V) \ {u0},
we ensure that for every node pair (u0, x), where x ∈ (U ∪ V) \ {u0}, there is an attack of at most F nodes such that
u0 and x do not converge. It means that u0 is a non-convergent node. By the symmetry of the graph and applying the
same arguments as above to other nodes in U implies that all the nodes in U, where |U | = N − 2, are non-convergent,
which means αF(G) = N − 2. This directly implies that αF(G(N, F + 1, 1)) ≥ N − 2, which completes the proof.

Thus, in the family G(N, F + 1, 1), there exist (F + 1, 1)-robust graphs with a total of N nodes, where, as N → ∞,
the ratio of non-convergent nodes to N approaches 1. Conversely, there are also maximally (F+1, 1)-robust graphs that
do not have any non-convergent nodes. This highlights a significant disparity in the number of non-convergent nodes
among (F + 1, 1)-robust graphs. Therefore, while (F + 1, 1)-robustness is a useful measure of a graph’s resilience, it
does not fully capture the extent of non-resilience, as quantified by the number of non-convergent nodes.

3.2. (F, F)-robust Graphs

Next, we consider (F, F)-robust graphs, which ensure resilience to F − 1 malicious nodes. Our objective is to
examine the maximum number of non-convergent nodes in a graph when it faces an additional malicious node beyond
its resilience threshold. In particular, we investigate the scenario where the graph is subjected to F malicious nodes,
surpassing its initial resilience threshold of F − 1. Our goal is to construct (F, F)-robust graphs with the maximum
number of non-convergent nodes, enabling us to explore αF(G(N, F, F)). Before presenting the graph construction,
we state the following observation related to circulant graphs.

Observation 3.3. Consider a circulant graph C1,2,··· ,⌈ F
2 ⌉−2

Nc
, where F ≥ 5 and Nc ≥ F + 1. Let i be some positive

integer, where 3 ≤ i ≤ F+2
2 . If S is a subset of nodes in the circulant graph, where F − i ≤ |S | ≤ Nc − (1 + i), then, at

least one of the following is true.

(i) The number of nodes in S that are adjacent to at least (i − 2) nodes outside of S is at least F + 2 − 2i, i.e.,
|Xi−2

S | ≥ F + 2 − 2i.

(ii) All nodes in S are adjacent to at least i − 2 nodes outside of S , i.e., |Xi−2
S | = |S |.

9
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Figure 5 illustrates the observation through examples. Consider a circulant graph C1,2
10 with F = 8 and Nc = 10.

For i = 4, Figure 5(a) shows a set S of size 4. There are two (F + 2 − 2i = 2) nodes in S , shown in red, such that each
of them has two (i − 2 = 2) neighbors outside of S . Similarly, in Figure 5(b), we consider i = 3 and a set of nodes S
of size 5. By Observation 3.3, there exist four (F + 2 − 2i = 4) nodes in S (red colored), each of which has at least
i − 2 = 1 neighbor outside of S .

S

(a)

S

(b)

Figure 5: (a) A set S of four nodes contains two nodes (red), each of which has two neighbors outside of S . (b) A set S contains five nodes, of
which four nodes (red) have at least one neighbor outside of S .

Next, we present our construction of (F, F)-robust graphs.

Lemma 3.4. For integers F > 4 and N ≥ 2F + 3, the graph G = KF+2 ⊕ C1,··· ,⌈ F
2 ⌉−2

N−(F+2) , which is the join of complete

graph KF+2 and circulant graph C1,··· ,⌈ F
2 ⌉−2

N−(F+2) , is (F, F)-robust.

Proof. Let U and V denote the set of nodes in C1,··· ,⌈ F
2 ⌉−2

N−(F+2) and KF+2, respectively. Let S 1 and S 2 be two disjoint
non-empty sets of nodes in the given G. There are three cases:

(a) One of the subsets contains nodes from V only. W.l.o.g, assume S 1 ⊆ V . Since |U | ≥ F + 1 and each v ∈ S 1 is
adjacent to all nodes in U, we get XF

S 1
= S 1.

