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ABSTRACT

Spatial transformation of an irregularly sampled data series
to a regularly sampled data series is a challenging problem
in many areas such as seismology. The discrete Fourier analysis
is limited to regularly sampled data series. On the other hand,
the least-squares spectral analysis (LSSA) can analyze an irregu-
larly sampled data series. Although the LSSA method takes into
account the correlation among the sinusoidal basis functions of
irregularly spaced series, it still suffers from the problem of
spectral leakage: Energy leaks from one spectral peak into an-
other. We have developed an iterative method called antileakage
LSSA to attenuate the spectral leakage and consequently regu-
larize irregular data series. In this method, we first search for a

spectral peak with the highest energy, and then we remove
(suppress) it from the original data series. In the next step,
we search for a new peak with the highest energy in the residual
data series and remove the new and the old components simul-
taneously from the original data series using a least-squares
method. We repeat this procedure until all significant spectral
peaks are estimated and removed simultaneously from the origi-
nal data series. In addition, we address another problem, which
is random noise attenuation in the data series, by applying
a certain confidence level for significant peaks in the spectrum.
We determine the robustness of our method on irregularly
sampled synthetic and real data sets, and we compare the results
with the antileakage Fourier transform and arbitrary sampled
Fourier transform.

INTRODUCTION

Regularization (a typical spectral interpolation/extrapolation)
of irregularly sampled (unequally spaced) data is a crucial problem
in seismology. Marine seismic data sets are usually irregularly
sampled along the spatial direction because of cable feathering,
editing bad traces, etc. Regularly sampled seismic data are required
for various purposes, such as wave-equation migration, seismic in-
version, amplitude variation with azimuth or offset analyses, and
surface-related multiple elimination (Weglein et al., 1997; Xu et al.,
2010; Chen et al., 2015). There are several effective algorithms pro-
posed by researchers to interpolate seismic data such as the f-x and
t-x prediction error filters (PEFs) (Spitz, 1991; Crawley, 2000;
Fomel, 2002; Wang, 2002), masking in the frequency-wavenumber
domain (Gülünay, 2003), projection onto convex sets (POCS) and

its modifications (Abma and Kabir, 2006; Yang et al., 2012; Wang
et al., 2016), minimum weighted norm interpolation (MWNI) (Liu
and Sacchi, 2004; Trad, 2009), shaping regularization (Fomel,
2007; Chen et al., 2015), antileakage Fourier transform (ALFT)
(Xu et al., 2005, 2010, 2011), and arbitrarily sampled Fourier trans-
form (ASFT) (Guo et al., 2015).
In the PEF theory, the data must be wide-sense stationary and regu-

lar. The f-x PEFs represent a spectral approach that uses the available
traces to predict the linear events, and it is suitable for aliased seismic
data. For seismic data, windowing is required to approximately fulfill
the stationarity condition of the PEFs. Nonstationary PEF has also
been used in seismic data interpolation to solve the interpolation of
curved events (Crawley, 2000; Liu and Chen, 2017). The POCS
method is based on the Gerchberg-Saxton iterative algorithm (Gerch-
berg and Saxton, 1972) widely used in industry. Its performance
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on noisy data and its computational efficiency have been recently
improved (Ge et al., 2015; Wang et al., 2016). Abma and Kabir
(2006) use a linear threshold in the iterations of the POCS method
and point out that the threshold is the key parameter in this method.
Thereafter, other works have been done on an appropriate selection of
a threshold to improve the result of the POCS method (Gao et al.,
2013). The MWNI method solves an underdetermined system of
equations subject to suitable prior information for the purpose of
regularization. The linear shaping regularization is another approach
for regularizing an underdetermined geophysical inverse problem
that uses a linear shaping operator. The nonlinear shaping regulari-
zation allows the shaping operator to be nonlinear making it more
flexible in implementing the iterative framework.
The ALFT and ASFT methods estimate the Fourier coefficients

of the data series first by searching for the peak with maximum en-
ergy and subtracting its component from the data series and then by
repeating the procedure on the residual data series until all the sig-
nificant Fourier coefficients are estimated. This way, the spectral
leakages of Fourier coefficients emerging from the nonorthogonal-
ity of the global Fourier basis functions will be attenuated. How-
ever, these methods usually cannot find the correct location of a
peak with maximum energy from a preselected set of wavenumbers
because of the correlation between the sinusoids, and so they do not
effectively reduce the leakage. This shortcoming becomes more se-
vere when a data series has more spectral components. Moreover,
the constituents of known forms such as datum shifts and trends are
not explicitly considered in these algorithms. Therefore, if the
trends or datum shifts are present in a data series, then the ALFT
and ASFT methods implicitly approximate them by sinusoids of
various wavenumbers (Xu et al., 2010). Hollander et al. (2012) pro-
pose a method that uses an orthogonal matching pursuit (OMP) to
improve the ALFT results. In the OMP approach, the coefficients of
all previously selected Fourier components are reoptimized, pro-
ducing better interpolation results compared with the ALFT results.
Least-squares spectral analysis (LSSA) was introduced by Vaníček

(1969) to analyze unequally spaced time series. It basically estimates
a frequency spectrum based on the least-squares fit of sinusoids to the
time series by accounting for measurement errors, trends, and con-
stituents of known forms. In the LSSA method because the selected
frequencies are examined one by one (out-of-context), the spectral
leakages still appear and result in interpolation inaccuracy, although
the nonorthogonality between the sine and cosine basis functions is
taken into account for each frequency. The statistical properties of
the least-squares spectrum (LSS) were discussed later by Lomb
(1976), Craymer (1998), and Pagiatakis (1999). Seismic data are
well-sampled along the time direction (regularly sampled), but they
are usually are poorly sampled along the spatial direction (irregularly
spaced). Note that the LSSA method and its applications are mainly
discussed on an unequally spaced time series in the literature; how-
ever, we can concurrently apply its concept in the spatial direction
that is based on wavenumber (cycles per unit distance) rather than
frequency (cycles per unit time). Therefore, when we use the term
“data series,” we mean a series of data points sampled along the spa-
tial direction.
In this contribution, we apply the idea of maximum energy in the

LSSA method to develop the antileakage LSSA (ALLSSA) method
that mitigates the spectral leakages significantly. We further show
how the ALLSSA method attenuates the random noise present in
data down to a certain confidence level. The main assumption in the

