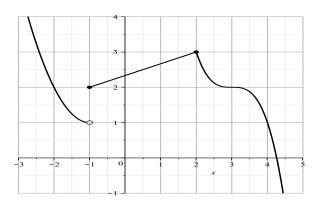
Math 1496 - Sample Test 1 Solutions

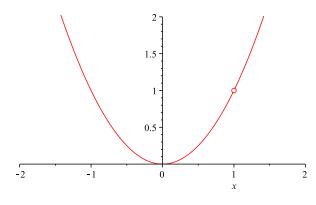
1. From the following graph determine the following limits.



$$(i) \quad \lim_{x \to -1^-} f(x) = 1 \quad (ii) \quad \lim_{x \to -1^+} f(x) = 2 \quad (iii) \quad \lim_{x \to -1} f(x) = \mathsf{DNE}$$

(iv)
$$\lim_{x \to 2^{-}} f(x) = 3$$
 (v) $\lim_{x \to 2^{+}} f(x) = 3$ (vi) $\lim_{x \to 2} f(x) = 3$

- 2. Calculate $\lim_{x\to 1} \frac{x^3 x^2}{x 1}$ using the techniques of graphically, numerically and analytically.
- (i) Graphically



from which the graph says $\lim_{x\to 1} \frac{x^3 - x^2}{x - 1} = 1$.

(ii) Numerically

х	0.9	0.99	0.999	1.001	1.01	1.1
f(x)	0.8100	0.9801	0.9980	1.0020	1.0201	1.2100

from which the table says $\lim_{x \to 1} \frac{x^3 - x^2}{x - 1} = 1$.

(iii) Analytically

$$\lim_{x \to 1} \frac{x^3 - x^2}{x - 1} = \lim_{x \to 1} \frac{x^2(x - 1)}{x - 1} = \lim_{x \to 1} x^2 = 1$$

3. Calculate the following limits analytically.

(i)
$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x^2 - 1} = \lim_{x \to -1} \frac{(x+1)(x+2)}{(x+1)(x-1)} = \lim_{x \to -1} \frac{(x+2)}{(x-1)} = -\frac{1}{2}$$

(ii)
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x}-2} = \lim_{x \to 4} \frac{x-4}{\sqrt{x}-2} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2} = \lim_{x \to 4} \frac{(x-4)(\sqrt{x}+2)}{x-4} = \lim_{x \to 4} \sqrt{x}+2 = 4$$

(iii)
$$\lim_{x \to 0} \frac{\sin 4x}{\sin 2x} = \lim_{x \to 0} \frac{\frac{\sin 4x}{x}}{\frac{\sin 2x}{x}} = \frac{4}{2} = 2 \text{ since } \lim_{x \to 0} \frac{\sin mx}{x} = m$$

(iv)
$$\lim_{x \to \infty} \frac{3x^2 + 4}{x^2 + 2x + 1} = \lim_{x \to \infty} \frac{3 + \frac{4}{x^2}}{1 + \frac{2}{x} + \frac{1}{x^2}} = \frac{3 + 0}{1 + 0 + 0} = 3$$

4. Calculate the first derivative (either f'(x) or y') of the following. Do not simplify your answer

(i)
$$y = \frac{4e^x}{x^2 + 1}$$
, $y' = \frac{4e^x(x^2 + 1) - 4e^x \cdot 2x}{(x^2 + 1)^2}$

(ii)
$$y = x^2 \tan x$$
, $y' = 2x \tan x + x^2 \sec^2 x$

(iii)
$$y = (2x+1)(x^2+3x+2),$$

 $y' = 2(x^2+3x+2) + (2x+1)(2x+3)$
at $x = -1, y' = (2)(0) + (-1)(1) = -1$

(iv)
$$y = \frac{e^x}{x^2 + 1}$$
, $y' = \frac{e^x(x^2 + 1) - e^x 2x}{(x^2 + 1)^2}$
at $x = 0$, $y' = \frac{e^0(1) - 0}{(0 + 1)^2} = 1$

5. The definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{n}$$
 (2)

If $f(x) = 3x^2 - 5x + 2$ then

$$f'(x) = \lim_{h \to 0} \frac{3(x+h)^2 - 5(x+h) + 2 - (3x^2 - 5x + 2)}{h}$$

$$= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5x - 5h + 2 - 3x^2 + 5x - 2}{h}$$

$$= \lim_{h \to 0} \frac{h(6x + 2h - 5)}{h} = \lim_{h \to 0} 6x + 2h - 5 = 6x - 5$$

6. If $y = x^4 - 2x^3 + 2x^2$ then $y' = 4x^3 - 6x^2 + 4x$. At x = 1, y = 1 and $y'|_{x=1} = 4 - 6 + 4 = 2$ so the equation of the tangent is y - 1 = 2(x - 1).

7. If

$$f(x) = \begin{cases} x+1 & x \le 0 \\ x^2+1 & x > 0 \end{cases}$$

is f(x) continuous and differentiable at x = 0?

Part (i)

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} x + 1 = 1$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} x^{2} + 1 = 1$$

Further f(0) = 0 + 1 = 1. Since

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0) = 1,$$

f(x) is continuous at x = 0.

Part (ii)

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{x + 1 - 1}{x} = \lim_{x \to 0} 1 = 1$$

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{x^{2} + 1 - 1}{x} = \lim_{x \to 0} x = 0$$

Since

$$\lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x) = 0,$$

then f(x) is not differentiable at x = 0.