THE ORIGINS OF WRITING

ANDREW ROBINSON
A man has departed: his corpse is in the ground. His contemporaries have passed from the land. But writing will preserve his memory.

In the mouth of a person who speaks it.

A book is better than a built house, Better than the tombs constructed in the West. It is more beautiful than a well-built villa, More beautiful than a stela in a temple.

(Lines from an ancient Egyptian papyrus of the Nineteenth Dynasty [that of Ramesses I], c. 1300 BC, cautioning the reader to become a scribe.)

Without writing, there would have been no permanent recording, no history and, of course, no books. The creation of writing permitted the command of a ruler and his seal to extend far beyond his sight and voice and even to survive his death. If the Rosetta Stone did not exist, for example, the world would be virtually unaware of the nondescript Egyptian king, Ptolemy V Epiphanes (reigned 205–180 BC), whose priests promulgated his decree upon the Stone on 27 March 196 BC in three different scripts: hieroglyphic, demotic and (Greek) alphabetic.

How did writing begin? The favoured explanation, until the Enlightenment in the eighteenth century, was divine origin. Today many – probably most – scholars accept that the earliest writing evolved from accountancy. Inventories and calculations are certainly crucial in the written records of ancient Mesopotamia and also ancient Crete, although they are puzzlingly little to be seen in the surviving writing of ancient Egypt, India, China and Meso-America (which does not preclude the possible earlier existence of commercial record-keeping on perishable materials, such as bamboo, in these early civilisations). In other words, some time in the late fourth millennium BC, in the cities of Sumer in Mesopotamia – the ‘cradle of civilisation’ – the complexity of trade and administration reached a point where it outstripped the power of memory among the governing elite. To record transactions in an indisputable, permanent form became essential.

Some scholars believe that a conscious search for a solution to this problem by an unknown Sumerian individual in the city of Uruk (biblical Erech), c. 3500 BC, produced writing. Others posit that writing was the work of a group, presumably of clever administrators and merchants. Still others think it was not an invention at all, but an accidental discovery. Many regard it as the result of evolution over a long period, rather than a flash of inspiration. One particularly well-aired theory (championed by the archaeologist Denise Schmandt-Besserat) holds that writing grew out of a long-standing counting system of clay ‘tokens’. Such ‘tokens’ – varying from simple, plain discs to more complex, incised shapes whose exact purpose is unknown – have been found in many Middle Eastern archaeological sites, and have been dated to 8000–1500 BC. The substitution of two-dimensional symbols in clay for these three-dimensional tokens was a first step towards writing, according to this theory. One major difficulty is that the ‘tokens’ continued to exist long after the emergence of Sumerian cuneiform writing (for almost two millennia): another is that a two-dimensional symbol on a clay tablet might be thought to be a less, not a more, advanced concept than a three-dimensional clay ‘token’. It seems probable that ‘tokens’ accompanied the emergence of writing, like tallies, rather than giving rise to writing.

Apart from the ‘tokens’, numerous examples of what might be termed ‘proto-writing’ exist. They include the Ice Age symbols found in caves in southern France, which are probably 20,000 years old. A cave at Pech Merle, in the Lot, contains a lively Ice Age graffiti showing a stencilled hand and a pattern of red dots. This may simply mean ‘I was here, with my animals’, or perhaps the symbolism is deeper. Other prehistoric
images show animals such as horses, bison and a stag’s head, overlaid with signs; and notched bones have been found that apparently served as lunar calendars.

‘Proto-writing’ is not writing in the full sense of the word. A scholar of writing, the sinologist John DeFrancis identified ‘full’ writing as a ‘system of graphic symbols that can be used to convey any and all thought’: a concise and influential definition. According to it, ‘proto-writing’ would include not only Ice Age cave symbols and Middle Eastern clay ‘tokens’, the Pictish symbol stones of Scotland and tallies like the fascinating knotted Inca quipus of Andean South America, but also contemporary sign systems such as international transportation symbols, highway code signs, computer icons, emojis, and mathematical and musical notation. None of these ancient or modern systems is capable of expressing ‘any and all thought’, but each is good at specialised communication.

To express the full range of human thought requires a writing system intimately linked with spoken language. For, as the founder of modern linguistics, Ferdinand de Saussure, wrote in 1983, language may be compared to a sheet of paper: ‘Thought is on one side of the sheet and sound on the reverse side. Just as it is impossible to take a pair of scissors and cut one side of the paper without at the same time cutting the other, so it is impossible in a language to isolate sound from thought, or thought from sound.’¹

The symbols of what may have become the first ‘full’ writing system are generally thought to have been pictograms: iconic drawings of, say, a pot, a fish or a head with an open jaw (representing the concept of eating). These have been found in Mesopotamia and Egypt dating to the mid-fourth millennium BC, in the Indus Valley (Pakistan/India) dating to the third millennium and in China dating to as early as the fifth millennium, according to the claims of some Chinese archaeologists. In many cases, their iconicity soon became so abstract that it is barely perceptible to us. The chart above shows how Sumerian pictograms developed into the cuneiform signs inscribed on clay tablets that went on to dominate Middle Eastern writing for some 3,000 years.