(b) One of the subsets contains nodes from U only. W.l.o.g, assume S 1 ⊆ U: Since |V | ≥ F + 2 and each u ∈ S 1 is
adjacent to all nodes in V , we get XF

S 1
= S 1.

(c) Both S 1 and S 2 contain nodes from U and V . We have further two cases.

(c-1) One of the subsets, say S 1 has at most (F−1) nodes: In this case, consider |S 1∩V | = ν1, then |S 1∩U | ≤ F−1−ν1.
Let v ∈ S 1 ∩ V . The number of neighbors of v outside of S 1 are:

= ((F + 2) − ν1) + (|U | − |S 1 ∩ U |)
≥ (F + 2 − ν1) + ((F + 1) − (F − 1 − ν1))
= F + 4.

Similarly, let u ∈ S 1 ∩ U. Note that u has 2
(
⌈ F

2 ⌉ − 2
)

neighbors in U. Then, the number of neighbors of u
outside of S 1 are:

≥ ((F + 2) − ν1) + (2 (⌈F/2⌉ − 2) − ((S 1 ∩ U) − 1))

≥ (F + 2 − ν1) + (F − 4 − (F − 1 − ν1 − 1))
= F.

Thus, each node in S 1 has at least F neighbors outside of S 1, i.e., XF
S 1
= S 1.

(c-2) Both subsets S 1 and S 2 have at least F nodes:

10
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In this case, if at least one of the subsets, say S 1, has at most two nodes from V . Then, since |V \ S 1| ≥ F and
each node in S 1 is adjacent to all nodes in V , we have XF

S 1
= S 1. So, we consider that both S 1 and S 2 contain

at least three nodes from V . We will next compute |XF
S 1
| and |XF

S 2
|, and show that |XF

S 1
| + |XF

S 2
| ≥ F.

For this, let |S 1 ∩ V | = ν1 and |S 2 ∩ V | = ν2.

Since each node in S 1 ∩ V (resp. S 2 ∩ V) is adjacent to all the nodes in S 2 (resp. S 1), where |S 2| ≥ F, we have
|XF

S 1
| ≥ ν1. Similarly, |XF

S 2
| ≥ ν2. So, if ν1 + ν2 ≥ F, we have |XF

S 1
| + |XF

S 2
| ≥ F, and we are done. Thus, we

assume,
ν1 + ν2 ≤ F − 1. (6)

Also, note that since |V | = F + 2, one of the subsets, say S 1, must contain at most F+2
2 nodes from V , i.e.,

|S 1 ∩ V | ≤ F+2
2 . So, we get

3 ≤ ν1 ≤ F + 2
2
. (7)

Using the above details and (6), we also get

3 ≤ ν2 ≤ F − 1 − ν1. (8)

Next, we consider |S 1 ∩ U | = µ1, and |S 2 ∩ U | = µ2.

Observe that F − ν1 ≤ µ1 (as |S 1| ≥ F). Similarly, F − ν2 ≤ µ2. Consequently, we get an upper bound on µ1,
i.e., µ1 ≤ |U | − (F − ν2). Using (6),

|U | − (F − ν2) ≤ |U | − (1 + ν1),

thus, µ1 ≤ |U | − (1 + ν1). We write the upper and lower bounds on µ1 again,

F − ν1 ≤ µ1 ≤ |U | − (1 + ν1). (9)

Similarly, the bounds on µ2 are,
F − ν2 ≤ µ2 ≤ |U | − (F − ν1). (10)

Next, we compute XF
S 1

and XF
S 2

.

Since (S 1 ∩ V) ⊆ XF
S 1

, we have |XF
S 1
| ≥ |XF

S 1
∩ V | = ν1. Note that each u ∈ (S 1 ∩ U) is adjacent to at least

(F + 2)− ν1 nodes in V \ (S 1 ∩V). So, if u ∈ (S 1 ∩U) is adjacent to at least ν1 − 2 nodes in U \ S 1, then u ∈ XF
S 1

(as u will have at least F neighbors outside of S 1). Now consider (7), (9), and use Observation 3.3 (plugging
i = ν1), we deduce that the number of nodes in S 1 ∩ U, each of which is adjacent to at least ν1 − 2 nodes in
U \ S 1 is at least F − 2(ν1 − 1). This gives

|XF
S 1
| = |XF

S 1
∩ V | + |XF

S 1
∩ U |

≥ ν1 + (F − 2(ν1 − 1))
= F + 2 − ν1.

