Essential Components of

Mathematics Intervention

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

www.sarahpowellphd.com
srpowell@utexas.edu
@sarahpowellphd

$|x| A+H$

Introduce yourself.
Describe your role as an educator.
Describe the mathematics you support.

Share your Twitter handle!

Schedule for Today

9:00-10:25	- Necessity for providing mathematics intervention - Focusing on critical mathematics content - Designing your instructional platform - Explicit instruction
10:15-10:20	BREAK
10:20-11:30	- Precise mathematical language - Multiple representations
11:30-1:00	LUNCH
1:00-1:55	- Fluency and computation - Word-problem solving (attack strategies)
1:55-2:00	BREAK
2:00-3:00	- Word-problem solving (schemas) - Wrap-up and questions

MATH INTERVENTION

For students experiencing math difficulty

With a schoolidentified disability

Persistent math difficulty

Tier 2

Tier 3

Secondary

Targeted

Intensive

Special Education

Why is mathematics intervention necessary?

Broad math in preK predicted K broad math

Broad math in prek predicted grade 10 broad math

| <Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | >Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Starr etal. (2013) ee (2012) cohort 1 Ibertus et al. (2013) etal. (2013) Watts et al. (2014) Jordan et al. (2007) Navarro et al. (2012) Passolunghi et al. (2012) Stock et al. (2009) cohor Aunola et al. (2004) Krajewski et al. (2009a) Bodovski \& Farkas (2007) diperna et al. (2007) DiPerna et al. (2007)

Jordan et al. (2009) Jordan et al. (2009) Missall et al. (2012)
Claessens et al. (2009) Judge \& Watson (2011) Lee (2012) cohort 2 Morgan et al. (2009) Claessens \& Engel (2013) Baglici et al. (2010) Baglici et al. (2010) Lesoete et al. (2012) LeFevre et al. (2010) tock et al. (2010) achance \& Mazzocco (2006) Mazzocco \& Thompson (2 Mazzocco et al. (2011 a) Desoete \& Gregoire (2006) Locuniack \& Jordan (2008) Stock et al. (2009) cohort 2 Vukovic (2012)
Krajewski \& Schneider (2009b Geary et al. (2012) Geary (2011)
Geary et al. (2013)
riso-van den Bos et al. (2015) Desoete et al. (2009)
Bailey, Watts, et al. (2014) cohort Bailey, Siegler, et al. (2014) Bailey, Watts, et al. (2014) cohort 2 Morgan et al. (2011) Jordan et al. (2013) Reigosa-Crespo et al. (2013) Siegler et al. (2012) cohort 1 siegler et al. (2012) cohort 2 Hansen et al. (2015) ailey et al. (2012) Primi et al. (2010) Wilkins \& Ma (2002) Lee (2012) cohort 3 Spielhagen (2006) Dougherty (2003) Britt \& Irwin (2008)

| $<$ Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I P F W S F W S F W S F W S F W S F W S F W S F W S F W S F W F S W S F W S F W S

Counting in K predicted grade 1 broad math

Broad math in K predicted grade 8 broad math

K math accurately predicted math performance below $10^{\text {th }}$ percentile in grades 2 and 3 with 84\% correct classification

| <Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | >Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Starr et al. (2013) Lee (2012) cohort 1 Libertus et al. (2013) Mazzocco et al. (2011 Watts et al (2014) Jordan et al. (2007) Navarro et al. (2012) Passolunghi et al. (2012) Stock et al. (2009) coho Aunola et al. (2004) Krajewski et al. (2009a) Bodovski \& Farkas (2007) DiPerna et al (2007) Jiperna et al. (2007) Jordan et al. (2009) Missall et al. (2012)

Claessens et al. (2009) udge $\&$ Watson (2011) Lee (2012) cohort 2 Morgan et al. (2009) Claessens \& Engel (20 Bagliciet al. (2010) Desoete et al. (2012) LeFevre et al. (2010) Stock et al. (2010) lock et al. (2010) lachance \& Mazzocco (2006) Mazocco \& Thompson (20 Mazzocco et al. (2011a) Desoete \& Gregoire (2006) Locuniack \& Jordan (2008) Stock et al. (2009) cohort 2 vukovic (2012)
Krajewski \& Schneider (2009b) Geary et al. (2012) Geary (2011) Geary et al. (2013) Friso-van den Bos et al. (2015) Desoete et al. (2009) Bailey, Watts, et al. (2014) cohort Bailey, Siegler, et al. (2014) Bailey, Watts, et al. (2014) cohort 2 Morgan et al. (2011) Jordan et al. (2013) Reigosa-Crespo et al. (2013) Siegler et al. (2012) cohort 1 Segler et a. (2012) (2013) legler et al. (2012) coh Hansen et al. (2015) Bailey et al. (2012) Primi et al. (2010) Wilkins \& Ma (2002) Lee (2012) cohort 3 Spielhagen (2006) Dougherty (2003) Britt \& Irwin (2008)

| $<$ Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I P F W S F W S F W S F W S F W S F W S F W S F W S F W S F W F S W S F W S F W S

Addition influenced arithmetic with increasing importance from grades 1 to 5

Grade 1 arithmetic predicted arithmetic at grades 2, 3, and 4

> Grade 1 broad math predicted broad math at grades 3, 5 , and 10

Fractions at 10-12 years old predicted broad math 5 years later
Counting and comparison in grades 2 or 4 predicted broad math 1 year later

Broad math in grade 7 predicted broad math in grade 8

Broad math in grade 8 predicted completion of 4 -year college degree

Students who took algebra in grades 8 took more advanced math courses and enrolled in 4-year colleges more often than students who took algebra in grade 9

Numeracy measured in adolescence impacted hourly earnings 7 to 15 years later

Mathematics in preschool predicts later mathematics

Mathematics in kindergarten predicts later mathematics

Mathematics in elementary school predicts later mathematics

Mathematics in middle school predicts later mathematics

Mathematics in high school predicts later outcomes

Computation

Problem Solving

How do you see earlier math relating to later math?

DESIGN

DELIVERY

DESIGN

Determine critical content

Identify evidence-based practices

Create the instructional platform

Determine critical content

Fluency

Place Value

xA+

Problem Solving

Interpret and
compute
quotients of fractions, and solve word problems involving division of fractions by fractions...

Solve realworld and mathematical problems leading to two linear equations in two variables.

Use
Solve multistep word problems posed with whole numbers and having wholenumber answers using the four operations.. and division within 100 to solve word problems ${ }^{*}$
 multiplication

Solve realworld and mathematical problems involving the four operations with rational numbers.

Use addition
and
subtraction within 100 to solve oneand two-step word problems

Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators

Comparing and Ordering Numbers

(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system. The student is expected to:
(G) compare sets of objects up to at least 20 in each set using comparative language.
(H) use comparative language to describe two numbers up to 20 presented as written numerals.
(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(E) use place value to compare whole numbers up to 120 using comparative language.
(F) order whole numbers up to 120 using place value and open number lines.

(G) represent the comparison of two

 numbers to 100 using the symbols $>,<$, or(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(D) use place value to compare and order whole numbers up to 1,200 using comparative language, numbers, and symbols (>, <, or =).
(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers and understand relationships related to place value. The student is expected to:
(D) compare and order whole numbers up to 100,000 and represent comparisons using the symbols $>$, $<$, or $=$.