Yet pictograms were insufficient to express the kinds of words, and their constituent parts, that cannot be depicted. Essential to the development of ‘full’ writing, as opposed to limited, purely pictographic, ‘proto-writing’, was the discovery of the ‘rebus principle’. This radical idea, from the Latin word rebus meaning ‘by things’, enables phonetic values to be represented by pictographic symbols. Thus in English, a picture of a bee beside the number four might (if one were so minded) represent ‘before’, and a bee with a picture of a tray might stand for ‘breathe’, while an ant next to a buzzing hive might (less obviously) represent the personal name ‘Anthony’. Egyptian hieroglyphs are full of rebuses; for instance the ‘sun’ sign, pronounced /R(a)/ or /R(e)/, is the first symbol in the hieroglyphic spelling of the pharaonic name Ramesses. In an early Sumerian accounting tablet the abstract word ‘reimburse’ is represented by a picture of a reed, because ‘reimburse’ and ‘reed’ shared the same phonetic value, gi, in the Sumerian language.

Once writing of this ‘full’ kind, capable of expressing the complete range of speech and thought, was invented, accidentally discovered or evolved, did it then diffuse throughout the globe from Mesopotamia? It appears that the earliest such writing in Egypt dates from 3100 BC, that in the Indus civilisation (undeciphered sealstones) from 2500 BC, that in Crete (the undeciphered Linear A script) from 1750 BC, that in China (the oracle bones) from 1200 BC, and that in Mexico (the undeciphered Olmec script) from 900 BC: all dates are approximate and subject to new archaeological discoveries. On this basis, it seems reasonable that the idea of writing, but not the signs of a particular script, could have spread gradually from culture to distant culture. After all, 600 or 700 years were required for the idea of printing to reach Europe from

ABOVE The development of Sumerian pictograms (top row), c. 5000 BC, into wedge-shaped cuneiform signs.
China (if we discount the isolated and enigmatic Phaistos Disc of c.1700 BC, found in Crete in 1908, which appears to be ‘printed’), and even longer for the idea of paper to spread to Europe: why should writing not have reached China from Mesopotamia over an even longer period?

Nevertheless, in the absence of solid evidence for transmission of the idea (even in the case of the physically much more proximate civilisations of Mesopotamia and Egypt, most scholars prefer to think that writing developed independently in the major civilisations of the ancient world. The optimist, or at any rate the anti-imperialist, will emphasise the intelligence and inventiveness of human societies; the pessimist, who takes a more conservative view of history, will tend to assume that humans prefer to copy what already exists, as faithfully as they can, restricting their innovations to cases of absolute necessity. The latter is the favoured explanation for how the ancient Greeks (near the beginning of the first millennium BC) borrowed the alphabet from the Phoenician culture of the eastern Mediterranean, adding in the process signs for the vowels not written in the Phoenician script. Another well-known example of script borrowing is the Japanese taking of Chinese characters in the first millennium AD and incorporating them into a highly complex writing system that mixes several thousand Chinese characters (known in Japan as kanji) with slightly fewer than 100, much simpler, syllabic symbols of Japanese origin (hiragana and katakana). If ever the Rongorongo script of Easter Island (see also p. 139) is deciphered, it may shed light on the intriguing question of whether the Rapa Nui people borrowed it from Europeans who first visited Rapa Nui in the eighteenth century, brought the idea of writing from Polynesia in their canoes or invented Rongorongo independently. If Rongorongo, once deciphered, could be proved to have been created unaided on Rapa Nui, this would at last guarantee that writing must have had multiple origins, rather than radiating from a single source (presumably in Mesopotamia).

Decipherment has, of course, always been key to the understanding of ancient writing systems – hence the worldwide fame of the Rosetta Stone. The term was first used by an Englishman, Thomas Herbert, in 1677, with reference to the cuneiform inscriptions of the Persian king Darius engraved c.520 BC at Persepolis, a wonder of the world that was then almost entirely mysterious. Herbert called them ‘well worthy the scrutiny of those ingenious persons that delight themselves in the dark and difficult Art or Exercise of deciphering’.