(11)

Similarly, considering (8), (10), and applying a similar argument as for XF
S 1

, we obtain

|XF
S 2
| = |XF

S 2
∩ V | + |XF

S 2
∩ U | ≥ F + 2 − ν2. (12)

Now, from (11) and (12), we get

|XF
S 1
| + |XF

S 2
| ≥ (F + 2 − ν1) + (F + 2 − ν2)

= 2F + 4 − (ν1 + ν2)
(13)

11
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Using (6),
|XF

S 1
| + |XF

S 2
| ≥ 2F + 4 − (F − 1) = F + 3, (14)

which is the desired result. This completes the proof.

Figure 6 illustrates G = KF+2 ⊕ C1,··· ,⌈ F
2 ⌉−2

N−(F+2) for F = 5 and N = 14.

C1
7

K7

Figure 6: G = K7 ⊕ C1
7 is (F, F)-robust graph for F = 5.

The following result presents the number of non-convergent nodes in (F, F)-robust graphs constructed above.

Theorem 3.5. For given integers F > 4 and N ≥ 2F + 3, let G(N, F, F) be a family of all (F, F)-robust graphs with
N nodes, then

αF(G(N, F + 1, 1)) ≥ N − (F + 2).

Proof. We will construct a graph G ∈ G(N, F, F) with αF(G) = N − (F + 2), thus showing αF(G(N, F + 1, 1)) ≥
N − (F + 2). For this, consider G = KF+2 ⊕ C1,··· ,⌈ F

2 ⌉−2
N−(F+2) , which is (F, F)-robust by Lemma 3.4. Let V = {v1, · · · , vF+2}

denote the set of nodes in KF+2, and U = {u1, · · · , uN−(F+2)} be the set of nodes in C1,2,··· ,⌈ F
2 ⌉−2

N−(F+2) . Note that each ui ∈ U
has 2(⌈ F

2 ⌉ − 2) neighbors in U.
For the non-convergent nodes, first, we show that the graph is not (F + 1, F + 1)-robust. Let S 1 be a set consisting

of a single node from U, say u ∈ U, and F − 1 nodes from V . Also, let S 2 be the set of remaining nodes, i.e.,
S 2 = (U ∪ V) \ S 1. Note that |S 1| = F, so XF+1

S 2
= ∅. Also, u ∈ S 1 has 3 + 2(⌈ F

2 ⌉ − 2) = 2⌈ F
2 ⌉ − 1 ≤ F neighbors

outside of S 1. At the same time, each v ∈ (S 1 ∩ V) has at least F + 1 neighbors outside of S 1. Thus, XF+1
S 1
= S 1 \ {u},

and |XF+1
S 1
| = F − 1 < |S 1|. As a result, none of the three conditions for (F + 1, F + 1)-robustness are satisfied by sets

S 1 and S 2, the considered graph is not (F + 1, F + 1)-robust.
Now, assume that the set of malicious nodes contains XF+1

S 1
∪ XF+1

S 2
. Note that |XF+1

S 1
∪ XF+1

S 2
| ≤ F. Also, u ∈ S 1

is the only normal node in S 1 as u < XF+1
S 1

. Now, assign value a to all nodes in S 1, and value b > a to nodes in
S 2. Note that all normal nodes in S 1 and S 2 have at most F neighbors outside of their respective sets, and as per
the WMSR algorithm, each normal node in S 1 and S 2 removes F values outside of its respective set. Thus, u ∈ S 1,
and other normal nodes in S 2 never update their values. Thus, u never converges to another normal node and is a
non-convergent node. This scenario can be replicated for every node in U while applying the same arguments; thus,
the number of non-convergent nodes in the graph is |U | = N − (F + 2), i.e. αF(G) = N − (F + 2). This directly implies
that αF(G(N, F, F)) ≥ N − (F + 2), which completes the proof.

For the graph G = K7 ⊕ C1
7 in Figure 6, the (blue) nodes corresponding to the circulant graph, C1

7, are the non-
convergent nodes under the F-total model for F = 5.