ALFT, ASFT, LSSA, and ALLSSA methods is that the data must be
wide-sense stationary (Xu et al., 2010; Ghaderpour and Pagiatakis,
2017). However, we note that the LSSA method considers the con-
stituents of known forms such as trends and/or datum shifts explic-
itly, so they are somewhat adaptable to the nonstationary data series
(Craymer, 1998; Ghaderpour and Pagiatakis, 2017). In the synthetic
data examples here, we show that if the data are wide-sense station-
ary, then the ALLSSA method is an excellent and very accurate
method for regularization and random noise attenuation. Özbek et al.
(2009) propose an iterative algorithm called interpolation by match-
ing pursuit (IMAP) to regularize irregularly sampled seismic data.
The IMAP method improves the original Lomb spectrum (LSS)
result, and we will briefly compare it with the ALLSSA method.
However, seismic data are often nonstationary and contain many

nonlinear events (Crawley, 2000). It is traditional to use windowing
of seismic images in t-x and f-x prediction (Abma and Claerbout,
1995). The f-x domain interpolation algorithms for regularly
sampled data also need data windowing. Windowing strategy makes
the nonlinear events approximately linear and usually works well
when the data do not have a complex geologic structure. Liu et al.
(2012) apply regularized nonstationary autoregression in the f-x
domain, which does not require windowing strategies in the spatial
direction. Liu et al. (2012) propose a method called local parallel
radial-trace time-frequency peak filtering (TFPF), which is less sen-
sitive to the fixed window length used in the TFPF and performs
well for random noise attenuation.
Windowing strategy also significantly decreases the computa-

tional time in the ALFT method; however, the problem of spatial
aliasing may occur more likely within the windows (Schonewille
et al., 2009; Xu et al., 2010). Because the events are approximately
linear within the windows, an antialiasing scheme (Schonewille
et al., 2009) may be used inside the ALFT method (and similarly
inside the ASFT and ALLSSA methods) to improve the regulariza-
tion result. In this paper, we will also use an appropriate weight
matrix defined by the Gaussian function in the ALLSSA method
to regularize the irregularly spaced seismic data more accurately.
In addition, we shall show in our field data example that repeating
the ALLSSA method can attenuate the random noise down to a cer-
tain level (typically, 10% of seismic data might be random noise).
It is customary to transform each trace from the time domain to the

frequency domain using the fast Fourier transform (FFT) (Spitz,
1991; Abma and Claerbout, 1995; Xu et al., 2010; Guo et al., 2015).
Then for each frequency, we generate a data series whose data points,
located at the trace locations, are the Fourier coefficients of that fre-
quency (a temporal frequency slice). For irregularly spaced seismic
data, each temporal frequency slice is an irregularly sampled data
series, and the ALFT or ASFT or ALLSSA method may be used to
regularize the data series, and then each trace can be transformed
back from the frequency domain to the time domain by the inverse
FFT. Note that in this work, all the analyses are performed on the
temporal frequency slices. We now begin by revisiting the ALFT,
ASFT, and LSSA methods in more detail, and then we combine the
ideas of these methods to introduce the ALLSSA method.

METHODS

Antileakage Fourier transform

Suppose that ffðxlÞ∶l ¼ 1; : : : ; ng is the set of n (n > 1) data
points, where the xls may be irregularly sampled. We assume that
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xl is a real number in the closed interval [0,1], where “1” is the unit
distance (e.g., 1 km). We may define Δxl ¼ ð1∕2Þðxlþ1 − xl−1Þ
for 1 < l < n. For the two special cases l ¼ 1 and l ¼ n, we
may define Δx1 ¼ x2 − x1 and Δxn ¼ xn − xn−1, respectively.
LetΔx ¼ P

n
l¼1 Δxl. If xl ¼ ðl∕nÞd for l ¼ 1; : : : ; n, thenΔxl ¼

d∕n and Δx ¼ d, where d is the trace distance. For simplicity, in
this work, we normalize offsets to make the offset of the far offset
trace equal to one, and so Δx ¼ 1. The forward discrete summation
of Fourier integral (after dividing by the summation range) for
wavenumber ωk ∈ K is defined as

f̂ðωkÞ ¼
1

Δx

Xn
l¼1

ΔxlfðxlÞe−2πiωkxl ; (1)

and the contribution of ωk to the inverse is defined as

fkðxlÞ ¼ f̂ðωkÞe2πiωkxl ; (2)

where K ¼ fð−n∕2Þ; : : : ; ðn∕2Þ − 1g if n is even and K ¼
f−ðn − 1Þ∕2; : : : ; ðn − 1Þ∕2g if n is odd. The wavenumber ωk

means the ωk cycles of sinusoids per unit distance. The (spatial)
sampling rate is defined as the number of samples (traces) per unit
distance. Note that for regularly sampled data series, the Nyquist
wavenumber is half of the (spatial) sampling rate; however, the Ny-
quist wavenumber does not explicitly exist for inherently unequally
spaced data series. Therefore, we may implicitly choose the maxi-
mum wavenumber for the analysis to be less than half of the sampling
rate (the aliasing may not occur for the wavenumber beyond this se-
lection). If a data series is assumed to be regularly spaced, but some
samples are missing, then the Nyquist wavenumber may be half of the
sampling rate for the regularly spaced data series (Craymer, 1998).
If the xl’s are regularly spaced, then the estimation of the Fourier

coefficient f̂ðωkÞ has no effect on the estimations of other Fourier
coefficients because the sinusoids are orthogonal; i.e., the dot product
between the sinusoids is zero (see Appendix A). However, the ortho-
gonality condition fails for an irregularly sampled data series result-
ing in spectral leakages. To mitigate these leakages, Xu et al. (2005)
propose the ALFT method, which has the following three steps:

1) Compute all Fourier coefficients of the input data series using
equation 1. Note that samples of function f in equation 1 can be
the samples of a frequency slice in seismic applications.

2) Select the Fourier coefficient with the maximum energy.
3) Subtract the contribution of this coefficient (equation 2) from

the input data series to obtain the residual data series. Use this
residual data series as the new input and go to step 1. Continue
this procedure until the L2 norm of the residual data series be-
comes approximately zeros (below a threshold).

Although the ALFT method is fairly efficient and effective in
practical applications, it has some shortcomings. The main short-
coming of the ALFT method is that it only uses wavenumbers in
a preselected set of wavenumbers (e.g., set K) and does not search
for the actual wavenumbers (real numbers) of components in a data
series that may not be in the preselected set of wavenumbers. In
other words, the wavenumber context of the data may not fall on
one of the wavenumber samples used in set K. Therefore, for a bet-
ter regularization result, a denser set of wavenumbers may be se-
lected in the ALFT method (Xu et al., 2011). For a data series of
size n with N wavenumbers, the ALFT method requires the com-

putation of N Fourier coefficients for each iteration, which has an
order of nN floating operations, and it usually takes N iterations to
converge. Thus, the total computational cost in the ALFT method
is on the order of nN2 (Xu et al., 2005, 2010). Therefore, a denser
set of wavenumbers will greatly increase the computational cost,
and the actual wavenumbers of the components cannot still be ac-
curately estimated. In practice, however, one may need fewer iter-
ations when dealing with data that have by nature only a few
different spectral components.