In ordinary conversation, to decipher someone’s ‘indecipherable’ handwriting is to make sense of the meaning; it does not imply that one can read every single word. More technically, as applied to ancient scripts, ‘deciphered’ means different things to different scholars. At one extreme, everyone acknowledges that the Egyptian hieroglyphs have been deciphered, because all trained Egyptologists would make the same sense of virtually every word of a given hieroglyphic inscription (although their individual translations would still differ, as do all independent translations of the same work from one language into another). At the other extreme, scholars generally agree that the script of the Indus civilisation, exquisitely engraved on steatite sealstones, is undeciphered, because no one can make sense of its seals and other inscriptions to the satisfaction of anyone else. Between these extremes lies a vast spectrum of opinion. In the case of the Mayan hieroglyphic writing of Meso-America, for example, most scholars concur that a high proportion, as much as 85 per cent, of the inscriptions can be meaningfully read, and yet there remain large numbers of individual Mayan glyphs that are contentious or obscure. No shibboleth exists by which a script can be judged to be either deciphered or
undeciphered, we should instead speak of degrees of decipherment. The most useful criterion is that a proposed decipherment can generate consistent readings from new samples of the script, preferably produced by persons other than the original decipherer.

In this sense, the Egyptian hieroglyphs were deciphered in the 1820s by Jean-François Champollion and others; Babylonian cuneiform in the 1850s by Henry Creswicke Rawlinson and others; Mycenaean Linear B in 1952–3 by Michael Ventris; and the Mayan hieroglyphs by Yuri Knorosov and others in the 1950s and after — to name only the most important of the successful decipherments. This leaves a number of significant undeciphered scripts, such as the Etruscan script from Italy, the Indus script from Pakistan/India, Linear A from Crete, the Meroitic script from Sudan, the Proto-Elamite script from Iran/Iraq, Rongorongo from Rapa Nui, and the Zapotec and Isthmian scripts from Mexico. These may be resolved into three basic categories: an unknown script writing a known language, a known script writing an unknown language and an unknown script writing an unknown language.

The Mayan hieroglyphs were until their late-twentieth-century decipherment an example of the first category, since the Mayan languages are still spoken, and the Zapotec script may be, too, if it writes a language related to modern Zapotec; Etruscan writing is an example of the second category, since the Etruscan script is basically the same as the Greek alphabet, but the unknown Etruscan language is not related to Indo-European languages such as Greek and Latin, and the Indus script is an example of the last category, since the script bears no resemblance to any other script and the language of the Indus civilisation does not appear to have survived (unless, as some scholars speculate, the now-extinct Indus language was related to the Dravidian languages of south India, such as Tamil).

In each undeciphered case, the techniques used in successful decipherments have been applied, with varying results. Ventris — perhaps the most ingenious of all the decipherers, since he alone had no help from a bilingual aid like the Rosetta Stone — gave a masterly summary of the science and art of decipherment just after announcing his decipherment of Linear B as writing an ancient form of classical Greek, in 1952–3:

Each operation needs to be planned in three phases: an exhaustive analysis of the signs, words, and contexts in all the available inscriptions, designed to extract every possible clue as to the spelling system, meaning and language structure; an experimental substitution of phonetic values to give possible words and inflections in a known or postulated language; and a decisive check, preferably with the aid of virgin material, to ensure that the apparent results are not due to fantasy, coincidence or circular reasoning.5

As Ventris’s collaborator, classicist John Chadwick, reflected in 1983:

The achievement of the decipherment … required painstaking analysis and sound judgement, but at the same time an element of genius, the ability to take a leap in the dark; but then to find firm ground on the other side. Few discoveries are made solely by processes of logical deduction. At some point the researcher is obliged to chance a guess, to venture an unlikely hypothesis; what matters is whether he can control the leap of the imagination, and have the honesty to evaluate the results soberly. Only after the leap has been made is it possible to go back over the working and discover the logical basis which provided the necessary springboard.6

Linear B, which was used from 1450 to 1200 BC, turned out to be a syllabic writing system, unlike the later writing system of classical Greece, an alphabet invented c.800 BC, in which the signs stand for vowels
and consonants, not syllables. How are writing systems classified? Europeans and Americans of ordinary literacy must recognize and write around fifty-two alphabetic signs (twenty-six capital letters and their lower-case equivalents) and sundry other signs, such as numerals, punctuation marks and ‘whole-word’ semantic signs, for example +, −, &, %, £ and $, which are generally called logograms. Japanese readers, by contrast, are supposed to know and be able to write some 2,000 signs, and, if they are highly educated, must recognize 5,000 signs or more. The two situations, in Europe/America and in Japan, appear to be poles apart. But, in fact, the different writing systems resemble each other more than first appears.

Contrary to what many people think, all scripts that are ‘full’ writing (in the sense defined by DeFrancis above) operate on one basic principle. Both alphabets and the Chinese and Japanese scripts use symbols to represent sounds (that is, phonetic signs); and all writing systems mix such phonetic symbols with logographic symbols (that is, semantic signs). What differs between writing systems – apart from the forms of the signs, of course – is the proportion of phonetic to semantic signs. The higher the proportion of phonetic representation in a script, the easier it is to guess the pronunciation of a word. In English the proportion is high; in Chinese it is low. Thus English spelling represents English speech sound by sound more accurately than Chinese characters represent Mandarin speech; but Finnish spelling represents the Finnish language better than English spelling represents spoken English. The Finnish script is highly efficient phonetically, while the Chinese (and Japanese) script is phonetically seriously deficient, as indicated in the upper diagram opposite.