An important subset of the major work in grades K-8 is the progression that leads toward middle school algebra.

K	1	2	3	4	5	6	7	8
Know number names and the count sequence Count to tell the number of objects Compare numbers Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from Work with numbers 11 19 to gain foundations for place value	Represent and solve problems involving addition and subtraction Understand and apply properties of operations and the relationship between addition and subtraction Add and subtract within 20 Work with addition and subtraction equations Extend the counting sequence Understand place value Use place value understanding and properties of operations to add and subtract Measure lengths indirectly and by iterating length units	Represent and solve problems involving addition and subtraction Add and subtract within 20 Understand place value Use place value understanding and properties of operations to add and subtract Measure and estimate lengths in standard units Relate addition and subtraction to length	Represent \& solve problems involving multiplication and division Understand properties of multiplication and the relationship between multiplication and division Multiply \& divide within 100 Solve problems irvolving the four operations, and identify \& explain patterns in arithmetic Develop understanding of fractions as numbers Solve problems irwolving measurement and estimation of intervals of time, liquid volumes, \& masses of objects Geometric measurement: understand concepts of area and relate area to multiplication and to addition	Use the four operations with whole numbers to solve problems Generalize place value understanding for multi-digit whole numbers Use place value understanding and properties of operations to perform multidigit arithmetic Extend understanding of fraction equivalence and ordering Build fractions from unit fractions by applying and extending previous understandings of operations Understand decimal notation for fractions, and compare decimal fractions	Understand the place value system Perform operations with multi-digit whole numbers and decimals to hundredths Use equivalent fractions as a strategy to add and subtract fractions Apply and extend previous understandings of multiplication and division to multiply and divide fractions Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition Graph points in the coordhate plane to solve real-world and mathematical problems*	Apply and extend previous understandings of multiplication and division to divide fractions by fractions Apply and extend previous understandings of numbers to the system of rational numbers Understand ratio concepts and use ratio reasoning to solve problems Apply and extend previous understandings of arithmetic to algebraic expressions Reason about and solve one-variable equations and inequalities Represent and analyze quantitative relationships between dependent and	Apply and extend preinous understanding of operations with fractions to add, subtract, muttiply. and divide rational numbers Analyze proportional relationships and use them to solve real-world and mathematical problems Use propertios of operations to generate equivalent expressions Solve real-life and mathematical problems using numerical and algebraic expressions and equations	Work with radical and integer exponents Understand the connections between proportional relationships, lines, and linear equations ${ }^{\text {** }}$ Analyze and sohe linear equations and pairs of simultaneous linear equations Define, evaluate, and compare functions Use functions to model relationships between quantities

 listed here are a subset of those designated as major in the assessment consortia's draft documents.
** Depends on similarity ideas from geometry to show that slope can be defined and then used to show that a linear equation has a graph which is a straight line and conversely.

Table A.3. Grades 6-8 Curriculum Focal Points and Connections Compared with the Expectations of the Content Standards in Principles and Standards for School Mathematics

Expectations of the Content Standards

Number and Operations, Grades 6-8

Work flexibly with fractions, decimals, and percents to solve problems

Compare and order fractions, decimals, and percents efficiently and find their approximate locations on a number line

- Develop meaning for percents greater than 100 and less than 1

Understand and use ratios and proportions to represent quantitative relationships

- Develop an understanding of large numbers [identified in Grades 4 and 5 Curriculum Focal Points] and recognize and appropriately use exponential, scientific, and calculator notation
- Use factors, multiples, prime factorization, and relatively prime numbers to solve problems
- Develop meaning for integers and represent and compare quantities with them

Understand the meaning and effects of arithmetic operations with fractions, decimals, and integers

Use the associative and commutative properties of addition and multiplication and the distributive property of multiplication over addition to simplify computations with integers, fractions, and decimals

Understand and use the inverse relationships of addition and subtraction, multiplication and division, and squaring and finding square roots to simplify computations and solve problems

Select appropriate methods and tools for computing with fractions and decimals from among mental computation, estimation, calculators or computers, and paper and pencil, depending on the situation, and apply the selected methods

DESIGN

4ns

What is the critical content for your students?

DESIGN

Determine critical content

Identify evidence-based practices

evidence-based strategy

A method or strategy that has shown consistent and positive results
evidence-based intervention
evidence-based strategy
promising practice

A method or strategy that has shown a positive result

evidence-based intervention
evidence-based strategy
promising practice

DESIGN

Which evidence-based practices do you rely on for mathematics intervention?

DESIGN

Determine critical content

Identify evidence-based practices

Create the instructional platform

1 Systematic Instruction: Provide systematic instruction during intervention to develop student understanding of mathematical ideas.

- Show More

4 Number Lines: Use the number line to facilitate the learning of mathematical concepts and procedures, build understanding of

STRONG EVIDENCE grade-level material, and prepare students for advanced mathematics.

2 Mathematical Language: Teach clear and concise mathematical language and support students' use of the language to help students effectively communicate their understanding of mathematical concepts.

- Show More

5 Word Problems: Provide deliberate instruction on word problems to deepen students' mathematical understanding and support their capacity to apply mathematical ideas.

- Show More

Representations: Use a wellchosen set of concrete and semiconcrete representations to support students' learning of mathematical concepts and procedures.

- Show More

Timed Activities: Regularly include timed activities as one way to build fluency in mathematics.

[^0]-Show More

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

DESIGN

Determine critical content

Identify evidence-based practices Create the instructional platform

For your mathematics intervention:
(1) How will you determine critical content?
(2) How will you determine evidence-based practices?
(3) What do you plan to place into your instructional platform?

DESIGN

Determine

critical content

Identify evidencebased practices

Create the
instructional platform

DELIVERY

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit instruction

INSTRUCTIONAL STRATEGIES

Explicit Instruction

SUPPORTS

Explicit Instruction

MODELING
 Step-by-step explanation

PRACTICE

Guided practice
Planned examples Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Modeling is a dialogue between the teacher and students.

In Modeling, a teacher introduces or reviews mathematical content.

Modeling includes a step-by-step explanation of how to do a mathematical problem.

A teacher may do 1 modeled problem or several.
"Today, we are learning about division. This is important because sometimes you have to share objects or things with your friends."
"Let's solve this problem. What's the problem?
"To solve 26 plus 79 , first decide about the operation. Should we add, subtract, multiply, or divide?"
"Add."
"How did you know we want to add?"
"26 plus 79."

79 $+\quad$

"The plus sign tells us we want to add. To add, let's use the partial sums strategy. What strategy?"
"Partial sums."

"With the partial sums strategy, we start adding in the greatest place value. What's the greatest place value in this problem?"
"The tens."
"So, let's add the tens. What's 20 plus 70?"
"90."
" 20 plus 70 equals 90 . Let's write 90 right here below the equal line. What will we write?"

" 90 is the partial sum when you add the tens. What does 90 represent?"
"Now, let's add the

> "It's the partial sum of adding 20 plus. $70 . "$ ones. What should we add?"
" 6 plus 9."
" 6 plus 9 equals what?"
"Let's write 15 below the 90. Where do we write the 15?"
"15 is the partial sum when you add the ones. Now, let's add the partial sums together. What will we add?"
" 90 plus 15."
"What's 90 plus 15 ?"
"How did you add those numbers?"
"I added 90 plus 10 then added 5 more."
"So, when you add 26 plus 79 , the sum is 105. Who can share how we solved this problem?"
"We used the partial sums strategy. We added the tens then added the ones. Then we added the partial sums."
"105."