Arbitrary sampled Fourier transform

Guo et al. (2015) propose a method that is similar to the ALFT
method, but it can estimate the wavenumbers of the components
in a data series more accurately. In this section, we describe their
method called the arbitrary sampled Fourier transform (ASFT).
Consider the following cost function:

ΛðωkÞ ¼
Xn
l¼1

jfðxlÞ − f̂ðωkÞe2πiωkxl j2; (3)

where f̂ðωkÞ is given in equation 1 and j:j denotes the absolute
value. The ASFT method has the following three steps:

1) For each ωk ∈ K, compute f̂ðωkÞ and find the wavenumber ωk

such that ΛðωkÞ is minimum.
2) Find wavenumber hk in I ¼ ½ωk − b;ωk þ b� such that ΛðhkÞ is

minimum. Because the wavenumbers inK are integer, we may
choose b ¼ 0.5.

3) Subtract the contribution f̂ðhkÞe2πihkxl from the input data series
to obtain the residual data series. Use this residual data series
as the new input, and go to step 1. Continue this procedure
until the L2 norm of the residual data series becomes approx-
imately zero (below a threshold).

Estimating hk up to a chosen decimal place in step 2 may simply
be done by an appropriate partitioning of interval I as follows:
For b ¼ 0.5, compute Λðhk1Þ for all wavenumbers hk1 in set fωk −
0.5þ 0.1j; j ¼ 1; : : : ; 9g and choose wavenumber hk1 that Λðhk1Þ
is minimum. Note that wavenumber hk1 is estimated up to one deci-
mal place. Next, compute Λðhk2Þ for all wavenumbers hk2 in set
fhk1 − 0.1þ 0.01j; j ¼ 1; : : : ; 19g and choose wavenumber hk2
that Λðhk2Þ is minimum. Note that wavenumber hk2 is now esti-
mated up to two decimal places. We may continue this process to
estimate the wavenumber hk up to any chosen decimal place.
Estimating hk up to four decimal places by using this technique
requires 9þ 3ð19Þ ¼ 66 times calculation of equation 3 that is com-
putationally much faster than 9999 (equally spaced numbers in in-
terval I) times calculation of equation 3, and it is also practically
acceptable. For a fair comparison between the ASFT and ALLSSA
methods, we use this partitioning technique for both methods. One
may also apply other techniques such as the conjugate gradient or
the Broyden-Fletcher-Goldfarb-Shanno algorithm for step 2 (Guo
et al., 2015) or other robust minimizers such as simulated annealing
(Chen and Luk, 1999).

Note that wavenumbers estimated in the ASFT method are real
numbers obtained directly from the cost function minimization that
is easier to interpret (Guo et al., 2015). One of the advantages of the
ASFT method over the ALFT method is that the wavenumbers are
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estimated more accurately at each step. Therefore, if a threshold is
defined for the L2 norm of residual data series, then the ASFT
method is able to arrive at that threshold in a smaller number of
iterations compared with the ALFT method, resulting in more ac-
curacy and less computational cost. In other words, for a data series
of size nwith n preselected wavenumbers, the ASFT method has an
order of n2m floating operations, where m is the number of itera-
tions that is usually smaller than n by selecting an appropriate
threshold. For an irregularly sampled data series with several com-
ponents, although the ASFT method can estimate the wavenumbers
of the components more accurately than the ALFT method, its spec-
trum still shows spectral leakages caused by the correlations between
the sinusoids. Therefore, the wavenumbers of the data components
cannot be estimated very accurately, and its spectrum contains many
wavenumbers.

Least-squares spectral analysis

Let f ¼ ½fðxlÞ� be the column vector of n data points. Note
that xl ∈ ½0; 1�, where one is the maximum distance. Let
Φk ¼ ½cosð2πωkxlÞ; sinð2πωkxlÞ�, l ¼ 1; : : : ; n, be the n × 2

matrix of a fixed wavenumber ωk ∈ Ω, where Ω can be any set
of real numbers. When a data series is regularly spaced, for the
simultaneous estimation of the amplitudes and phases, Ω may be se-
lected as the set of all positive integers less than the Nyquist wave-
number (see Appendix A). Suppose that f has been derived from a
population of (complex) random variables, and Cf is the (regular and
Hermitian) covariance matrix associated with f defined as

Cf ¼

2
666664

σ2fðx1Þ σfðx1Þfðx2Þ · · · σfðx1ÞfðxnÞ
σfðx2Þfðx1Þ σ2fðx2Þ · · · σfðx2ÞfðxnÞ

..

. ..
. ..

.

σfðxnÞfðx1Þ σfðxnÞfðx2Þ · · · σ2fðxnÞ

3
777775; (4)

where σ2fðxlÞ is the variance of (complex) random variable fðxlÞ and
σfðxuÞfðxvÞ is the covariance between two (complex) random variables
fðxuÞ and fðxvÞ. The covariance σfðxuÞfðxvÞ is a measure of the joint
variability between random variables fðxuÞ and fðxvÞ defined as

σfðxuÞfðxvÞ ¼ E½ðfðxuÞ − E½fðxuÞ�ÞðfðxvÞ − E½fðxvÞ�Þ�
¼ E½fðxuÞfðxvÞ� − E½fðxuÞ�E½fðxvÞ�; (5)

where fðxÞ is the conjugate of fðxÞ and E½X� is the expected value of
(complex) random variable X (Eriksson et al., 2009).

Let P ¼ C−1
f . In many practical applications, P is approximately

a diagonal matrix (the correlations between the data points are neg-
ligible), so we may treat it as a vector for computational efficiency
(Pagiatakis, 1999; Ghaderpour and Pagiatakis, 2017). In the LSSA
method, we minimize the cost function ΨðckÞ ¼ ðf −ΦkckÞT
Pðf −ΦkckÞ to estimate ck, so we obtain ĉk ¼ ðΦT

kPΦkÞ−1ΦT
kPf,

where “T” indicates the transpose and conjugate transpose when
f is complex. Note that ĉk is a 2 × 1matrix (a column vector) whose
elements are real or complex depending on f. The normalized LSS
for ωk ∈ Ω is defined as

s0ðωkÞ ¼
fTPΦkĉk
fTPf

: (6)

Note that s0ðωkÞ ∈ ð0; 1Þ, and it shows how much the sinusoids of
wavenumber ωk contribute to the entire data series. Now if we know
that there are constituents of known forms in the data series, we may
first estimate and remove them from the data series and then study
the residual data series. More precisely, let Φ ¼ ½Φ1; : : : ;Φq� be
the n × q matrix of constituents of known forms. The constituents
can be the column vector of all ones [1] and/or the position column
vector ½x� to explicitly account for any linear trend and/or the col-
umn vectors of the sinusoids of particular wavenumbers.
We first minimize the cost function Ψ1ðcÞ ¼ ðf −Φ cÞT