Hence there is no such thing as a ‘pure’ writing system, that is, a ‘full’ writing system capable of expressing meaning entirely through alphabetic letters, syllabic signs or logograms: all ‘full’ writing systems are a mixture of phonetic and semantic signs. How best to classify writing systems is therefore a controversial issue.

Above: All writing systems are a mixture of phonetic and logographic (semantic) signs, but the proportion of each varies. Finnish is the most phonetically efficient script, Chinese script the least.
matter. For example, some scholars deny the existence of alphabets prior to the Greek alphabet, on the grounds that the Phoenician script marked only consonants, not vowels (like the early Arabic script). Nevertheless, classifying labels are useful to remind us of the predominant nature of different systems. The tree shown in the lower diagram on the previous page divides writing systems according to this criterion, not according to their age; it does not show how one writing system may have given rise to another historically. (The dashed lines indicate possible influences of one system upon another, for example Chinese characters, kanji, on the Japanese syllabic hiragana and katakana.) Thus, the Phoenician script is labelled a “consonantal alphabet”, with the emphasis on its consonants and without significant logography, in contrast to the “logo-consonantal” system of Egyptian hieroglyphs, where logography dominates but there is also a phonetic element based on the consonants: twenty-four hieroglyphic signs, each representing a consonant. The tree’s terminology is self-explanatory, except perhaps for “phonemic”: the phoneme is the smallest contrastive unit in the sound system of a language, for example the English vowel phoneme /ɪ/ and /ʌ/ in “set” and “sat”, and the consonantal phonemes /b/ and /p/ in “bat” and “pat”.

If the emergence of writing is full of riddles, then the enigma of the first alphabet is even more perplexing. That the alphabet reached the modern world via the ancient Greeks is well known — the word ‘alphabet’ comes from alpha and beta, the first two of the twenty-five Greek letters — but we have no idea of exactly how and when the alphabet appeared in Greece; how the Greeks thought of adding letters standing for the vowels as well as the consonants; or how, even more fundamentally, the idea of an alphabet occurred to the pre-Greek societies at the eastern end of the Mediterranean during the second millennium BC. The first well-attested alphabets belong to ancient Ugarit, today’s Ras Shamra on the coast of Syria, where a thirty-sign cuneiform alphabet was used in the fourteenth century BC, and to the Phoenicians in Canaan in the late second millennium, who used twenty-two consonantal letters.

Scholars have devoted their lives to these questions, and the evidence is too scanty for firm conclusions. It is not known whether the alphabet evolved from the scripts of Mesopotamia (cuneiform), Egypt (hieroglyphs) and Crete (Linear A and B), or whether it struck a single unknown individual ‘in a flash’. Nor is it known why an alphabet was thought necessary. It seems most likely that the alphabet was the result of commercial imperatives. In other words, commerce demanded a simpler and quicker means of recording transactions than, say, Babylonian cuneiform or Egyptian hieroglyphs, and also a convenient way to record the babel of languages of the various empires and groups trading with each other around the Mediterranean. If so, then it is surprising that there is no evidence of trade and commerce in the early alphabetic inscriptions of Greece. This, and other considerations, have led a few scholars to postulate, controversially, that the Greek alphabet was invented to record the oral epics of Homer in the eighth century BC.

In the absence of proof, anecdote and myth have filled the vacuum. Children are often evoked as inventors of the alphabet, because they would not have had the preconceptions of adult writers and their elders’ investment in existing scripts. One possibility is that a bright Canaanite child in northern Syria, fed up with having to learn the complexities of Babylonian cuneiform and Egyptian hieroglyphs, borrowed from the hieroglyphs the familiar idea of a small number of signs standing for single consonants and then invented some new signs for the basic consonantal sounds of his own Semitic language. Perhaps the child first doodled the signs in the dust of some ancient street: a simple outline of a house, Semitic ‘beth’ (the ‘bet’ in ‘alphabet’), became the sign for b. In the twentieth century, Rudyard Kipling’s child protagonist in ‘How The Alphabet Was Made’, Taffimai, designs what she calls ‘noise-pictures’, the letter A is a picture of a carp with its mouth wide open like an inverted V and its barbel forming the cross-stroke of the A; this, Taffimai tells her father, looks like his open mouth when he utters the sound /a/. The letter O matches the egg, or stone, shape and resembles her father’s mouth saying /oh/. The letter R represents a snake, and stands for the hissing sound of the reptile. In this somewhat far-fetched way, a whole alphabet is created by Taffimai.