Modeling needs to include planned examples. These examples should be sequenced so easier skills lead to more difficult skills.

Planned examples in Modeling may also include worked examples - both correct and incorrect worked examples.

MODELING
 Step-by-step explanation

 PRACTICE

 PRACTICE
 Guided practice
 Independent practice

 SUPPORTS

 SUPPORTS
 Ask high-level and low-level questions

 Eliciting frequent responses

 Eliciting frequent responses
 Providing affirmative and corrective feedback

Sometimes, people refer to the modeling as "I Do." I (Sarah) think that misrepresents modeling. What do you think?

MODELING | PRACTICE |
| :---: |
| Step-by-step explanation |
| Guided practice |

Planned examples Independent practice
SUPPORTS
Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Practice continues as a dialogue between the teacher and students.

During Practice, students have multiple opportunities to practice problems with varying levels of teacher support.

MODELING PRACTICE
 Step-by-step explanation

 Planned examples Independent practice

 Planned examples Independent practice

 SUPPORTS

 SUPPORTS
 Ask high-level and low-level questions

 Eliciting frequent responses

 Eliciting frequent responses
 Providing affirmative and corrective feedback

"Let's work on a problem together."

Guided practice is practice in which the teacher and students practice problems together.

MODELING
 Step-by-step explanation
 PRACTICE
 Guided practice
 Planned examples
 Independent practice
 SUPPORTS
 Ask high-level and low-level questions
 Eliciting frequent responses
 Providing affirmative and corrective feedback

"Now, you'll practice a Independent practice is problem on your own. Don't forget to use your attack strategy."
practice in which the students practice independently with teacher support.

MODELING
 Step-by-step explanation
 PRACTICE
 Guided practice
 Independent practice

 SUPPORTS

 SUPPORTS}

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback
I (Sarah) believe that guided practice is essential as a scaffold for students. Would you say your students participate in enough guided practice?

MODELING
 Step-by-step explanation
 Guided practice Independent practice

 \section*{PRACTICE}

 \section*{PRACTICE}

 SUPPORTS

 SUPPORTS
 Ask high-level and low-level questions

 Eliciting frequent responses

 Eliciting frequent responses
 Providing affirmative and corrective feedback

These Supports should be used in both Modeling and Practice.

During Modeling and
Practice, it is essential to engage students and check for understanding.

MODELING
 Step-by-step explanation
 Guided practice

 \section*{PRACTICE}

 \section*{PRACTICE}

 SUPPORTS

 SUPPORTS

 Ask high-level and low-level questions

 Ask high-level and low-level questions}

Eliciting frequent responses
Providing affirmative and corrective feedback
"What is 7 times 9?"

MODELING
 Step-by-step explanation

 \section*{Planned examples}

 \section*{Planned examples}
 Guided practice

 \section*{PRACTICE}

 \section*{PRACTICE}

 SUPPORTS

 SUPPORTS

 Ask high-level and low-level questions

 Ask high-level and low-level questions}

Eliciting frequent responses

Providing affirmative and corrective feedback

"Why do you use zero pairs?"
"Because a positive 1 and a negative 1 equal 0 . I use the zero pair to help me subtract."

MODELING
 Step-by-step explanation
 Guided practice
 Independent practice

 \section*{PRACTICE}

 \section*{PRACTICE}

 SUPPORTS

 SUPPORTS

 Ask high-level and low-level questions

 Ask high-level and low-level questions

 Eliciting frequent responses

 Eliciting frequent responses

 Providing affirmative and corrective feedback

 Providing affirmative and corrective feedback}

During Modeling and Practice, students should frequently respond. The frequent responses keeps student attention and keeps student learning active.

MODELING
 Step-by-step explanation
 Guided practice Independent practice

 \section*{PRACTICE}

 \section*{PRACTICE}

 SUPPORTS

 SUPPORTS}

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

- Oral
- Written
- With manipulatives
- With drawings
- With gestures

MODELING
 Step-by-step explanation
 Planned examples Independent practice

 SUPPORTS

 SUPPORTS
 Ask high-level and low-level questions

 Eliciting frequent responses

 Eliciting frequent responses

 Providing affirmative and corrective feedback

 Providing affirmative and corrective feedback}

During Modeling and Practice, students should receive immediate feedback on their responses.
Students should receive affirmative and (when necessary) corrective feedback.

MODELING
 Step-by-step explanation
 Guided practice

 \section*{PRACTICE}

 \section*{PRACTICE}

 SUPPORTS

 SUPPORTS
 Ask high-level and low-level questions
 Eliciting frequent responses
 Providing affirmative and corrective feedback

"Nice work using your word problem attack
strategy."

MODELING
 Step-by-step explanation
 Guided practice

 \section*{PRACTICE}

 \section*{PRACTICE}

 SUPPORTS

 SUPPORTS
 Ask high-level and low-level questions
 Eliciting frequent responses
 Providing affirmative and corrective feedback

"Let's look at that
again. Tell me how you

added in the hundreds column."

Modeling Practice

Supports

Introduction of material
Modeling

Supports

Review of material
Modeling Practice

Supports

MODELING
Step-by-step explanation

Planned examples Independent practice

PRACTICE

Guided practice

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

What's your strength with modeling? What could you improve?

What's your Which strength with support is a practice? What would you improve?

Which support could you improve? Why would this be important?

Explicit Instruction

MODELING
 Step-by-step explanation

PRACTICE

Guided practice
Planned examples Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Mathematical Language

1. Some math terms are shared with English but have different meanings

right
degree
2. Some math terms are shared with English but have different meanings
3. Some math words are shared with English with similar meanings (but a more precise math meaning)

4. Some math terms are shared with English but have different meanings
5. Some math words are shared with English with similar meanings (but a more precise math meaning)
6. Some math terms are only used in math

7. Some math terms are shared with English but have different meanings
8. Some math words are shared with English with similar meanings (but a more precise math meaning)
9. Some math terms are only used in math
10. Some math terms have more than one meaning
\square

Rubenstein \& Thompson (2002)

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
variable vs.
variably cloudy
6. Some math terms are shared with English but have different meanings
7. Some math words are shared with English with similar meanings (but a more precise math meaning)
8. Some math terms are only used in math
9. Some math terms have more than one meaning
10. Some math terms are similar to other content-area terms with different meanings
11. Some math terms are homographs

eight vs. ate

sum vs. some

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
factor vs. multiple
hundreds vs. hundredths
```
numerators vS. denominator
```

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings

mesa vs.

tabla

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
10. Some math terms are shared with English but have different meanings
11. Some math words are shared with English with similar meanings (but a more precise math meaning)
12. Some math terms are only used in math
13. Some math terms have more than one meaning
14. Some math terms are similar to other content-area terms with different meanings
15. Some math terms are homographs
16. Some math terms are related but have distinct meanings
17. An English math term may translate into another language with different meanings
skip count vs. multiples
18. English spelling and usage may have irregularities
19. Some math concepts are verbalized in more than one way
20. Some math terms are shared with English but have different meanings
21. Some math words are shared with English with similar meanings (but a more precise math meaning)
22. Some math terms are only used in math
23. Some math terms have more than one meaning
24. Some math terms are similar to other content-area terms with different meanings
25. Some math terms are homographs
26. Some math terms are related but have distinct meanings
27. An English math term may translate into another language with different meanings
28. English spelling and usage may have irregularities

rhombus vs. diamond

10. Some math concepts are verbalized in more than one way
11. Informal terms may be used for formal math terms

Use formal math language

Use terms precisely

$|x A+\cdots|$

What number is in the tens place?