Pðf −Φ cÞ to estimate c as

ĉ ¼ N−1ΦTPf; (7)

where N ¼ ΦTPΦ, and obtain the residual data series

g ¼ f −Φ ĉ : (8)

Next, we minimize the cost function Ψ2ðc; ckÞ ¼ ðf −Φ c−ΦkckÞT
Pðf −Φ c−ΦkckÞ to estimate ck. In Appendix B, we show that

ĉk ¼ ðΦT
kPΦk −ΦT

kPΦN−1ΦTPΦkÞ−1ΦT
kPg: (9)

We call the term within the parentheses in equation 9, the matrix of
normal equations that is a real square matrix of order two (Craymer,
1998). If f is real, then ĉk is a real column vector of order two whose
elements are the estimated amplitudes for cosine and sine basis
functions. If f is complex, then ĉk is a complex column vector
whose real and imaginary parts correspond to the estimated ampli-
tudes for cosine and sine basis functions of the real and imaginary
parts of f , respectively. The normalized LSS of the residual data
series for ωk ∈ Ω is then defined by

sðωkÞ ¼
gTPΦkĉk
gTPg

: (10)

Note that sðωkÞ ∈ ð0; 1Þ, and it shows how much the sinusoids 
of wavenumber ωk contributes to the residual data series. Ideally,
if Φ is an invertible square matrix of order n, then g ¼ 0 (Craymer, 
1998).
To demonstrate the estimated amplitude and phases simultane-

ously, we may show the LSS in terms of wavenumber amplitude
by ĉk in equation 9. In other words, for each ωk ∈ Ω, we calculate 
the square root of the sum of squares of the first and second ele-
ments of ĉk (separately for the real and imaginary parts of ĉk if f is 
complex). This way, the LSS can be compared with the Fourier 
spectrum expressed in terms of absolute values of the Fourier co-
efficients as will be described in our synthetic data series example. 
It is shown (Pagiatakis, 1999) that if f has been derived from a

population of random variables following the multidimensional nor-
mal distribution, then the spectrum given in equation 10 follows the
beta distribution with parameters α ¼ 1 and β ¼ ðn − q − 2Þ∕2,
where q is the number of constituents of known forms and n is
the number of data points. We refer the reader to Craig et al. (2013) 
for a definition of the beta distribution. The critical value at (1-c) 
confidence level for the spectrum is then equal to 1 − c1∕β, where c 
is the significance level (usually 0.05 or 0.01). The critical value is 
independent of the weight matrix and wavenumbers 
(Pagiatakis, 1999; Ghaderpour and Pagiatakis, 2017).
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Antileakage LSSA

We apply the idea of maximum energy in the algorithm of the
ALFT method to develop a new algorithm for the LSSA method
that significantly reduces the spectral leakages and consequently
regularizes the irregularly sampled data series very accurately.
We may assume that Ω ¼ f1; 2; : : : ; ηg, where η may be chosen as
the largest positive integer less than half of the sampling rate. Be-
ginning with an initial Φ that may be selected as Φ ¼ ½1; x�, the
algorithm for the ALLSSA method has the following four steps:

1) Given Φ, compute ĉ and g (equations 7 and 8).
2) For all ωk ∈ Ω, calculate ĉk (equation 9) and find ωu in Ω such

that sðωuÞ (equation 10) is maximum.
3) Eliminate the cosine and sine basis functions of a wavenumber h

in Φ such that jh − ωuj < b (if it exists). Assuming that the
difference between any two consecutive actual wavenumbers
of the components in the data series is greater than one, we
may choose b ¼ 0.5 to resolve the peaks and avoid singularity
of the matrix of normal equations.

4) Find h in I ¼ ½ωu − b;ωu þ b� such that sðhÞ (equation 10) is
maximum. Concatenate the cosine and sine column vectors of
wavenumber h to Φ and then go to step 1. Finding h up to a
chosen decimal place can be done by an appropriate partition-
ing of I. Terminate the process if sðhÞ is no longer significant
at certain confidence level (usually 95% or 99%).

When we consider the weight matrix P, the method is called the
weighted ALLSSA. Removing the constituent of a particular wave-
number with maximum energy from the data series reduces the
spectral leakages of the residual spectrum. On the other hand,
the elimination of the basis functions of a wavenumber h in step
3 is crucial in the ALLSSA method because considering the corre-
lation between the sinusoids of different wavenumbers results in a
more accurate h in the next step. This correlation will be taken into
account as the column dimension ofΦ increases in the process. The
L2 norm of residual data series g approaches zero rapidly because
the wavenumbers are accurately estimated recursively that also pre-
vents increasing the column dimension of Φ in many practical ap-
plications especially when we apply the confidence level. We define
the antileakage LSS (ALLSS) in terms of wavenumber amplitude
by ĉ in step 1 after the process is terminated.
Similar to the discussion in the previous section, ĉ is a real or

complex column vector (depending on f) whose elements are the
estimated intercept and slope of the linear trend (if the initial Φ
is [1,x]) and the estimated amplitudes for the sine and cosine basis
functions of the estimated wavenumbers. We use this ĉ for the regu-
larization of a stationary data series that will also result in attenuat-
ing the random noise present in the data series down to certain
confidence level. For nonstationary data series, we may also treat
the final residual data series as a new input data series then perform
the ALLSSA method again (by applying the confidence level) and
repeat this procedure until the L2 norm of the final residual data
series approaches zero (below a threshold). Note that the actual
wavenumbers of the data series will be better approximated if
the initial Φ at least contains the column vector of all ones (Foster,
1996; Ghaderpour and Pagiatakis, 2017).

The computational complexity of the ALLSSA method depends
on the estimation of ĉ and the matrix of normal equations in each
iteration. For a data series of size n with η wavenumbers (e.g.,

η ¼ ðn∕2Þ − 1 if n is even and η ¼ ðn − 1Þ∕2 if n is odd), the proc-
ess has an order of nηm floating operations thatmmainly depends on
the number of significant spectral peaks. When applying the confi-
dence level, the total number of the significant peaks is usually small,
making m small, so the computational efficiency can be much better
than the ALFT and ASFT methods for stationary data series.
In the IMAPmethod, a wavenumber k1 corresponding to the larg-

est peak in the Lomb spectrum (Lomb, 1976) is selected. Then, the
contribution of the sinusoidal basis functions of wavenumber k1 to
the data series is subtracted from it to obtain the residual data series.
In the next step, the residual data series is treated as a new input data
series to choose a wavenumber k2 corresponding to the largest peak
in the new Lomb spectrum, and this procedure continues until the
desired wavenumbers are estimated. This iterative method mitigates
the spectral leakages in the Lomb spectrum and results in a faster
convergence (Özbek et al., 2009). Although the IMAP method im-
proves the spectral leakages in the Lomb spectrum, it does not
explicitly account for the correlations among the sinusoids of differ-
ent wavenumbers. Vassallo et al. (2010) have also studied estimat-
ing many wavenumbers per iteration and have documented several
dealiasing schemes.
On the other hand, in the ALLSSA method, the sinusoidal basis

functions of different wavenumbers, corresponding to the largest
statistically significant peaks in the spectrum, are added to the col-
umns of design matrix Φ in an iterative manner. Therefore, the
wavenumbers will be more accurately estimated in the next step by
considering the correlation among the columns. The accuracy of
estimated wavenumbers significantly reduces the number of itera-
tions and results in more accurate regularization.