To quote an earlier poet, William Blake, writing in Jerusalem: ‘God ... in mysterious Sinai’s awful cave,’To Man the word’rous art of writing gave’. A small sphinx in the British Museum at one time seemed to show that Blake was right, at least about the origin of the alphabet. The sphinx was found in 1905 at Serabit el-Khadim in Sinai, a desolate place remote from civilisation, by the famous Egyptologist Flinders Petrie. He was excavating some old turquoise mines that were active in ancient Egyptian times. Petrie dated the sphinx to the middle of the Eighteenth Dynasty (1550–1295 BC); today, its date is thought to be c.1500 BC, but may be as early as c.1800 BC. On one side of it is a strange inscription; on the other, and between the paws, there are further inscriptions of the same kind, plus some Egyptian hieroglyphs that read “beloved of Hathor, mistress of turquoise.” Similar inscriptions were written on the rocks of this remote area. Petrie guessed that the unknown script was probably an alphabet, because it comprised fewer than thirty signs (out of a much larger number of text characters), and he thought that its language was probably Semitic, since he knew that Semites from Canaan – modern Israel and Lebanon – had worked these mines, in many cases as slaves of the Egyptians. Ten years later, another distinguished Egyptologist, Alan Gardiner, studied the “proto-Sinaitic” signs and noted resemblances between

LEFT Early Phoenician inscription. Bronze arrow-head. Phoenicia, 11th century BC. British Museum: 1989,0409.1
1. THE ORIGINS OF WRITING

Some of them and certain pictographic Egyptian hieroglyphs. Gardiner now named each sign with the Semitic word equivalent to the sign’s meaning in Egyptian (the Semitic words were known from biblical scholarship), such as ‘beth’ for ‘house’ and ‘gimel’ for ‘throwstick’ (see diagram above). These Semitic names are the same as the names of the letters of the Hebrew alphabet: a fact that did not surprise Gardiner, since he knew that the Hebrews had lived in Canaan in the late second millennium BC. However, although the names are the same, the shapes of the Hebrew letters are different from the proto-Sinaitic signs, suggesting that any link between them cannot be a straightforward one.

Gardiner’s hypothesis enabled him to translate one of the inscriptions that occurred on the sphinx from Serabit el-Khadim as ‘Baalat’ in an English transcription, with the vowels spelled out. (Hebrew and other Semitic scripts do not indicate vowels; readers guess them from their knowledge of the language, as explained later.) Gardiner’s reading made sense: Baalat means ‘the Lady’ and is a recognized Semitic name for the goddess Hathor in the Sinai region. So the inscription on the sphinx seemed to be an Egyptian-Semitic bilingual. Unfortunately no further decipherment proved tenable, mainly because of lack of material and the fact that many of the proto-Sinaitic signs had no hieroglyphic equivalents. Scholarly hopes of finding the story of the Exodus in these scratchings were scotched. Nevertheless, it is conceivable that a script similar to Petrie and Gardiner’s proto-Sinaitic script was used by Moses to write the Ten Commandments on the tablets of stone.

It is still not known whether Gardiner’s 1916 guess was correct, plausible though it is. For some decades after Petrie’s discoveries in Sinai, the inscriptions were taken to be the ‘missing link’ between the Egyptian hieroglyphs and the cuneiform alphabet at Ugarit and the Phoenician alphabet. But it seems unconvincing that lowly – and presumably illiterate – miners in out-of-the-way Sinai should have created an alphabet; prima facie, they seem to be unlikely inventors. Subsequent discoveries in Lebanon and Israel have shown the Sinaitic theory of the alphabet to be a romantic fiction. These inscriptions, dated to the seventeenth and sixteenth centuries BC – a little earlier than the proto-Sinaitic inscriptions – suggest that the people then living in the land of Canaan were the real inventors of the alphabet, which would be reasonable. They were cosmopolitan traders at the crossroads of the Egyptian, Hittite, Babylonian and...
Chinese and Japanese were writing in alphabetic scripts. Colonial empires, most of the world’s peoples except the most likely) to India and thence to Southeast Asia. By the twentieth century, as a consequence of Europe’s colonial empires, most of the world’s peoples except the Chinese and Japanese were writing in alphabetic scripts.

These employ on average between twenty and thirty basic signs; the smallest, Rotokas, used in Papua New Guinea, has twelve letters, while the largest, Khmer, used in Cambodia, has seventy-four letters.

The western alphabetic link between the Greeks and the Romans was Etruscan, as is clear from the early Greek letterforms inscribed on Etruscan objects dating from the sixth century BCE, which were then borrowed by early Latin inscriptions. The transference of the script occurred despite the dissimilarity of the Indo-European Greek and Latin languages to the non-Indo-European Etruscan language mentioned above; see page 29). This early Roman acquisition from Greek accounts for the differences between some modern European letterforms and the modern Greek letters, which are based on a later Greek alphabet known as Ionian that became standard in Greece in 403–404 BCE.