What digit is in the tens place? What is the value of the digit in the tens place?

135

Why this is important...

- A number refers to the entire amount.
- The 3 in the tens place value is not a number, but rather a digit in the number 135 .
- Reinforces conceptual understanding of place value.
- Emphasizes that 3 is part of the number 135 with a value of 30 .

The alligator eats the bigger number

is less than OR

 is greater thanWhy this is important...

- Students must learn how to read and write the inequality symbols.
- Students must learn to read equations correctly from left to right because < and > are two distinct symbols.

Four point seven Four point oh seven

$$
\begin{array}{r}
4.7 \\
4.07
\end{array}
$$

Why this is important...

- Accurately shares the magnitude of the decimal.
- Emphasizes place value.

flips, slides, turns

reflections, translations, rotations

Why this is important...

- The informal language helps children remember the actions, but this vocabulary is not used on assessments.
- Use the formal mathematical terms.

What are examples of,

 "Instead of __, Say ___?"Mathematical Language

Use formal math language

Use terms precisely

$$
\begin{array}{|cc|}
\hline \text { Improper fraction } & \text { Proportion } \\
\frac{8}{5} & \frac{2}{5}=\frac{8}{20} \\
\text { Mixed number } & \text { Ratio } \\
1 \frac{3}{5} & 4: 3 \\
\text { Proper fraction } & \text { Unit fraction } \\
\frac{2}{9} & \frac{1}{6} \\
\hline
\end{array}
$$

Equation $9 x-4=7 x$
Expression 9x - 4
Formula $a^{2}+b^{2}=c^{2}$
Function $\quad f(x)$
Inequality $9 x-4>6 x$

```
Integers Irrational numbers Natural numbers
Rational numbers Whole numbers
```


Quadrilaterals

Kite

Parallelogram

Rectangle

Rhombus

Square

Trapezoid

Acute angle

Obtuse angle $\rightarrow \overrightarrow{\text { angle }}$

Straight angle

Acute triangle

Obtuse triangle

Right triangle

Equilateral triangle

 ΔIsosceles triangle

Scalene triangle

Adjacent angles

Alternate angles

Complementary angles

Corresponding angles

Supplementary angles

$$
=180^{\circ}
$$

Vertical angles

Congruent figures
$\square_{\text {Similar figures }}^{\square}$

I

And Which terms do your students not use precisely?

Use formal math language

Use terms precisely

1. Use explicit instruction

Over $\mathbf{1 5 0 , 0 0 0}$ in Print
 explicit

Effective and Efficient Teaching

ANITAL. ARCHER
CHARLES A. HUGHES

2. Use graphic organizers

Dunston \& Tyminski (2013)
2. Use graphic organizers

Dunston \& Tyminski (2013)

3. Have students create vocabulary cards

4. Equal: having the same amount or value.

4. Have students create glossaries

Integer Definitions

Zero Pairs
A positive and negative cancel one another;

Positive
A number that is greater than zero.

Absolute
Value
The distance of a number from zero on a number line; shown as ||

Negative
A number that is
less than zero. Identified by a minus sign.

Numerator: how many parts of the whole

Ex. 10
Odd number: a number not divided evenly by 2

- Ex. 1, 3, 5, 7, 9....

Percent: a specific number in comparison to 100

- 74\%

Polygon: any enclosed shape that is made up of 3 or more straight lines

5. Create a word wall

6. Preview vocabulary

Bay-Williams \& Livers (2009)

7. Cluster vocabulary

	Length	Weight
Meaning	How long something is	How heavy something is
Visual	1 Yard	2000 pounds $=1$ ton

Livers \& Bay-Williams (2014)

7. Cluster vocabulary

Rating	Word	Definition	Synonym(s)	Example	Sample Problem
2	$e x)^{\text {(es) }}$	a mathematical phrase combining operations, numbers and/or variables.	phrase algebraic expression	$\begin{array}{cc} 6 & \text { "'equal: } \\ 6 n & \text { noeq: } \\ 6+n & \text { sign: } \end{array}$	Lucia earns \$8 per har for babysilting and gets a $\$ 5$ tip. Write an expression to represent the amount she would earn if she worked for x hours.
2	$\sqrt{2 j 2002}$	a quantity that can change ortake many values. (refers to the letter orsymbol cepresenting the quantity)	unknown		The variable x vepresents the number of hous charlie wors in a week. Write an expression to vepresent his earnings if he earns $\$ 9$ per
1	$p^{100 e^{3 x}}$	the result when two or more numbers are multiplied	total answer	$\begin{array}{r} 3 \times 2=\begin{array}{c} 1 \\ \uparrow \\ \text { product } \end{array} \end{array}$	The product of 6 and a number is 24 . What is the number?
3		the result of a division crefers to the number of times the divisor divides the dividend)	answer	$\begin{aligned} & 18 \div 2=9 \\ & 2 \sqrt{18}<\text { quotent } \end{aligned}$	Estimate the quotient when 365 is divided by 12.

8. Use mnemonics

Riccomini et al. (2015)

VOCABULARY CROSSWORD
ANSWERKEY

10. Use technology

una figura bidimensional (plana) con 4 lados, exactamente 1 par de los cuales son paralelos

Math Learning Center

Math Lingo

What are other ways to support learning mathematics vocabulary?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Multiple Representations

$x A+1 \dot{1}$

Two-dimensional images

Modeling Fractions with Cuisenaire Rods

Two-dimensional images

Numerals and symbols and words

$$
2+8=10 \quad 34=3 \text { tens and } 4 \text { ones }
$$

$$
x-6=8
$$

$$
4,179
$$

$$
\begin{array}{r}
569 \\
\hline
\end{array}
$$

If you are left handed:

 What's one of your favorite hands-on manipulatives?If you are right handed: What's one of your favorite virtual manipulatives?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building

Building Fluency

- Fluency is doing mathematics easily and accurately.
- Fluency in mathematics makes mathematics easier.
- Fluency provides less stress on working memory.
- Fluency helps students build confidence with mathematics.

- With fluency, it is important to emphasize both conceptual learning and procedural learning.
- Fluency is not strictly procedural!

Addition

100 addition basic facts

- Single-digit addends sum to a single- or double-digit number

5 (addend)
$\left(\begin{array}{l}\text { (addend) } \\ +9 \\ (\text { sum })\end{array}\right.$

Addition: Total (Part-Part-Whole, Combine)

Count one set, count another set, put sets together, count sum

$$
2+3=5
$$

Addition: Join (Change Increase)

Start with a set, add the other set, count sum

$$
2+3=5
$$

Total

Parts put together into a total

- Karly saw 4 cardinals and 5 blue jays. How many birds did Karly see?

$$
4+5=?
$$

Change

An amount that increases or decreases

- Premila had \$4. Then they earned \$3 for cleaning their room. How much money does Premila have now?

$$
4+3=?
$$

Total Versus Change (Join)

$$
3+9=
$$

If you have brown eyes: What's a Total story to show addition?
If you don't have brown eyes: What's a Change/Join story to show addition?