12
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3.3. (F+1,F)-robust Graphs

In this sub-section, we consider G(N, F + 1, F) and examine (F + 1, F)-robust graphs, which are slightly less
robust than the desired (F+1, F+1)-robust graphs. As before, the goal is to design graphs with the maximum number
of non-convergent nodes and obtain αF(G(N, F + 1, F)). For this we state the following result.

Lemma 3.6. For given integers F ≥ 3 and N ≥ 3F, the graph G = EN−2F ⊕ C1,··· ,F−1
2F is (F + 1, F)-robust.

Proof. First, we will show the result for N = 3F, and then extend the result to N > 3F.
Assume N = 3F. Let U and V denote the set of nodes in C1,··· ,F−1

2F and EF , respectively. Let S 1 and S 2 be two
disjoint non-empty sets of nodes in the given G. There are following cases for the choices of S 1 and S 2.

(a) At least one of S 1 and S 2 contains nodes from V only: W.l.o.g., let S 1 ∩ U = ∅ (i.e., S 1 ⊆ V). Then, each node
in S 1 has 2F neighbors outside of S 1, and XF+1

S 1
= S 1.

(b) Both S 1 and S 2 contain nodes from U:

In this case, S 1 ∩ U , ∅ and S 2 ∩ U , ∅. Let

|S 1 ∩ U | = ν.

Since each node in U has a degree 2F − 2, each u ∈ (S 1 ∩ U) has (2F − 2) − (ν − 1) = 2F − 1 − ν neighbors in
U \ S 1. Based on ν, we have the following sub-cases.

(b-1) ν ≤ F − 2: In this case, for each u ∈ S 1 ∩ U, the number of neighbors in U \ S 1 is:

2F − 1 − ν ≥ 2F − 1 − (F − 2) = F + 1,

which means XF+1
S 1
∩ U = S 1 ∩ U. Similarly, since each v ∈ S 1 ∩ V is adjacent to all nodes in U, and

|U \ S 1| ≥ F + 1, we have XF+1
S 1
∩ V = S 1 ∩ V . Thus, XF+1

S 1
= (S 1 ∩ V) ∪ (S 1 ∩ U) = S 1.

(b-2) ν ≥ F +2: This implies that |S 2∩U | ≤ F −2. As a result, we apply the sub-case (b-1) on S 2 and get XF+1
S 2
= S 2.

(b-3) ν = F − 1: In this case, note that |U \ S 1| = F + 1. We have two scenarios: First, if S 1 ∩V = V (i.e., S 1 contains
all nodes in V), then each v ∈ (S 1 ∩ V) is adjacent to F + 1 nodes in U \ S 1. Thus, (S 1 ∩ V) ⊆ XF+1

S 1
. Since

|S 1 ∩ V | = |V | = F, we have XF+1
S 1
≥ F. Second, if (S 1 ∩ V) , V , then there is at least one node in V \ S 1. This

means that each u ∈ S 1 ∩ U is adjacent to at least one node in V \ S 1. Also, note that each u ∈ (S 1 ∩ U) has
2F − 1 − (F − 1) = F neighbors in U \ S 1. Thus, each u ∈ (S 1 ∩ U) hast at least F + 1 neighbors outside S 1,
implying (S 1∩U) ⊆ XF+1

S 1
. Moreover, each v ∈ (S 1∩V) is adjacent to all nodes U \S 1 (where |U \S 1| = F+1),

thus (S 1 ∩ V) ⊆ XF+1
S 1

. As a result, we get XF+1
S 1
= S 1.

(b-4) ν = F: Since |U | = 2F, we have |S 2∩U | ≤ F. If |S 2∩U | ≤ F−1, we apply the argument in sub-case (b-3) above
on S 2. So, consider |S 2 ∩ U | = F. Now, since |V | = F, at least one of the following is true: (i) |V \ S 1| ≥ ⌈ F

2 ⌉,
(ii) |V \ S 2| ≥ ⌈ F

2 ⌉. W.l.o.g., we assume (i) is true. It means that each u ∈ (S 1 ∩U) has at least ⌈ F
2 ⌉ neighbors in

V \ S 1. Also, each u ∈ (S 1 ∩ U) has 2F − 1 − F = F − 1 neighbors in U \ S 1. Noting that F ≥ 3, we deduce
that each u ∈ (S 1 ∩ U) has at least F + 1 neighbors outside S 1. Since |S 1 ∩ U | = F, we have |XF+1

S 1
| ≥ F.