The eastern alphabetic link is indicated by the remarkable fact that in Mesopotamia, by the fifth century BCE, many cuneiform documents carried a notation of their substance in the twenty-two letters of the Aramaic alphabet, inked onto the tablet with a brush. From the time of Alexander the Great (356–323 BCE) onwards, cuneiform was increasingly superseded by Aramaic; it eventually fell into disuse around the beginning of the Christian era, with the last cuneiform inscription dated AD 27. In Egypt, fairly soon after that, the Egyptian hieroglyphs (consisting of twenty-four Greek letters plus six letters borrowed from Egyptian demotic script) supplanted Egyptian hieroglyphs; the last Egyptian hieroglyphic inscription is dated AD 394.

The Aramaic script is the ancestor of modern Arabic and of modern (‘square’) Hebrew script, as used in Israel. (A second Hebrew script, known as ‘old Hebrew’, evolved from the Phoenician script and disappeared from secular use with the dispersion of the Jews in the sixth century BCE.) The first independent Arab kingdom, that of the Nabataeans centred on Petra in modern Jordan, spoke a form of Arabic but wrote in the Aramaic script. The presence of certain distinctively Arabic forms and words in these Aramaic inscriptions eventually gave way to the writing of the Arabic language in Nabataean Aramaic script. This was the precursor of the Arabic script, which arose during the first half of the first millennium AD and replaced the Aramaic script.

Both the Arabic and Hebrew scripts write only the consonants, not the vowels, in their respective Semitic languages, using twenty-eight letters in Arabic and twenty-two in Hebrew. Thus the three letters in modern Hebrew that stand for sf or sp can take the following meanings: sfar (a book), safar (counted, as in ‘the counted’), safar (a barber), and even sefar (border, frontier or fringe). In practice, however, various additional signs have been developed to aid the reader in pronouncing the ‘missing’ Arabic and Hebrew vowels. The consonants of these is a system of dots placed above and below a letter, referred to as niqqudot (dots) in Hebrew. A separate, historically much earlier system, known as matres lectionis – Latin for ‘mothers of reading’ – used three semi-vowels, w, y and ‘ (aleph), to denote the commonest of these is a system of dots placed above and below a letter, referred to as niqqudot (dots) in Hebrew. A separate, historically much earlier system, known as matres lectionis – Latin for ‘mothers of reading’ – used three semi-vowels, w, y and ‘ (aleph), to denote the following meanings: sfar (a book), sefar (counted, as in ‘the counted’), spr (a barber), and even sefar (border, frontier or fringe).
The time chart above shows the main lines of emergence of the modern alphabetic scripts from the Proto-Sinaitic/Canaanite scripts of the second millennium bc. It does not include the Indian scripts and their Southeast Asian derivatives, since their connection with Aramaic is problematic and, strictly speaking, unproven. (The earliest Indian scripts, leaving aside the undeciphered Indus writing of the third millennium bc, are Kharoshthi and Brahmi, used in the rock edicts of the Emperor Ashoka in the mid-third century bc.) Nor does the chart show later alphabets such as the Cyrillic alphabet used in Russia, which was adapted from the Greek alphabet in the ninth century ad. Alphabet to an approximate time-scale (after John F. Healey, The Early Alphabet).

The first suggestion, about democracy and the alphabet, has a kernel of truth. But did the alphabet help democracy to grow, or did a nascent European desire for democracy give rise to the invention of the alphabet? The ancient Egyptians, in a sense, invented the alphabet in the third millennium bc when they created twenty-four signs for their consonants. But instead of using this simple system to write their language, the Egyptians chose to write in hieroglyphs with many hundreds of signs. Perhaps they felt no urge for democracy in their pharaonic political system?

The second suggestion, about science, appealing as it may be to some, is a fallacy. It is quite conceivable that the Chinese writing system, as a result of its enormous complexity, retarded the spread of literacy in China, but it is ludicrous to connect a deep cultural trend, a supposed dearth of Chinese analytical thinking, with the predominance of logograms over phonetic signs. To explain profound cultural differences, we need to look at cultures in the round, not single out one aspect, such as a culture’s writing system, however important this may appear to be. After all, if Isaac Newton and Albert Einstein could understand gravity and relativity, they could surely have mastered an education imparted in Chinese characters or, for that matter, in Egyptian hieroglyphs or Babylonian cuneiform.

Chinese characters also enjoy a mystique. The complexity of Chinese writing encourages the notion that it operates differently from other modern writing systems. The obscurity of its origins – which may or may not have involved foreign stimulus from, for example, Mesopotamian writing – reinforces its apparent uniqueness. The antiquity of the modern Chinese characters, many being recognisable in the Shang oracle bone inscriptions of about 1200 bc, further reinforces this view, abetted by national pride in the system’s exceptional longevity, which exceeds that of Babylonian cuneiform and equals that of the Egyptian hieroglyphs.