Subtraction

100 subtraction basic facts

- Subtrahend and difference are single-digit numbers and minuend is single- or doubledigit number

$$
\begin{array}{r}
16 \\
-\quad 8 \\
\hline 8
\end{array}
$$

(minuend)
(subtrahend)
(difference)

Subtraction: Separate (Change Decrease)

Start with a set, take away from that set, count difference

$$
5-3=2
$$

Subtraction: Difference (Compare)

Compare two sets, count difference

$$
5-3=2
$$

Change

An amount that increases or decreases

- Bronwyn had 9 cookies. Then they ate 2 of the cookies. How many cookies does Bronwyn have now?

$$
9-2=?
$$

Difference

Greater and less amounts compared for a

- Rachel has 9 apples. Jodie has 4 apples. How many more apples does Rachel have? (How many fewer does Jodie have?)

$$
9-4=
$$

Change (Separate) versus Difference

$$
9-5=
$$

If you weren't born in Texas: What's a Change/Separate story to show subtraction?
If you were born in Texas:
What's a Difference story to show subtraction?

Multiplication

100 multiplication basic facts

- Multiplication of single-digit factors results in a single- or double-digit product

Multiplication: Equal Groups

Show the groups, show the amount for each group, count product

$3 \times 2=6$

Multiplication: Equal Groups

Show the groups, show the amount for each group, count product

$3 \times 2=6$

Multiplication: Comparison

Show a set, then multiply the set

\section*{| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

$3 \times 2=6$

Equal Groups

Groups multiplied by number in each group for a product

- Rhiannon has 2 boxes of crayons. There are 12 crayons in each box. How many crayons does Rhiannon have altogether?
$2 \times 6=?$

Comparison

Set multiplied by a number of times for a product

- Vivienne picked 6 apples. Jessica picked 2 times as many apples as Vivienne. How many apples did Jessica pick?
$6 \times 2=$?

Equal Groups versus Comparison

$$
2 \times 5=
$$

If you have glasses on: What's an Equal Groups story to show multiplication? If you don't have glasses on: What's a Comparison story to show multiplication?

Division

90 division basic facts

- Divisor and quotient are single-digit numbers and dividend is single- or double-digit number

$$
8 \div 4=2
$$

(dividend) (divisor) (quotient)

Division: Equal Groups (Partitive Division)

Show the dividend, divide equally among divisor, count quotient

$$
8 \div 2=4
$$

©

Division: Equal Groups (Quotative Division)

Show the dividend, make groups of the divisor, count groups

Equal Groups

Groups multiplied by number in each group for a product

- Stefanie has 12 apples. She wants to share them equally among her 2 friends. How many apples will each friend receive?

$$
2 \times ?=12
$$

- Nicole has 12 apples. She put them into bags containing 6 apples each. How many bags did Nicole use?

$$
? \times 6=12
$$

Partitive versus Quotative

$$
12 \div 4=
$$

If you watched Friends:
What's a Partitive story to show division?

If you watched Seinfeld:
What's a Quotative story to show division?

- Build fluency with math facts.
- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor

$$
\begin{array}{r}
5 \\
+\quad 6 \\
+\quad 4 \times 7 \div 8 \\
\hline
\end{array}
$$

Addition	Subtraction
Multiplication	Division

What are other ways to practice fluency?

Addition	Subtraction
Multiplication	Division

- Build fluency with whole-number computation
15
1009
158
$+\quad 28$
$\begin{array}{r}-\quad 724 \\ \hline\end{array}$

$$
\begin{array}{r}
23250 \\
\times \quad 9 \\
\hline
\end{array}
$$

- Build fluency with rationalnumber computation

$$
\begin{array}{r}
1.47 .892 \\
+\quad 3.9 \quad \div \quad 0.14 \\
\hline
\end{array}
$$

$$
\frac{2}{3} \times \frac{3}{4} \quad \frac{9}{4}-\frac{3}{8}
$$

Addition Subtraction

Multiplication Division

- Build fluency with integer computation
$-135 \div 2=$
6

$$
x-12
$$

$$
\begin{aligned}
& -14-(-7)= \\
& \\
& +\quad-3.9 \\
& \hline
\end{aligned}
$$

Addition	Subtraction
Multiplication	Division

How will your support math
language in your intervention?

How will you use multiple
representations in your math intervention?

How will you build fluency in your intervention?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

Word-Problem Solving

Maya has 120 caramel apples to sell. Each caramel apple is covered with one topping.

- $\frac{1}{5}$ of the caramel apples are covered with peanuts.
- $\frac{1}{3}$ are covered with chocolate chips.
- $\frac{3}{10}$ are covered with coconut.
- The rest are covered with sprinkles.

How many caramel apples are covered with sprinkles?
A 100
B 33
C 25
D 20

Solve the problem

What skills are necessary to solve this problem?

Maya has 120 caramel apples to sell. Each caramel apple is covered with one topping.

- $\frac{1}{5}$ of the caramel apples are covered with peanuts.
- $\frac{1}{3}$ are covered with chocolate chips.
- $\frac{3}{10}$ are covered with coconut.
- The rest are covered with sprinkles.

How many caramel apples are covered with sprinkles?
A 100
B 33
C 25
D 20

How would you solve this problem? What skills are necessary to solve this problem?

Problem-Solving Difficulties

Teaching Problem Solving

Problem-Solving Difficulties

Reading the problem

Understanding the vocabulary

Identifying relevant information
Ignoring irrelevant information
Interpreting charts and graphs
Identifying appropriate operation(s)

Maya has 120 caramel apples to sell. Each caramel apple is covered with one topping.

- $\frac{1}{5}$ of the caramel apples are covered with peanuts.
- $\frac{1}{3}$ are covered with chocolate chips.
- $\frac{3}{10}$ are covered with coconut.
- The rest are covered with sprinkles.

How many caramel apples are covered with sprinkles?
A 100
B 33
C 25
D 20

Performing the computation(s)

What are additional areas of difficulty that we should add to this list?

1. Keywords tisc to operations

Lincoln had 8 pencils fewer than Roscoe. If Roscoe had 18 pencils, how many pencils did Lincoln have?

Lincoln had 8 pencils fewer than Roscoe. If Lincoln had 18 pencils, how many pencils did Roscoe have?

Key Words Used in Math Word Problems

Word-Problem Words Poster Set

Description of Single-Step Word Problems ($n=132$)

	Occurr sch		$\begin{array}{r} \mathrm{Ar} \\ \text { keyw } \end{array}$		Sch spe keyw				Keywor to co solu	$\begin{aligned} & \text { yed } \\ & \text { ect } \\ & \mathrm{n}^{\mathrm{a}} \\ & \hline \end{aligned}$
Schema	n	\%								
Total	27	20.5	26	96.3	23	88.5	5	19.2	21	80.8
Difference	17	12.9	17	100.0	14	82.4	2	11.8	12	70.6
Change	11	8.3	7	63.6	5	71.4	5	71.4	2	28.6
Equal groups	29	22.0	26	89.7	22	84.6	18	69.2	8	30.8
Comparison	10	7.6	9	90.0	9	100.0	4	44.4	5	55.6
Ratios or proportions	29	22.0	23	79.3	9	39.1	9	39.1	6	26.1
Product of measures	9	6.8	9	100.0	8	88.9	1	11.1	5	55.6
${ }^{\text {a }}$ When a problem featured a keyword.										