SYNTHETIC DATA SERIES EXAMPLE

We use the ALLSSA method to regularize the data series of size
128 given by equation 13 in Xu et al. (2005) with an additional sine
wave and a linear trend

fðxlÞ ¼ 5 sinð25.6xlÞ þ 2.5 sinð128xl þ 1Þ
þ

ffiffiffi
3

p
sinð140xlÞ þ

ffiffiffi
2

p
þ πxl; (11)

where xl (l ¼ 1; 2; 3; : : : ; 128) is a random number in [0,1] gen-
erated by the MATLAB command “rand.” All the xls are sorted
in ascending order (see Table 1).

This data series is inherently unequally spaced, and so the Ny-
quist wavenumber does not explicitly exist. Therefore, there is no
restriction for the selection of maximum wavenumber in this exam-
ple. However, because our goal is to regularize this data series on a
series with regular spacing 1∕128 (the Nyquist wavenumber of this
regular series is 64), we choose the initial set of wavenumbers
as Ω ¼ f1; 2; 3; : : : ; 63g for the LSSA and ALLSSA methods,
and we estimate the wavenumbers up to four decimal places.
Note that the data series has three wavenumber components with
wavenumbers 25.6∕2π ≃ 4.0743665, 128∕2π ≃ 20.3718327, and
140∕2π ≃ 22.2816920, rounded to seven decimal places.
For the ALFT and ASFT methods, we also choose

K ¼ f−64;−63; : : : ; 63g. We illustrate their spectra with green
and blue dots in Figure 1a, respectively. The ALFTand ASFT meth-
ods implicitly accounts for the linear trend using the sinusoids of
various wavenumbers including zero. Figure 1a clearly shows the
presence of the spectral leakages in the ALFT and ASFT methods
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(with the threshold 0.5). However, the actual wavenumbers of the
data series in the ASFT method are estimated more accurately than
the ALFT method (see the numbers shown in blue).
For the LSSA and ALLSSA methods, we select the initial Φ as

Φ ¼ ½1; x� to explicitly account for the linear trend present in the
data series, where 1 and “x” are the column vectors of all ones and
the position vector, respectively. Because there is no covariance ma-
trix associated with the data series, we do not consider the square
weight matrix P in the calculation. We illustrate the LSS (black) and
the ALLSS (red) in terms of wavenumber amplitude, shown as
“Amplitude (Abs)” on the y-axis, in Figure 1b. The LSS shows one
strong peak at wavenumber 4 that is the closest value to the actual
value 4.0743665; however, the other two signal peaks are buried in
the leakage spectrum. On the other hand, it can be seen from the
ALLSS that only the actual signal peaks are estimated very accu-

rately at a 99% confidence level. Note that we estimated the signal
peaks up to only four decimal places, and we choose this accuracy
for our synthetic and field data examples in this contribution. The
result of the ALLSSA regularization for the data series without the
linear trend is also more accurate than the one for the ALFT and
ASFT regularization (not shown here).
Table 2 shows the result of the ALLSSA method. In the first

iteration, the wavenumber 4.0384 is estimated that is approximately
0.036 different from its actual value 4.0743665. This is a short-
coming of the LSSA method (out-of-context) caused by the presence
of other constituents in the data series. In the second and third iter-
ations, the other two wavenumbers are estimated that by removing
their corresponding components from the data series simultaneously,
the first wavenumber is better approximated and so forth (see the
highlighted numbers in Table 2).

Table 1. The values of the data series given in equation 11.

l xl fðxlÞ l xl fðxlÞ l xl fðxlÞ l xl fðxlÞ

1 0.0012 4.1459 33 0.2554 3.7746 65 0.5114 5.4213 97 0.7257 2.9864

2 0.0098 6.3235 34 0.2568 3.5381 66 0.5246 3.206 98 0.7269 3.6399

3 0.011 6.2455 35 0.2699 3.2506 67 0.5294 4.7075 99 0.7466 5.59

4 0.0249 1.733 36 0.2732 3.9738 68 0.5323 6.158 100 0.7477 5.3266

5 0.0569 10.5501 37 0.2789 5.6463 69 0.5431 11.4665 101 0.7522 4.2909

6 0.0577 10.4264 38 0.2794 5.8081 70 0.5566 9.1851 102 0.7615 4.2617

7 0.0606 9.5492 39 0.2848 7.3645 71 0.5694 3.6382 103 0.7624 4.4445

8 0.061 9.38 40 0.2851 7.4331 72 0.5733 3.663 104 0.789 10.4141

9 0.0614 9.2229 41 0.2874 7.9229 73 0.5761 4.2949 105 0.7897 10.3048

10 0.0887 4.7172 42 0.2915 8.4397 74 0.5761 4.2957 106 0.8106 7.1337

11 0.09 5.3539 43 0.3119 6.6108 75 0.5816 6.5607 107 0.8277 8.5478

12 0.0903 5.5206 44 0.3164 6.2615 76 0.5825 6.9787 108 0.83 8.5057

13 0.0915 6.0724 45 0.3178 6.2017 77 0.5846 7.9723 109 0.8371 7.7299

14 0.0921 6.3641 46 0.3209 6.1423 78 0.5847 8.0061 110 0.8372 7.7104

15 0.1097 5.5084 47 0.3416 6.203 79 0.595 9.7637 111 0.8383 7.5168

16 0.1099 5.4367 48 0.3473 5.8137 80 0.6003 7.8217 112 0.8464 5.7735

17 0.1161 1.33 49 0.3738 0.9117 81 0.6146 −0.6803 113 0.8504 4.899

18 0.1232 −2.1801 50 0.3747 0.75 82 0.6203 −1.4524 114 0.8586 3.415

19 0.1311 −2.2501 51 0.3907 −0.06 83 0.6253 −0.323 115 0.8588 3.3873

20 0.1478 2.7437 52 0.3927 0.0796 84 0.6393 4.3755 116 0.9064 −0.5541
21 0.1519 2.1289 53 0.3971 0.3735 85 0.6423 4.1792 117 0.9111 −1.3885
22 0.1726 −6.4868 54 0.4038 0.3453 86 0.6455 3.2762 118 0.9116 −1.4815
23 0.1858 −2.5312 55 0.4315 −4.1425 87 0.65 1.0609 119 0.9329 0.0564