(b-5) v = F + 1: In this case |S 2 ∩ U | ≤ F − 1, thus, we apply the sub-case (b-3) on S 2.

All the above cases establish that the graph EF ⊕ C1,··· ,F−1
2F is (F + 1, F)-robust. Now, we add a new node v to

EF ⊕ C1,··· ,F−1
2F such that v is adjacent to all nodes in U (i.e., nodes in the circulant graph). This gives the graph

EF+1 ⊕ C1,··· ,F−1
2F . Since the new node v is adjacent to 2F nodes in the existing graph, the (F + 1, F)-robustness of

EF ⊕ C1,··· ,F−1
2F implies that the new graph EF+1 ⊕ C1,··· ,F−1

2F is also (F + 1, F)-robust (by [4, Theorem 5]). By the same
argument, we add N − 3F vertices to EF ⊕ C1,··· ,F−1

2F to get G = EN−2F ⊕ C1,··· ,F−1
2F , which is (F + 1, F)-robust.

13
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E6

C1,2
6

Figure 7: G = E6 ⊕ C1,2
6 is (F + 1, F)-robust graph for F = 3.

Figure 7 illustrates G = EN−2F ⊕C1,··· ,F−1
2F for F = 3 and N = 12. Next, we compute the number of non-convergent

nodes in the graphs in Lemma 3.6, thereby obtaining a lower bound on αF(G(N, F + 1, F)).

Theorem 3.7. For given integers F ≥ 3 and N ≥ 2F +3, let G(N, F +1, F) be a family of all (F +1, F)-robust graphs
with N nodes, then

αF(G(N, F + 1, F)) ≥ N − 2F.

Proof. We show that there exists G ∈ G(N, F + 1, F) with N − 2F non-convergent nodes. For this, consider G =
EN−2F ⊕ C1,··· ,F−1

2F , which is (F + 1, F)-robust by Lemma 3.6. Let V = {v1, · · · , vF+2} be the set of nodes in EN−2F , and
U = {u1, · · · , u2F} be the set of nodes in C1,2,··· ,F−1

2F . We will show that each vi ∈ V is a non-convergent node.
For this, first, we show that G is not (F + 1, F + 1)-robust. Consider two nonempty disjoint subset of nodes in G.

Let S 1 = {v1} ∪ {u1, u2, · · · , uF}, and S 2 be the set of remaining nodes, i.e., S 2 = (V ∪U) \ S 1. We now compute XF+1
S 1

and XF+1
S 2

. Note that each ui ∈ S 1 is adjacent to at least 2(F − 1)− (F − 1) = F − 1 nodes in U \ S 1. Also, each ui ∈ S 1
is adjacent to (N − 2F) − 1 ≥ F − 1 nodes in V \ S 1. Thus, ui ∈ S 1 is adjacent to at least 2(F − 1) nodes outside S 1.
Since F ≥ 3, we have 2(F − 1) ≥ F + 1, and (S 1 ∩U) ⊆ XF+1

S 1
. Moreover, v1 ∈ (S 1 ∩V) is adjacent to exactly F nodes

outside of S 1. Thus, XF+1
S 1
= S 1∩U, i.e., |XF+1

S 1
| = F. As for S 2, each vi ∈ (S 2∩V) is adjacent to only F nodes outside

S 2 (which are the nodes in S 1 ∩ U). Further, each u j ∈ (S 2 ∩ U) is adjacent to 2(F − 1) nodes in U, of which F − 1
nodes are in S 2 ∩ U. Thus, each u j ∈ (S 2 ∩ U) is adjacent to F − 1 nodes in U \ S 2. Also, each such u j is adjacent to
one node in V \ S 2. Thus, each u j ∈ (S 2 ∩U) is adjacent to (F − 1)+ 1 = F nodes outside S 2, which means XF+1

S 2
= ∅.