Description of Multi-	Word P	ms (n				
Schema	Occurrence of schema ${ }^{\text {a }}$		Any keyword		Keyword(s) led to correct solution ${ }^{\text {b }}$	
	n	\%	n	\%	n	\%
Total	40	47.6	39	97.5	3	7.7
Difference	11	13.1	11	100.0	1	9.1
Change	21	23.8	19	95.0	1	5.3
Equal groups	49	58.3	48	98.0	1	2.1
Comparison	7	8.3	7	100.0	0	0.0
Ratios or proportions	22	25.0	16	76.2	1	6.3
Product of measures	7	8.3	7	100.0	2	28.6

"Sum across schemas does not equal 100 because each word problem featured more than one schema.
${ }^{\text {b }}$ When a problem featured a keyword.

Mr. Rivera's taxable income is $\$ 20$ each hour before taxes are taken out. Mr. Rivera worked a total of 40 hours each week for 50 weeks.

What is the dollar amount, to the nearest dollar, taken out for taxes based on Mr. Rivera's taxable income?

Jessica rented 1 video game and 3 movies for a total of $\$ 11.50$.

- The video game cost $\$ 4.75$ to rent.
- The movies cost the same amount each to rent.

What amount, in dollars, did Jessica pay to rent each movie?

The temperature of a substance decreased by $24^{\circ} \mathrm{C}$ per minute for 3 minutes. What was the overall change of the temperature of the substance?

Important notes about keywords

Keywords are important to identify and understand

Keywords are often the mathematical vocabulary that help an students understand what the story is about and what they need to do

Talk about keywords ("What does more than tell you about?")
2. Presenting priu!ems by operation

LONG DIVISION WORD PROBLEMS

1. Zookeeper Al wants to give each monke the zoo an equal number of bananas. There are 37 loys in the 200 and 567 bananas. How many bananas do ach monkey get? And How many are left over for him to himself?
2. Miss King has 1376 pages of scrop paper. She wants to make them into scrop poper packets for her 32 students. How many pages will each packet have\% How many extra pages will she have left over?

Teaching Problem Solving

 Have an attack strategyTeach word-problem schemas

Have an attack strategy

RIDE

Read the problem.
Identify the relevant information.
Determine the operation and unit for the answer.
Enter the correct numbers and calculate, then check the answer.

RIDGES

Read the problem.
I know statement.
Draw a picture.
Goal statement.
Equation development. Solve the equation.

Have an attack strategy

RICE

Read and record the problem.
Illustrate your thinking.
Compute.
Explain your thinking.
Stop and read the problem carefully.
Think about your plan and the strategy you will use.
Act. Follow your plan and solve the problem.
Review your answer.

Have an attack strategy

SUPER

Slowly read the story problem twice. Underline the question and circle the numbers you need. Picture it. Draw the scenario to show what is happening. Explain the problem with a number sentence. Rewrite the answer in a sentence.

SHINES

Slowly and carefully read the problem. Highlight or underline key information.
Identify the question by drawing a circle around it.
Now solve the problem. Show your work.
Examine your work for precision, accuracy, and clarity. Share your answer by writing a sentence.

Have an attack strategy

R-CUBES

SOLVE

Study the problem.
Organize the facts.
Line up the plan.
Verify the plan with computation.
Examine the answer.

Read the problem. Circle key numbers.
Underline the question.
Box action words.
Evaluate steps.
Solve and check.

Have an attack strategy

UPSJ
 Understand
 Read and explain.

Plan

How will you solve the problem?
Solve
Set up and do the math!
\checkmark Сheck
Does your answer make sense?

Share your favorite attack strategy.

Teach word-problem schemas

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Schema and Definition	Equations and Graphic Organizers	Examples			Variations
Total (Combine; Part-partwhole)		Sum unknown: Lyle has 11 red apples and 18 green apples. How many apples does Lyle have altogether?	Part unknown: Lyle has 29 red and green apples. If 11 of the apples are red, how many green apples does Lyle have?		More than two parts: Lyle has 34 apples. Of the apples, 11 are red, 18 are green, and the rest are yellow. How many yellow apples does Lyle have?
combined for a sum					
Difference (Compare) Sets compared for a difference		Difference unknown: Sasha wrote 85 words in her essay, and Tobitha wrote 110 words. How many fewer words did Sasha write than Tabitha?	Bigger/greater unknown: Tabitha wrote 25 more words than Sasha. If Sasha wrote 85 words, how many words did Tabitha write?	Smaller/lesser unknown: Tabitha wrote 110 words in her essay. Sasha wrote 25 words fewer than Tabitha. How many words did Sasha write?	(None)
Change (Join; Separate) An amount that increases or decreases	$\mathrm{ST}+\mathrm{C}-\mathrm{C}=\mathrm{E}$ (start $+/-$ change $=$ end)	End (increase) unknown: Jorge had \$52. Then, he earned $\$ 16$ babysitting. How much money does Jorge have now? End (decrease) unknown: Jorge had $\$ 52$. Then, he spent $\$ 29$ at the ballpark. How much money does Jorge have now?	Change (increase) unknown: Jorge had $\$ 52$. Then, he earned some money babysitting. Now, Jorge has $\$ 68$. How much did Jorge earn babysitting? Change (decrease) unknown: Jorge had $\$ 52$ but spent some money when he went to the ballpark. Now, Jorge has \$23. How much did Jorge spend at the ballpark?	Start (increase) unknown: Jorge has some money, and then he earned $\$ 16$ for babysitting. Now, Jorge has $\$ 68$. How much money did he have to start with? Start (decrease) unknown: Jorge had some money. Then, he spent $\$ 29$ at the ballpark and has $\$ 23$ left. How much money did Jorge have before going to the ballpark?	Multiple changes: Jorge had $\$ 78$. He stopped and bought a pair of shoes for \$42 and then he spent $\$ 12$ at the grocery. How much money does Jorge have now?

Total

Parts put together into a total

Daniela saw 3 canoes and 8 kayaks. How many boats did Daniela see?

Daniela saw 11 boats. If 3 of the boats were canoes, how many were kayaks?

Daniela saw 11 boats. 8 of the boats were kayaks, how many were canoes?

Total

"Are parts put together for a total?"

Total
$P 1+P 2=$ T

(total)

(part)

(part)

TOTAL

Are parts put together for a total?

DIFFERENCE

Are amounts compared for a difference?

CHANGE

Does an amount increase or decrease?

Total

5

What's a student-friendly definition of a Total problem?

What's an example Total problem?

Difference

Greater and lesser amounts compared for a difference

Adrianna has 10 pencils. Tracy has 4 pencils. How many more pencils does Adrianna have? (How many fewer?)

Adrianna has 6 more pencils than Tracy. If Tracy has 4 pencils, how many does Adrianna have?

Tracy has 6 fewer pencils than Adrianna. Adrianna has 10 pencils. How many pencils does Tracy have?

Total

"Are parts put together for a total?"

Difference

"Are amounts compared for a difference?"

Difference

Difference

Additive Word Problems

Difference

5

What's a student-friendly definition of a Difference problem?

