Linear Algebra

Vectors and Matrices

This is an elementary introduction to vectors and matrices.
A vector is simply an array of numbers written as

$$
\left[\begin{array}{l}
1 \tag{1}\\
2 \\
3
\end{array}\right]
$$

where a matrix is written as a collection of arrays, i.e.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \tag{2}\\
4 & 5 & 6
\end{array}\right]
$$

In (1), we have a single column of 3 numbers, whereas in (2) we have two rows of 3 numbers in each row. In general we could have a vector of m elements written as

$$
\vec{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

are a matrix of m rows and n columns in which we would have

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right]
$$

where $a_{m n}$ is the element in the $m^{\text {th }}$ row and $n^{\text {th }}$ column.
For those that have seen vectors in either Physics or maybe Calc 3, another way to write them is

$$
\vec{u}=<u_{1}, u_{2}, u_{3}>
$$

A natural question is: "Can we add, subtract and multiply both vectors and matrices?"

Vector Addition

To add vectors, we simply add component by component. So, if

$$
\vec{u}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]
$$

then $\vec{u}+\vec{v}$ becomes

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
1+4 \\
2+5 \\
3+6
\end{array}\right]=\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right]
$$

Subtraction follows similarly, $\vec{u}-\vec{v}$

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
1-4 \\
2-5 \\
3-6
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-3 \\
-3
\end{array}\right]
$$

Vector Scalar Multiplication

To scale a vector, we simply multiply each component by the scale factor. So,

$$
6 \vec{u}=6\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
6 \\
12 \\
18
\end{array}\right] \quad-5 \vec{v}=-5\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
-20 \\
-25 \\
-30
\end{array}\right]
$$

we can also perform both simultaneously, $a \vec{u}+b \vec{v}$ would produce

$$
\left[\begin{array}{c}
a+4 b \\
2 a+5 b \\
3 a+6 b
\end{array}\right]
$$

Matrix Addition(Subtraction)

To add matrices, again, we simply add(subtract) component by component. So, if

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad B=\left[\begin{array}{rrr}
-1 & 5 & 2 \\
4 & -3 & 9
\end{array}\right]
$$

then $A+B$ would produce

$$
\left[\begin{array}{ccc}
1+(-1) & 2+5 & 3+2 \\
4+4 & 5-3 & 6+9
\end{array}\right]=\left[\begin{array}{ccc}
0 & 7 & 5 \\
8 & 2 & 15
\end{array}\right]
$$

whereas $A-B$ would produce

$$
\left[\begin{array}{ccc}
1-(-1) & 2-5 & 3-2 \\
4-4 & 5-(-3) & 6-9
\end{array}\right]=\left[\begin{array}{ccc}
2 & -3 & 1 \\
0 & 8 & -3
\end{array}\right]
$$

Matrix Scalar Multiplication

For matrices, we simply multiply each component by the scale factor. So,

$$
-2 A=-2\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{rrr}
-2 & -4 & -6 \\
-8 & -10 & -12
\end{array}\right]
$$

Matrix Multiplication

In order to multiply two matrices, it is important that the size of the matrices be of a certain dimension. For example, if

$$
A_{m n} B_{k l},
$$

then we require that $n=k$ and the dimension of the new matrix is $m \times l$. Consider the 2×2 matrix and the 2×3 matrix

$$
A:=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad B:=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]
$$

As A_{22} and B_{23} we can multiply $A B$ but not $B A$. Thus, the command

$$
A B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]=\left[\begin{array}{lll}
1 \cdot 1+2 \cdot 2 & 1 \cdot 3+2 \cdot 4 & 1 \cdot 5+2 \cdot 6 \\
3 \cdot 1+4 \cdot 2 & 3 \cdot 3+4 \cdot 4 & 3 \cdot 5+4 \cdot 6
\end{array}\right]
$$

giving

$$
A B=\left[\begin{array}{rrr}
5 & 11 & 17 \\
11 & 25 & 39
\end{array}\right]
$$

Determinants

To calculate determinants matrices must be square i.e. an $n \times n$ matrix. For 2×2 if A is given by

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then the determinant of A denoted by $\operatorname{det} A$ is given by

$$
\operatorname{det} A=a d-b c
$$

Inverses

Given an $n \times n$ matrix, if a second matrix B exists such that $A B=I$, the identity matrix. The identity matrix is given by

$$
I=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

If the matrix B exists, it's called the inverse. Often this is denoted by A^{-1}. For 2×2 matrices, this is given by

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

For example, if

$$
A=\left[\begin{array}{ll}
5 & 2 \\
1 & 1
\end{array}\right]
$$

then

$$
A^{-1}=\frac{1}{3}\left[\begin{array}{rr}
1 & -2 \\
-1 & 5
\end{array}\right]
$$

A quick calculation show that

$$
\left[\begin{array}{ll}
5 & 2 \\
1 & 1
\end{array}\right] \cdot \frac{1}{3}\left[\begin{array}{rr}
1 & -2 \\
-1 & 5
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Eigenvalues and Eigenvectors

Given a square matrix A, if a vector \vec{v} and scalar λ exists such that

$$
A \vec{v}=\lambda \vec{v}
$$

then these are called eigenvector and eigenvalues. In order to calculate the eigenvalues, it is necessary to calculate

$$
\begin{equation*}
\operatorname{det}|\lambda I-A|=0 \tag{3}
\end{equation*}
$$

This will give rise to a polynomial for λ. For a given λ, (3) will give rise to the associated eigenvector. Consider the following example. If

$$
A=\left[\begin{array}{rr}
2 & 2 \\
5 & -1
\end{array}\right]
$$

then

$$
\operatorname{det}|\lambda I-A|=\left|\begin{array}{cc}
\lambda-2 & -2 \\
-5 & \lambda+1
\end{array}\right|=(\lambda+3)(\lambda-4)=0
$$

giving rise to the eigenvalues $\lambda=-3,4$.

If $\lambda=-3$ then

$$
\left[\begin{array}{cc}
-3-2 & -2 \\
-5 & -3+1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=0
$$

or

$$
\left[\begin{array}{ll}
-5 & -2 \\
-5 & -2
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=0
$$

Thus one possible eigenvector is

$$
\vec{u}=\left[\begin{array}{r}
2 \\
-5
\end{array}\right] .
$$

If $\lambda=4$ then

$$
\left[\begin{array}{cc}
2 & -2 \\
-5 & -5
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=0
$$

Thus one possible eigenvector is

$$
\vec{u}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