24 0.1888 −1.2075 56 0.435 −3.4527 88 0.6714 −4.0102 120 0.9462 2.2945

25 0.191 −0.4057 57 0.439 −2.2456 89 0.6723 −3.6663 121 0.9481 2.2368

26 0.193 0.1571 58 0.448 0.6196 90 0.6866 2.4392 122 0.9573 0.8809

27 0.1982 0.5938 59 0.4503 1.0558 91 0.6944 1.8507 123 0.9622 0.1906

28 0.2213 −3.6923 60 0.4522 1.2574 92 0.6996 −0.0216 124 0.9711 0.906

29 0.2299 −0.6893 61 0.4963 6.7645 93 0.6996 −0.0283 125 0.9715 1.0231

30 0.2354 1.8974 62 0.5017 7.6344 94 0.7104 −2.7925 126 0.9727 1.3772

31 0.2369 2.5595 63 0.5044 7.421 95 0.7194 −0.3853 127 0.9798 4.4223

32 0.2553 3.7928 64 0.506 7.1136 96 0.7252 2.71 128 0.9884 8.0317
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We illustrate the ideal data series and the regularization results
using the three methods in Figure 2a. We also show the differences
between each ideal data point and the estimated one for the three
methods in Figure 2b. The L2 norm of the ideal regularized data
series is 57.382. The L2 norm of the difference between the ideal
data series and the regularized data series for the ALFT, ASFT, and
ALLSSA methods are 9.864, 1.26, and 0.004, respectively. For the
ALLSSA method, we only used the estimated slope and intercept
of the linear trend as well as the estimated amplitudes and phases
of the three wavenumbers for the regularization. Note that when a
smaller threshold is selected for the ASFT method, the computa-
tional time significantly increases, and its spectrum will have much
more wavenumbers with very low amplitudes (absolute value of
Fourier coefficients), and it still cannot reach the accuracy of the
ALLSSA method.

SYNTHETIC DATA EXAMPLE

We simulate four linear seismic events by using an Ormsby
wavelet, which is a common type of synthetic wavelet in reflection
seismology. The wavelet is defined by the sinc function as

AðtÞ ¼ ðπf4Þ2 sinc2ðπf4tÞ − ðπf3Þ2 sinc2ðπf3tÞ
πf4 − πf3

−
ðπf2Þ2sinc2ðπf2tÞ − ðπf1Þ2sinc2ðπf1tÞ

πf2 − πf1
: (12)

We choose f1 ¼ 5, f2 ¼ 10, f3 ¼ 20, and f4 ¼ 30, and so the
wavelet defines a trapezoidal shape in the frequency spectrum with
corner frequencies 5π, 10π, 20π, and 30π Hz. The linear events are
designed to have different amplitudes and dips. There are 100 traces
that are regularly spaced, and we randomly remove 40 traces (see
Figure 3). The sum of the L2 norm of all traces in Figure 3a is
650.86. The time sampling rate is 1000 samples per second, and
assuming that the unit distance is in kilometers, the distance sam-
pling rate is 100 samples per kilometer (10 m trace spacing). There-
fore, the Nyquist frequency is 500 Hz, and the Nyquist wavenumber
is 50 cycles per kilometer (c/k) and 40 traces are removed. The fre-
quency-wavenumber (f-k) spectrums of Figure 3a and 3c are shown
in Figure 3b and 3d, respectively. It can be observed that the
frequencies beyond 70 Hz (and −70 Hz) are aliased for two of
the linear events.
We now apply the ALFT, ASFT, and ALLSSA methods to the

edited data shown in Figure 3b, and we regularize the temporal fre-
quency slices. For a fair comparison, we apply the same threshold
(0.05) for the ALFT, ASFT, and ALLSSA methods. We also am-
plify the difference between the original synthetic data and the regu-
larized data (the error) by a factor of 30, and so the f-k spectrums of
the errors will correspond to the amplified errors for all the methods.
The same partitioning for wavenumbers is used for the ASFT and
ALLSSA methods to estimate the wavenumbers up to four decimal

Figure 1. The spectra of the irregularly sampled data series given in
equation 11. (a) The ALFT (green) and ASFT (blue) spectra, and
(b) the LSS (black) and ALLSS (red).

Table 2. The result of wavenumber estimation of the ALLSSA
algorithm on the irregularly sampled data series given in
equation 11 after each iteration.

Iteration
number

First
wavenumber

Second
wavenumber

Third
wavenumber

Norm of
residual

First 4.0384 — — 23.5040

Second 4.0384 20.3057 — 13.3170

Third 4.0384 20.3057 22.2947 3.5079

Fourth 4.0748 20.3057 22.2947 2.2501

Fifth 4.0748 20.3708 22.2947 0.3068

Sixth 4.0748 20.3708 22.2818 0.0468

Seventh 4.0748 20.3718 22.2818 0.0319

Eighth (final) 4.0744 20.3718 22.2818 0.0036

Note: Better estimated wave numbers are in bold.

Figure 2. (a) The irregularly sampled data series (black) given in
equation 11 and its regularizations using the ALFT (green), ASFT
(blue), and ALLSSA (red) methods, and (b) the difference between
the actual data series values and the regularized results.
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places. All the methods are programmed in MATLAB language,
and we run them on a computer with two cores (processors). We
also denote the sum of L2 norm of differences between the original
and interpolated traces by “ε.”
First, we choose K ¼ f−50;−49; : : : ; 48; 49g for the ALFT

method and show its regularization result and error in Figure 4a
and 4c, respectively. The computational time is 7 s, and ε ¼ 37.29.
It can be seen that the missing traces are not very well constructed
especially for the extrapolation (the traces toward the edges). This is
mainly due to the lack of accuracy of the wavenumbers. We next
double the number of wavenumbers, i.e., K ¼ f−50;−49.5;
−49; : : : ; 48.5; 49; 49.5g, and we show the ALFT regularization

result and error in Figure 4b and 4d, respectively. The computational
time increased to 14 s, but ε ¼ 6.76. We observe that the traces are
constructed more accurately than the previous choice for K. We also
illustrate the f-k spectrums corresponding to Figure 4 in Figure 5.
Next, we choose the preselected set of wavenumbers in the ASFT

method as K ¼ f−50;−49; : : : ; 48; 49g, and we illustrate its regu-
larization result and error in Figure 6a and 6c, respectively. The
computational time is 13 s, and ε ¼ 2.6, which is more accurate
and computationally faster than the ALFT method with the denser
set of wavenumbers.
For the ALLSSA method, we chooseΩ ¼ f1; 2; : : : ; 49g. To en-

sure that all the real wavenumbers are considered up to the Nyquist
wavenumber 50, we allow the partitioning for wavenumber 49 to

Figure 3. A synthetic seismic data containing four linear events.
(a) Original data with 100 traces, (b) the f-k spectrum of panel
a, (c) 40 traces are randomly removed, and (d) the f-k spectrum
of (c).