What's an example Difference problem?

Change

An amount that increases or decreases

Nickole had 6 notebooks. Then, she bought 3 notebooks. How many notebooks does Nickole have now?

Nickole had 6 notebooks. Then, she bought a few more notebooks. Now, Nickole has 9 notebooks. How many notebooks did she buy?

Nickole had some notebooks. Then, she bought 3 notebooks. Now, Nickole has 9 notebooks. How many notebooks did she have to start with?

Change

An amount that increases or decreases

Samantha baked 20 cookies. Then, she ate 3 of the cookies. How many cookies does Samantha have now?

Samantha baked 20 cookies. Then, she ate some of the cookies. Now, she has 17 cookies. How many cookies did Samantha eat?

Samantha baked some cookies. She ate 3 of the cookies and has 17 cookies left. How many cookies did Samantha bake?

Total

"Are parts put together for a total?"

Difference

"Are amounts compared for a difference?"

Change
"Does an amount increase or decrease?"

Change

$$
+1-
$$

(start)
(change)
(end)

Change

What's a student-friendly definition of a Change problem?

What's an example Change problem?

Total

Which schema?

G.

Sam mows lawns and made \$560 last week. She made $\$ 95$ on Monday, $\$ 135$ on Tuesday, and $\$ 70$ on Wednesday. How much did Sam make on Thursday and Friday?

$$
P 1+P 2+P 3+P 4=T
$$

Change

Which schema?

$$
S T-C+C=E
$$

H.

Hui saved $\$ 70$ in January. In February, she spent $\$ 64$ of the money she saved. She saved $\$ 92$ more in March. How much has Hui saved by the end of March?

Schema Quiz Time!

Change

Pablo goes to a stamp show where he can share, buy, and sell stamps.
26. Part A

The first day, Pablo starts with 744 stamps. He buys 27 stamps from his friend. He then sells 139 stamps.

What is the total number of stamps that Pablo has after the first day of the stamp show?

Difference

The graph below shows the number of pounds of plastic the Keller family recycled for five months.

Based on the graph, how many more pounds of plastic did the family recycle in July than in April?

Total

Mr. Conley delivers packages. The bar graph shows the total number of packages he delivered on five days last week.

10. Part A

What is the total number of packages Mr. Conley delivered on Monday and Tuesday?
(4) 300
(c) 340
© 350
(360

Schema and Definition	Equations and Grophic Organizers	Examples			Varictions
Total (Combine; Part-partwhole) Parts combined for a sum		Sum unknown: Lyle has 11 red apples and 18 green apples. How many apples does lyle hove oltogether?	Port unknown: tyle has 29 red and green apples. If 11 of the apples are red, how many green apples does Lyle hove?		More than two ports: Lyle has 34 apples. Of the apples, 11 cre red, 18 ore green and the rest are yellow. How many yellow opples does tyle hove?
Difference (Compare) Sets compored for a difference		Difference unknown: Sosha wrote 85 words in her essoy. and Tabitha wrote 110 words. How mony fewer words did Sosho write than Tobitho?	Bigger/grecter unknown: Tobitha wrote 25 more words than Sasha. If Sasha wrote 85 words, how mony words did Tabitha write?	Smaller/lesser unknown: Tobitho wrote 110 words in her essoy. Sasha wrote 25 words fewer thon Tabitha. How mory words did Sasho write?	(None)
Chonge (Join; Separate) An amount thot increases or decreases		End (increase) unknown: Jorge hod $\$ 52$. Then, he earned $\$ 16$ bobysitting. How much money does Jorge have now?	Change (increase) unknown: Jorge had $\$ 52$. Ther, he earned some money bobysitting. Now, Jorge has $\$ 68$. How much did Jorge earn bobysitting?	Start (increase) unknown: Jorge has some mones, and then he earned $\$ 16$ for bobysitting Now, Jorge has $\$ 68$. How much money did he hove to start with?	Multiple chonges: Jorge had \$78. He stopeed and bought a pair of shoes for $\$ 42$ and then he spent $\$ 12$ ot the grocery. How much money does Jorge hove now?
		End (decrease) unknown: Jorge hod $\$ 52$. Then, he spent $\$ 29$ ot the bolipork. How much money does Jorge hove now?	Change (decreose) unknown: Jorge had $\$ 52$ but spent some money when he wert to the ballpark. Now, Jorge has $\$ 23$. How much did Jorge spend ot the balpork?	Start (decreose) unknown: Jorge hod some money. Then, he spent $\$ 29$ ot the bollpark and has $\$ 23$ left. How much money did Jorge hove before going to the bollpork?	

Which schema is
easiest for your students? Why?

Which schema is more difficult?
Why?

Teach word-problem schemas

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Schema and Definition	Graphic Organizers	Examples			Variations
Equal Groups (Vary) A number of equal sets or units		Productunknown: Maria bought 5 cartons of eggs with 12 eggs in each carton. How many eggs did Maria buy?	Groups unknown: Maria bought 60 eggs. The eggs were sold in cartons with 12 eggs each. How many cartons of eggs did Maria buy?	Number unknown: Maria bought 5 cartons of eggs for a total of 60 eggs. How many eggs were in each carton?	With rate: Maria bought 5 cartons of eggs. Each carton cost $\$ 2.95$. How much did Maria spend on eggs?
Comparison One set as a multiple or part of another set		Productunknown: Malik picked 7 flowers. Danica picked 3 times as many flowers. How many flowers did Danica pick?	Setunknown: Danica picked 3 times as many flowers as Malik. If Danica picked 21 flowers, how many flowers did Malik pick?	Times unknown: Malik picked 7 flowers. Danica picked 21 flowers. How many times more flowers did Danica pick?	With fraction: Malik picked 25 red and yellow flowers. If $1 / 5$ of the flowers were yellow, how many were red?
Proportions (Percentages; Unit Rate) Relationships among quantities		Subject unknown: Sally typed 56 words in 2 minutes. How many words could Sally type in 7 minutes?	Object unknown: Sally typed 56 words in 2 minutes. How many minutes would it take Sally to type 192 words?		With percentage: Watson received an 80\% on his science quiz. If the test had 40 questions, how many questions did Watson answer correctly?
Ratio		Base unknown: Justin baked cookies and brownies. The ratio of cookies to brownies was 3:5. If he baked 15 cookies, how many brownies did he bake?	Compared unknown: Justin baked cookies and brownies. The ratio of cookies to brownies was 3:5. If he baked 25 brownies, how many cookies did he bake?	Ratio unknown: Justin baked 15 cookies and 25 brownies. What's the ratio of cookies to brownies?	With unit rate: Paula bought 5 boxes of markers. She spent $\$ 9.75$. What is the price of one box of markers?

Material collected from: Jitendra, DiPipi, \& Perron-Jones, 2002; Jitenda \& Star, 2011; Jitendra et al, 2009; Van de Walle et al, 2013; Xin, Jitendra, \& Deatline-Buchman, 2005; Xin \& Zhang, 2009.

Equal Groups

Groups multiplied by number in each group for a product

Toni has 2 bags of apples. There are 6 apples in each bag. How many apples does Toni have altogether?

Toni has 12 apples. They want to share them equally among their 2 friends. How many apples will each friend receive?

Toni has 12 apples. They put them into bags containing 6 apples each. How many bags did Toni use?