The most important claim is that Chinese characters are ‘ideographic’, a word now generally avoided by scholars in favour of the more specific ‘logographic’. That is, the characters are thought to be capable of communicating ideas without the intervention of phoneticism or indeed spoken language. This claim is seemingly supported by the fact that speakers of different Chinese dialects, such as Mandarin and Cantonese, who may not be able to understand each other fully when speaking, may still write using the same characters. Even Chinese and Japanese speakers are sometimes able to achieve some level of mutual understanding through the use of characters common to both their scripts. Thus, of course, would be inconceivable for English, French, German and Italian monograms, even though they share one (roman) script.

The claim is, however, false. No ‘full’ writing system, as already explained, can be divorced from the sounds of a spoken language. The majority of Chinese characters are composed of both a phonetic and a semantic component, which readers must learn to recognise. The phonetic component gives a clue to the pronunciation of the character, the semantic component to its meaning. These two components are generally characters in their own right, with their own pronunciation and meaning. For example, the simple character 波 is pronounced yin in Mandarin and means ‘ocean’. The three-stroke sign on the left side of 波 is a semantic component, which means ‘water’ and provides understanding through the use of characters common to both their scripts. This, of course, would be inconceivable for English, French, German and Italian monograms, even though they share one (roman) script.

The most important claim is that Chinese characters are ‘ideographic’, a word now generally avoided by scholars in favour of the more specific ‘logographic’. That is, the characters are thought to be capable of communicating ideas without the intervention of phoneticism or indeed spoken language. This claim is seemingly supported by the fact that speakers of different Chinese dialects, such as Mandarin and Cantonese, who may not be able to understand each other fully when speaking, may still write using the same characters. Even Chinese and Japanese speakers are sometimes able to achieve some level of mutual understanding through the use of characters common to both their scripts. Thus, of course, would be inconceivable for English, French, German and Italian monograms, even though they share one (roman) script.

The claim is, however, false. No ‘full’ writing system, as already explained, can be divorced from the sounds of a spoken language. The majority of Chinese characters are composed of both a phonetic and a semantic component, which readers must learn to recognise. The phonetic component gives a clue to the pronunciation of the character, the semantic component to its meaning. These two components are generally characters in their own right, with their own pronunciation and meaning. For example, the simple character 波 is pronounced yin in Mandarin and means ‘ocean’. The three-stroke sign on the left side of 波 is a semantic component, which means ‘water’ and provides understanding through the use of characters common to both their scripts. This, of course, would be inconceivable for English, French, German and Italian monograms, even though they share one (roman) script.

The claim is, however, false. No ‘full’ writing system, as already explained, can be divorced from the sounds of a spoken language. The majority of Chinese characters are composed of both a phonetic and a semantic component, which readers must learn to recognise. The phonetic component gives a clue to the pronunciation of the character, the semantic component to its meaning. These two components are generally characters in their own right, with their own pronunciation and meaning. For example, the simple character 波 is pronounced yin in Mandarin and means ‘ocean’. The three-stroke sign on the left side of 波 is a semantic component, which means ‘water’ and provides understanding through the use of characters common to both their scripts. This, of course, would be inconceivable for English, French, German and Italian monograms, even though they share one (roman) script.

The claim is, however, false. No ‘full’ writing system, as already explained, can be divorced from the sounds of a spoken language. The majority of Chinese characters are composed of both a phonetic and a semantic component, which readers must learn to recognise. The phonetic component gives a clue to the pronunciation of the character, the semantic component to its meaning. These two components are generally characters in their own right, with their own pronunciation and meaning. For example, the simple character 波 is pronounced yin in Mandarin and means ‘ocean’. The three-stroke sign on the left side of 波 is a semantic component, which means ‘water’ and provides understanding through the use of characters common to both their scripts. This, of course, would be inconceivable for English, French, German and Italian monograms, even though they share one (roman) script.

The claim is, however, false. No ‘full’ writing system, as already explained, can be divorced from the sounds of a spoken language. The majority of Chinese characters are composed of both a phonetic and a semantic component, which readers must learn to recognise. The phonetic component gives a clue to the pronunciation of the character, the semantic component to its meaning. These two components are generally characters in their own right, with their own pronunciation and meaning. For example, the simple character 波 is pronounced yin in Mandarin and means ‘ocean’. The three-stroke sign on the left side of 波 is a semantic component, which means ‘water’ and provides understanding through the use of characters common to both their scripts. This, of course, would be inconceivable for English, French, German and Italian monograms, even though they share one (roman) script.