In other words, |XF+1
S 1
| + |XF+1

S 2
| = F, and G is not (F + 1, F + 1)-robust.

Now, assign some real value a ∈ R to all nodes in S 1, and some value b > a to nodes in S 2. Moreover, assume that
nodes in XF+1

S 1
= S 1 ∩U are malicious. Since |S 1 ∩U | = F, the number of malicious nodes is F. Note that all normal

nodes in S 1 and S 2 have at most F neighbors outside of their respective sets. Thus, following the WMSR algorithm,
each normal node in S 1 and S 2 removes F values outside of its respective set, and hence never updates its value. In
particular, v1 ∈ S 1 does not converge to any normal node in S 2 = (V \ {v1}) ∪ (U \ {u1, · · · , uF}). Now, by selecting
S 1 = {v1} ∪ {uF+1, · · · , u2F}, and S 2 = (V ∪ U) \ S 1, we can ensure, by the same arguments as above, that there is
an attack of F nodes (i.e., {uF+1, · · · , u2F}) preventing v1 to converge to any of the (normal) nodes in {u1, · · · , uF}. As
a result, for each node x ∈ (V ∪ U) \ {v1}, there is an attack of F nodes guaranteeing that v1 and x do not converge,
implying that v1 is a non-convergent node. Finally, noting the symmetry of nodes in G, we can replicate the same
arguments as above to show that each vi ∈ V is non-convergent. Since |V | = N − 2F, we get the desired result, i.e.,
αF(G) = N − 2F. This directly implies that αF(G(N, F + 1, F)) ≥ N − 2F.

These results demonstrate that even among graphs with the same robustness, there can be significant variation in
the number of non-convergent nodes. Consequently, in scenarios where robustness is insufficient, these graphs may
exhibit varying levels of partial performance. Next, based on the previous discussions, we state a sufficient condition
for a node to be a non-convergent node. In proofs of Theorems 3.2, 3.5, and 3.7, the main idea to design an F-total
attack that prevents a normal node u from converging with another normal node v is as follows: First, we identify two
disjoint empty sets of nodes, S 1 and S 2, wherein u and v belong to different sets. Moreover, S 1 and S 2 do not satisfy
any of the three conditions in Definition 2.3. We then construct an attack involving a maximum of F malicious nodes
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to ensure that the nodes in S 1 and S 2 do not converge. By leveraging this strategy, we can effectively state a sufficient
condition for a node to be non-convergent.

Proposition 3.8. In a graph G = (V, E), a node u ∈ V is non-convergent (under the F-total malicious model) if for
every v ∈ V \ {u}, there exist a pair of non-empty disjoint subsets S 1, S 2 ⊂ V such that

1. |XF+1
S 1
| < |S 1|, and |XF+1

S 2
| < |S 2|, and |XF+1

S 1
| + |XF+1

S 2
| < F + 1, (i.e., S 1 and S 2 do not satisfy the (F + 1, F + 1)-

robustness criteria in Definition 2.3.)
2. u and v belong to distinct subsets, i.e., if u ∈ S 1, then v ∈ S 2 and vice versa.
3. Neither of u and v have F + 1 neighbors outside of their respective subsets.

We demonstrate the above proposition through an example.
Example: Consider the graph in Figure 8, which is (3, 3)-robust. Under the F-total malicious model, where

F = 3, nodes in {v2, v3, v6, v7} are non-convergent as they satisfy the conditions in Proposition 3.8. We explain the
non-convergence of v6. Consider a pair of subsets, S 1 = {v4, v5, v6} and S 2 = {v1, v2, v3, v7, v8} in Figure 8(a). These
subsets meet the first condition in Proposition 3.8. Notably, node v5 ∈ S 1 is the only node with four (F + 1 = 4)
neighbors outside its subset S 1. Consequently, there exists an attack (involving v5) that prevents v6 from converging
to any of the nodes in S 2. For the non-convergence of v6, we further need to show that there is also an attack that
prevents convergence of v6 with nodes v4, v5 ∈ S 1. For this, consider subsets S 1 and S 2 in Figure 8(b), where
S 1 = {v1, v6, v7, v8} and S 2 = {v2, v3, v4, v5}. Note that v6 is in a different subset than v4 and v5, and none of these
nodes have four neighbors outside their respective sets, satisfying the conditions in the proposition. As a result, we
can guarantee that node v6 does not converge to v4 and v5, confirming its non-convergence.

v1

v2

v3

v8v6

v5

S1
S2

v7

v4

(a)

v7

v2

v3

v4

v8v6

v1

S1

S2

v5

(b)

Figure 8: G is (3, 3)-robust and v6 is non-convergent for F = 3.