Equal Groups

"Are there groups with an equal number in each group?"

Equal Groups

GR X

EQUAL GROUPS

Are there groups with an equal number in each group?

COMPARISON

Is a set compared a number of times?

RATIOS/PROPORTIONS

Are there relationships among quantities?

Ms. Thompson sold 6 cartons of cherries at the Farmers' Market. Each corton holds 25 cherries. How many cherries did she sell?

Jane bought 112 light bulbs. The light bulbs come in packs of 4. How many packs of light blubs did Jane buy?

D.
C.
Enrique has 2 times as many pencils as Ava. Ava
has 6 pencils. How many pencils does Enrique
Susan has 7 times as many books as Mo. Mo has have?

Equal Groups

x^{4}

What's a student-friendly definition of an Equal Groups problem?

What's an example Equal Groups problem?

Comparison

Set multiplied by a number of times for a

 productBrooke picked 6 apples. Shaleeni picked 4 times as many apples as Brooke. How many apples did Shaleeni pick?

Equal Groups

"Are there groups with an equal number in each group?"

Comparison

"Is a set compared a number of times?"

Comparison

(multiplier/ (product) part)

Comparison

Comparison

x_{8}^{4}

What's a student-friendly definition of a Comparison problem?

What's an example Comparison problem?

Ratios/Proportions

Description of relationships among quantities

Emma typed 56 words in 2 minutes. At this rate, how many words could Emma type in 7 minutes?

Melissa baked cookies and brownies. The ratio of cookies to brownies was $3: 5$. If she baked 25 brownies, how many cookies did she bake?

Equal Groups

"Are there groups with an equal number in each group?"

Comparison

"Is a set compared a number of times?"

Ratios/Proportions

\square

Ratios/Proportions

Description of relationships among quantities

Ratios/Proportions

Ratios/Proportions

What's a student-friendly definition of a
Ratios/Proportion problem?

What's an example
Ratio/Proportion problem?

Schema Quiz Time!

Equal Groups

Mr. Kowolski ordered 35 boxes of granola bars. Each box contained 24 granola bars.

What is the total number of granola bars Mr. Kowolski ordered?

Ratios/Proportions

> A company makes 625 cell phone cases each day. How many cell phone cases does the company make in 31 days?

Comparison

Danielle's full-grown dog weighs 10 times as much as her puppy. The puppy weighs 9 pounds.

Enter the number of pounds the full-grown dog weighs.

Schema and Definition	Graphic Organizers	Examples			Variations
Equal Groups (Vary) A number of equal sets or units		Product unknown: Maria bought 5 cartons of eggs with 12 eggs in each carton. How many eggs did Maria buy?	Groups uninown: Maria bought 60 eggs. The eggs were sold in cartons with 12 eggs each. How many cartons of eggs did Maria buy?	Nember unknown: Maria bought 5 cartons of eggs for a total of 60 eggs. How many eggs were in each carton?	With rote Maria bought 5 cartons of eggs. Each carton cost $\$ 2.95$. How much did Maria spend on eggs?
Comparison One set as a multiple or part of another set		Productunknown: Malik picked 7 flowers. Danica picked 3 times as many flowers. How many flowers did Danica pick?	Setonknown: Danica picked 3 times as many flowers as Malik. If Danica picked 21 flowers, how many flowers did Malik pick?	Times unknown Malik picked 7 flowers. Danica picked 21 flowers. How many times more flowers did Danica pick?	Wht fraction: Malik picked 25 red and yellow flowers. If $1 / 5$ of the flowers were yellow, how many were red?
Proportions (Percentages; Unit Rate) Relationships among quantities		Subjuct unknown: Sally typed $\$ 6$ words in 2 minutes. How many words could Sally type in 7 minutes?	OByct unknown: Sally typed 56 words in 2 minutes. How many minutes would it take Sally to type 192 words?		Wath percentage: Watson received an 80% on his science quiz. If the test had 40 questions, how many questions did Watson answer correctly?
Ratio		Base uninown: Justin baked cookies and brownies. The ratio of cookies to brownies was 3:5, If he baked 15 cookies, how many brownies did he bake?	Compored uninown Justin baked cookies and brownies. The ratio of cookies to brownies was $3-5$. If he baked 25 brownies, how many cookies did he bake?	fatio unknown: Justin baked 15 cookies and 25 brownies. What's the ratio of cookies to brownies?	Wich unit rate: Paula bought 5 boxes of markers. She spent $\$ 9.75$. What is the price of one box of markers?

Which schema is easiest for your students? Why?

Which schema is more difficult? Why?

Teach word-problem schemas

Total

Equal Groups

Difference

Comparison

Change
Ratios/Proportions

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

+ THE SCIENCE OF © MATH

www.thescienceofmath.com

- The Science of Math
§ Science of Math
@4ScienceofMath

https://intensiveintervention.org/intensive-intervention-math-course

National Center on
INTENSIVE INTERVENTION
at American Institutes for Research \mathbf{m}

Intensive	Tools	Implementation	Intervention	Information
Intervention :	Charts :	Support *	Materials :	For... •

Intensive Intervention in Mathematics Course Content

Search

Information
Materials - For... v

MODULE 4: INTENSIVE MATHEMATICS INTERVENTION: MATHEMATICS INTERVENTIO

NCII, through a collaboration with the University of Connecticut, developed a set of course content focused on developing educators' skills in designing and delivering intensive mathematics instruction. This content is designed to support faculty and professional development providers with instructing preservice and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

[^1]

Teaching Math in Middle School
 David J. Chard, \& Lindsey Perry
 The purpore or these mathematics instructional routines is
to une when providing intervention to stupdor
routines address contint routines address content invention to studentents
content Each modults that included in the grades who experienco difficulty with mors with matering

 soutcomes far students.

TEA
https://www.inclusionintexas.org/apps/pages/index.isp?uREC ID=2155039\&type=d\&pREC ID=2169859

PAC Pre-Algebra Competence

- Students struggle with pre-algebra not only because of math but also weaknesses in other skills (executive functions, language, attention)
- Goal: Pinpoint underlying important skills to develop more effective, targeted interventions and assessments
-We'd like to recruit $7^{\text {th }}$ grade math teachers ($\$ 100$ stipend) to help us:
- Recruit $7^{\text {th }}$ grade students (distributing consent forms)
- Schedule some testing sessions (initial screening, 2 in fall, 1 in spring)
-Flexible scheduling
- Will offer free tutoring for struggling $6^{\text {th }}$ graders on algebraic equation solving
- Contact information: Dawn Filer

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

www.sarahpowellphd.com
srpowell@utexas.edu
@sarahpowellphd

$|x| A+H$

[^0]: - Show More

[^1]: Intensive instruction was recently identified as a high-leverage practice in special educations , and DBI is a research based approach to delivering intensive instruction across content areas (NCII, 2013). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in mathematics, complete with exemplars from actual classroom teachers.

 NCII, through a collaboration with the University of Connecticut and the National Center on Leadership in Intensive Interventions and with support from the CEEDAR Centers, developed course content focused on enhancing educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and professional development providers with instructing pre-service and in-service educators who are learning to implement intensive mathematics intervention through data-based individualization (DBI). The content in this course complements concepts covered in the Features of Explicit Instruction Course and so we suggest that users complete both courses.