The claim is, however, false. No ‘full’ writing system, as already explained, can be divorced from the sounds of a spoken language. The majority of Chinese characters are composed of both a phonetic and a semantic component, which readers must learn to recognise. The phonetic component gives a clue to the pronunciation of the character, the semantic component to its meaning. These two components are generally characters in their own right, with their own pronunciation and meaning. For example, the simple character 波 is pronounced yin in Mandarin and means ‘ocean’. The three-stroke sign on the left side of 波 is a semantic component, which means ‘water’ and provides understanding through the use of characters common to both their scripts. This, of course, would be inconceivable for English, French, German and Italian monograms, even though they share one (roman) script.
communicate with a Japanese speaker using characters, a Chinese person would have to hope that the particular characters he or she is using are not only used in Japanese but also that they have retained the same form and meaning in modern Japanese as in Chinese. (The characters for ‘sheep’ and ‘ocean’ are identical in Chinese and Japanese.)

The Japanese language differs greatly from the Chinese, phonologically, grammatically and syntactically. Even so, the Japanese based their writing system on the Chinese characters, as already discussed. When they first adopted Chinese characters during the early centuries of the first millennium bc, the Japanese applied their own pronunciations, sometimes based on native Japanese words and sometimes adapting an original Chinese pronunciation to the sounds of the Japanese language. (Indeed kanji, the Japanese word for Chinese character, is a rendering of a term which in modern Mandarin is pronounced hanzi, meaning ‘Han characters’.) Gradually, over time, they developed two fairly small sets of supplementary phonetic signs, the syllabic kana (now standardised as forty-six hiragana and forty-six katakana – the forms of which are actually simplified versions of the Chinese characters – in order to make clear how the characters were to be pronounced in Japanese and how to transcribe native (that is, Japanese) words and grammatical endings. It would have been simpler, one might reasonably think, if the Japanese had used only these invented signs and had abandoned the Chinese characters altogether, but this would have entailed the rejection of an ancient writing system of huge prestige. (From the 1980s, it is true, the Japanese abandoned the Chinese characters altogether, but this would have been simpler, one might reasonably think, if the Japanese had used only these invented signs and had abandoned the Chinese characters altogether, but this would have entailed the rejection of an ancient writing system of huge prestige.)

As the sixth millennium of recorded civilisation opened in 2000, Mesopotamia was again at the centre of historical events. Where once, at the birth of writing, the statecraft of absolute rulers like Hammurabi and Darius was recorded in Sumerian, Babylonian, Assyrian and Old Persian cuneiform on clay and stone, now the Iraq wars against Saddam Hussein generated millions of mainly alphabetic words on paper and on the World Wide Web written in a babel of languages.

But although today’s technologies of writing are immeasurably different from those of the third millennium bc, its linguistic principles have not changed very much since the composition in cuneiform during the second millennium bc of the epic about the legendary Sumerian king, Gilgamesh. However, the seismic impact of electronic writing and archiving on information distribution, research and communications has polarised the debate about the correct definition of ‘writing’. Must ‘full’ writing depend on a spoken language, as maintained in this chapter? Or can it float free of its phonetic anchor? If so, the world could theoretically become open for universal written communication, without barriers of language.

While some people persist in thinking that the digital revolution since the 1990s has made little or no difference to what happens in their minds when they actually read, write and think, others as stoutly maintain that the digitisation of writing is radically altering our absorption of knowledge and will at last usher in the information and surrounded by information technologies of astonishing speed, convenience and power, these cautionary words about writing recorded 2,500 years ago surely have a surprisingly contemporary ring.
32. National Governors Association Center for Best Practices, Common Core State Standards for English Language Arts.
38. Department for Education (DfE), Key Stage 2 SATs results.
39. Department for Education and Employment (DfEE), Developing Early Writing.
40. Case-Smith and Weintrub, ‘Hand function and developmental coordination disorder’.
41. Barnett et al., Detailed Assessment of Speed of Handwriting.
42. Ibid.
43. O’Hare, ‘Dysgraphia and dyscalculia’.
44. Zwicker, ‘Effectiveness of occupational therapy in remediating handwriting difficulties in primary students’.
45. Berninger et al., ‘Early development of language by hand’.

INTRODUCTION
Raines, John, Visual and Written Culture in Ancient Egypt (Oxford: Oxford University Press, 2007)
Daniels, Peter T., An Exploration of Writing (Sheffield: Equinox Publishing, 2018)

CHAPTER 1. THE ORIGINS OF WRITING
Coe, Michael D., Decoding the Maya Code, second edn (London: Thames & Hudson, 1999)
→ An Exploration of Writing (Sheffield: Equinox Publishing, 2018)
Duhoux, Yves, Palaima, Thomas G. and Bennet, John (eds), Problems in Decipherment (Laurain: Pertres, 1989)
Harris, Roy, The Origin of Writing (London: Duckworth, 1986)

CHAPTER 2. THE ROMAN ALPHABET
Bischoff, Bernhard, Latin Palaeography: Antiquity and