Figure 4. The regularization results using the ALFT method
with (a) 100 wavenumbers, (b) a denser set of wavenumbers (200
wavenumbers), and (c and d) the error corresponding to (a and
b), respectively (amplified 30 times).

Figure 5. The f-k spectrums corresponding to (a) Figure 4a, (b) Fig-
ure 4b, (c) Figure 4c, and (d) Figure 4d.

Figure 6. The regularization results using the (a) ASFT method,
(b) ALLSSA method, and (c and d) the error corresponding to
(a and b), respectively (amplified 30 times).
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cover the range [49, 50), and we choose Φ ¼ ½1; x� to explicitly
account for any linear trend. If we choose Φ ¼ ½1�, we may also
allow the partitioning for wavenumber 1 to cover the range (0,1],
so the sinusoids of lower wavenumbers can approximate the trends.
We show the ALLSSA regularization result and error in Figure 6b
and 6d, respectively. The computational time is 3 s, and ε ¼ 0.3. It
can be seen that the ALLSSA method is able to fill in the missing
traces much more accurately and computationally faster than the
ALFT and ASFT methods. We show the f-k spectrums correspond-
ing to Figure 6 in Figure 7.
To show how the ALLSSA method statistically attenuates the

random noise, we add a distinct Gaussian random noise to each
trace in Figure 3b. Therefore, approximately 20% of the synthetic
data is random noise. We illustrate only trace 1 for the extrapolation,

trace 15 for the interpolation, and trace 92 for noise attenuation pur-
poses in Figure 8. The set K ¼ f−50;−49; : : : ; 48; 49g is selected
for the ALFTand ASFT methods. Comparing the ALLSSA method
with the ALFT and ASFT methods, one can observe that the
ALLSSA method performs much better in reconstructing the sig-
nals (the events) and attenuates the random noise down to a certain
confidence level. The result of the ALFT and ASFT methods for
traces 1 and 15 looks noisier because aside from the accuracy of the
actual wavenumbers, more noise is interpolated in the traces. In the
ALLSSA method, when the 99% confidence level is used, the noise
attenuated slightly more than when the 95% level is used; however,
we recommend using the 95% confidence level for real seismic data
because of their nonstationarity behavior. Note that there is no rig-
orous statistical property of choosing a confidence level for the
ALFT and ASFT methods, so a threshold was selected based on
the amount of random noise for these methods.
To see the sensitivity of the ALLSSA method to spatially aliased

events, we remove the traces of odd numbers except a few of them
(e.g., trace numbers 5, 21, 83, 91) and show the result in Figure 9a.
We select a dense set of wavenumbers K ¼ f−50;−49.9; : : : ;
49.8; 49.9g (1000 wavenumbers) for the ALFTmethod. In this case,
the ALFT and ASFT methods have approximately the same com-
putational time (57 s) with ε ¼ 109.3 and ε ¼ 93.4, respectively.
We only illustrate the ALFT result because the ASFT result is also
very similar (see Figure 9). Note that the error is amplified by a

Figure 7. The f-k spectrums corresponding to (a) Figure 6a, (b) Fig-
ure 6b, (c) Figure 6c, and (d) Figure 6d.

Figure 8. The comparison of three regularized traces using the
ALFT, ASFT, and ALLSSA methods. Original traces without ran-
dom noise in black, with random noise in blue, the ALLSSA results
at 99% and 95% confidence levels in green and pink, respectively,
the ALFT result in yellow and the ASFT result in red. The left six
traces are for trace 1, the middle ones are for trace 15, and the right
ones are for trace 92.

Figure 9. (a) The synthetic data in Figure 3a after setting the traces
of odd numbers to zero except trace numbers 5, 21, 83, 91, (b) the
f-k spectrum of (a), (c) the regularization result using the ALFT
method with a denser set of wavenumbers (1000 wavenumbers),
(d) the f-k spectrum of (c), (e) the error (amplified 10 times), and
(f) the f-k spectrum of (e).
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factor of 10 in Figure 9e. To show the aliasing, we illustrate the f-k
spectrum of this synthetic data in Figure 9b. Because the dominant
trace spacing is 20 m, all of the events are spatially aliased. We also
show the f-k spectrums of the ALFT regularization result and its
amplified error in Figure 9d and 9f, respectively. One can clearly
observe the effect of the alias events in the spectrums. The computa-
tional time for the ALLSSA method is 2 s, and ε ¼ 0.9 which is
significantly smaller than the ALFT and ASFT methods. The final
regularization result is almost the same as Figure 6b (not shown
here). The reason for this accuracy is that the ALLSSA method very
accurately estimates the positive wavenumbers, and these few extra
traces (four traces) prevent the matrix of normal equations to be
singular. In the event that this matrix is singular, one may compute
its pseudo-inverse (Rao and Mitra, 1972). Note that if we remove
the traces of odd numbers, the Nyquist wavenumber will be 25 c/k
and the aliasing will occur for the wavenumbers beyond 25 c/k. In
this situation, an antialias technique similar to the technique in
Schonewille et al. (2009) may be used.

FIELD DATA APPLICATIONS

The field data example is a marine 2D shot gather from the deep-
water of Gulf of Mexico that is the same as the one used by Crawley
(2000), Fomel (2002), and Chen et al. (2015). The time sampling
rate is 250 samples per second. To compare our interpolation
approach with the nonlinear shaping regularization method, we re-
move the same traces (30%) as in Chen et al. (2015) (see Figure 10).
Note that the normalized wavenumber axis in the f-k spectrums is
obtained by considering Δx ¼ 1. We illustrate the nonlinear shap-
ing regularization result after 15 iterations and its error in Figure 11a
and 11c, respectively.
Because the stationarity of data series is the main assumption of

the ALFT, ASFT, and ALLSSA methods (i.e., the seismic events
must be approximately linear), we use thewindowing strategy. There-
fore, we divide the seismic data to six spatial windows and apply the
same threshold for the ALFT and ALLSSA methods. Within each
window, we choose K ¼ f−15;−14.9; : : : ; 14.8; 14.9g (300 wave-

numbers) for the ALFT method, and Ω ¼ f1; : : : ; 14g and initial
Φ ¼ ½1� for the ALLSSA method. We illustrate the regularization
result of the ALFT method and its error in Figure 11b and 11d.
The f-k spectrums corresponding to the nonlinear shaping regulari-
zation and ALFT methods are shown in Figure 12. The regularization
result using the ALLSSA method and its error are shown in
Figure 13a and 13c, respectively. Figure 14a and 14c shows the f-k
spectrums corresponding to Figure 13a and 13c, respectively.
It can be seen that the ALFT and ALLSSA methods performed

well in interpolating the missing traces compare with the nonlinear
shaping regularization method; however, they still have some small
amount of artifacts (compare the magnified sections, for example).
The data are very poorly sampled along the spatial direction within
some of the windows (e.g., half of the traces are missing within the
magnified section), and so the spatial aliasing mainly caused these

Figure 10. (a) A marine 2D shot gather from the deepwater Gulf
of Mexico, (b) the f-k spectrum of (a), (c) 30% of the traces are
randomly removed, and (d) the f-k spectrum of (c).