Remark 3.9. We note that the concept of non-convergence for a node is defined in relation to the attack model. Specif-
ically, a node u is considered non-convergent if, for every other node v in the graph, an ‘attack’ can be constructed
that prevents nodes u and v from ‘converging at a common point’. In this paper, as highlighted in Remark 2.2, we
have focused on the F-total malicious attack model, where non-convergence is defined under this specific scenario.
However, this notion of an ‘attack’ can be adapted to other models, leading to corresponding modifications in the
definition of non-convergence. Similarly, since distributed consensus is the optimization task considered in this work,
non-convergent nodes are defined in terms of convergence at a common point. This definition can be adjusted to suit
other optimization tasks by replacing ‘converging at a common point’ with the specific goal of the task.

4. Illustrations and Simulations

In this section, we have two main goals: (1) to illustrate the notion of a non-convergent node. (2) To demonstrate
how the number of non-convergent nodes in a graph changes as we alter the graph’s robustness.

For an illustration of a non-convergent node, consider G = (V, E) in Figure 9, which is (4, 3)-robust (but not (4, 4)-
robust). Assuming F = 3 and F-total malicious attack, G has four non-convergent nodes, {v7, v8, v9, v10}. For instance,
considering v7, we show that for every other vi ∈ V , there is an attack consisting of F = 3 malicious nodes ensuring
that v7 and vi do not converge. In Figure 9(a), we design an attack involving v1, v2 and v3. Their state trajectories are
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shown in red in Figure 9(c). The state of v7 is in green, and the states of the remaining nodes are in blue. As a result
of this attack, none of the nodes in {v4, v5, v6, v8, v9, v10} and v7 converge at the same state. Next, we need to show
that there is an attack that can prevent v7 from converging to any of the nodes in {v1, v2, v3}. Figure 9(d) demonstrates
such a situation. Hence, for every node pair (v7, vi), we have an attack guaranteeing that vi and v7 do not converge,
establishing that v7 is a non-convergent node.

(a) (b)

(c) (d)

Figure 9: v7 (green) is a non-convergent node. For every node vi , v7, there is an attack consisting of F = 3 nodes (as in (c) and (d)) preventing v7
and vi from converging to a common point.

Figure 10 presents different graphs, none of which is (4, 4)-robust. Consequently, these graphs cannot guarantee
resilient consensus when faced with F = 3 malicious nodes, rendering them ‘non-resilient’ to three malicious nodes.
Despite this common non-resilience, the impact varies between graphs, which we measure in terms of the number
of non-convergent nodes in each graph. For instance, Figure 10(a) shows three (3, 3)-robust graphs, each having a
different number of non-convergent nodes (red) and hence, a varying level of non-resilience. Similarly, Figures 10(b)
and 10(c) present examples of (4, 1)- and (4, 3)-robust graphs, respectively. Each of these graphs contains a distinct
number of non-convergent nodes.

In addition to the specific examples provided, we generated 50 instances each of (3, 3)-robust, (4, 1)-robust, and
(4, 3)-robust graphs using the Erdős-Rényi model for N = 10 and N = 14.1 For each graph, we calculated the number
of non-convergent nodes under the F-total model with F = 3. The expected number of non-convergent nodes was then
determined by averaging the results across the 50 graph instances with the same N and robustness. Table 1 presents
these results as the expected fraction of non-convergent nodes in a graph.

Generally, the parameter r in the (r, s)-robustness takes precedence in determining the relative robustness of graphs
[4]. Similarly, for the same value of r, an (r, s1)-robust graph is relatively more robust than an (r, s2)-robust graph,
where s1 > s2. We observe (as in Table 1) that graphs with relatively higher robustness generally have fewer non-
convergent nodes, given the same value of F. Finally, Figure 11(a) shows a (2, 2)-robust graph consisting of N = 12
nodes. The (2, 2)-robustness of G implies that resilient consensus is guaranteed in the presence of a single malicious
node, and hence, none of the nodes in G is non-convergent. However, if we increase F (i.e., the number of malicious
nodes), the number of non-convergent nodes also increases, as Figure 11(b) illustrates. This example demonstrates an
increasing non-resilience of the graph to the presence of malicious nodes.

1Here, the robustness of each graph is maximal. We use maximal to mean the highest level of robustness that the graph can achieve without
moving to the next level of robustness. For example, a (3, 3)-robust graph considered is not (4, 1)-robust. Similarly, the (4, 1)-robust graphs
considered are maximally robust in that they are not (4, 2)-robust.
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(a) (3, 3)-robust

(b) (4, 1)-robust

(c) (4, 3)-robust

Figure 10: Non-convergent nodes (colored red) in (3, 3)-robust, (4, 1)-robust, and (4, 3)-robust graphs.

Table 1: The fraction of non-convergent nodes in graphs with various robustness considering F = 3 malicious nodes.

(# of non-convergent nodes)/N
N (3, 3)-robust (4, 1)-robust (4, 3)-robust
10 0.65 0.38 0.01
14 0.68 0.43 0.07

(a) G (b)

Figure 11: (a) (2, 2)-robust graph. (b) Number of non-convergent nodes increases with F.

5. Discussion and Conclusion

In traditional designs of resilient algorithms for multiagent systems, the primary focus has been characterizing
conditions, such as network graph robustness and connectivity, guaranteeing the network objective despite misbehav-
ing agents. However, in cases where these conditions are not satisfied, assessing the network’s partial performance
becomes challenging. Our novel concept of non-convergent nodes provides a quantifiable measure of how worse a
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network with suboptimal robustness might perform, or in other words, how non-resilient the networks can be. For the
WMSR resilient consensus algorithm, we demonstrated that graphs with the same (r, s)-robustness value can exhibit
varying degrees of non-resilience, as evidenced by different numbers of non-convergent nodes. By departing from the
conventional binary perspective of network resilience–hinging on either success or failure (network objective achieved
or not achieved, respectively) in the face of misbehaving agents–our approach offers a more comprehensive view of
network resilience. There are several promising directions for future research. One area of focus is characterizing
non-convergent nodes and relating them to other graph parameters. For example, our experiments revealed that nodes
with the smallest degrees often tend to be non-convergent, which aligns with expectations. However, we also observed
instances where higher-degree nodes were non-convergent, even when smaller-degree nodes were not. For example,
consider the graph in Figure 12, which is (2, 2)-robust but not (3, 3)-robust. We identified the non-convergent nodes as
v2, v5, v7 (highlighted in red) under the F-total model with F = 3. Notably, node v5 is non-convergent despite having
a degree of 6, while nodes v1 and v8, each with a degree of 4, are not non-convergent. This suggests a more complex
relationship between non-convergent nodes and node degrees that warrants further exploration.

Figure 12: A (2, 2)-robust graph with non-convergent nodes (red) under the F-total model with F = 3.

Similarly, there are other notions of node resilience, such as bribing resistance [41], and it will be interesting
to explore connections between them. Another limitation of the current work lies in the computational challenges
of identifying non-convergent nodes. This complexity arises from the inherent connection between non-convergent
nodes and (r, s)-robustness, a problem known to be coNP-complete [42]. Efficient methods and analytical tools for
the computation of non-convergent nodes are currently lacking, and we aim to address these gaps in future work
by leveraging recent advances in computing (r, s)-robustness in graphs (e.g., [43, 44, 45]). Additionally, while our
approach was specifically applied to the WMSR algorithm, it has the potential for broader application across other
algorithms and problem settings. In conclusion, this work opens avenues for assessing the network performance
under sub-optimal robustness conditions, enabling more thorough evaluations and enhancing the design of resilient
multiagent systems.
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