Figure 11. (a) The result of the nonlinear shaping regularization
after 15 iterations, (b) the ALFT result, (c) the error of (a), and
(d) the error of (b).

Figure 12. The f-k spectrums corresponding to (a) Figure 11a,
(b) Figure 11b, (c) Figure 11c, and (d) Figure 11d.
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artifacts. An antialiasing scheme within the windows may further
improve these results (Schonewille et al., 2009; Xu et al., 2010).
We now show an alternative approach for a better interpolation
result.
In the weighted ALLSSA method, the larger that the values of the

diagonal entries P are, the more the fitting process is focused around
the locations of those values and vice versa. For a faster computa-
tion, we may treat the weight matrix in equation 10 as a vector P ¼
½wðlÞ� (1 ≤ l ≤ n) whose entries are the values of the following
Gaussian function:

wðlÞ ¼ e−λðxl−xiÞ2 ; (13)

where λ determines the effective width of the Gaussian function
(length of the window) and xi is the location of a trace being
approximated. Therefore, we may apply the weighted ALLSSA
method to estimate each trace individually using the data within the
spatial window containing that trace, which may not necessarily fall
in the center of the window. For existing traces, we may still take
advantage of the computational speed of the ALLSSA method and
apply it to attenuate the random noise of the traces down to a certain
confidence level and so smooth the entire seismic data. By this
selection of P, the sinusoidal basis functions will be adapted to
the Morlet wavelet in the least-squares sense, smoothing the seismic
image (Foster, 1996; Ghaderpour and Pagiatakis, 2017). This selec-
tion also allows us to incorporate more wavenumbers into the algo-
rithm resulting in a better interpolation result (Crawley, 2000). A
similar discussion for selection of the weight function in the ALFT
method is also given in Xu et al. (2010).
For a better comparison between the ALLSSA and the weighted

ALLSSA methods, we select λ in equation 13 in such away that the
Gaussian bell curve is almost truncated to zero in the margins of the
translating windows whose lengths are the same as the window
length used above. We show the result of the weighted ALLSSA
method and its error in Figure 13b and 13d, respectively. The f-k
spectrums corresponding to Figure 13b and 13d are illustrated in

Figure 14b and 14d, respectively. One can observe that the events
are smoothly constructed, and the random noise is also attenuated
down to 95% confidence level (e.g., the blue arrows in Figure 13).
The almost linear event in the southeast part of the seismic data is
clearly constructed (compare the events within the magnified sec-
tions shown in Figure 13a and 13b and the corresponding f-k spec-
trums shown in Figure 14a and 14b, white arrows). All the methods
show small artifacts above the water-bottom reflections that are not
significant. We used a mask to set the values of the northeast part of
the images shown in Figures 11 and 13 to zero after the interpo-
lation.
We emphasize that the traces within each of the six spatial win-

dows are simultaneously estimated in the ALFT and ALLSSA

Figure 13. (a) The ALLSSA result, (b) the weighted ALLSSA re-
sult, (c) the error of (a), and (d) the error of (b). The events in (b) are
constructed more smoothly than in (a) (e.g., the blue arrows and
magnified sections).

Figure 14. The f-k spectrums corresponding to (a) Figure 13a,
(b) Figure 13b, (c) Figure 13c, and (d) Figure 13d. The white arrows
in (a and b) refer to the linear event shown in the magnified sections
in Figure 13a and 13b, respectively.

Figure 15. (a) The noise attenuated result of Figure 10a using the
ALLSSA method, (b) the f-k spectrum of (a), (c) the error (ampli-
fied by a factor of 20), and (d) the f-k spectrum of (c).
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methods, and so the existing traces are almost fully constructed,
resulting in error propagation to other traces (Figures 11b and
13a). However, in the weighted ALLSSA method, each trace is
individually approximated by applying a 95% confidence level,
and so the events are smoothly constructed and random noise is also
attenuated down to a 95% confidence level for the entire seismic
data.
Finally, for each temporal frequency slice of the original seismic

data (regularly spaced), one may repeat the ALLSSA method until
the L2 norm of the residual series becomes less than approximately
10% of the total L2 norm of the data series and use the inverse FFT
to reconstruct the traces. We show the result of this process, its dif-
ference from the original seismic data (amplified by a factor of 20),
and their corresponding f-k spectrums in Figure 15. One can ob-
serve that the geologic structures are clearly reconstructed, and the
random noise is attenuated (a 95% confidence level is used in each
iteration).

CONCLUSIONS

The ALLSSA method is a fast and very accurate new method of
regularizing stationary data series that can also attenuate the random
noise down to a certain confidence level. This method takes into
account the correlations among the sinusoidal basis functions as
well as the constituents of known forms by considering the covari-
ance matrix associated to the data series. We demonstrated how an
appropriate selection of the weight matrix (the inverse of the covari-
ance matrix) adapts the method for regularizing nonstationary data
series.
Similar to the ALFT and ASFT methods, the ALLSSA method

can be used for seismic data regularization. Because the ALLSSA
method estimates the wavenumbers of the data series more accu-
rately than do the ALFT and ASFT methods up to a certain con-
fidence level, it is computationally faster and more accurate than
the ALFTand ASFT methods for regularization. The numerical data
examples in this contribution show promising results. Applications
of the ALLSSA method are not restricted to seismology, and it may
show its potential performance in other fields such as geodesy,
astronomy, medical sciences, and finance.
Taking into account that the correlation among the sinusoids is

the key point in the ALLSSA method. This correlation will be con-
sidered when the matrix of normal equations is being inverted. In
practice, this matrix is often regular because the traces are usually
inherently unequally spaced. However, one may calculate the pseu-
doinverse of this matrix when it is singular. For seismic data with
very complex geologic structures that have severe aliasing, the
ALLSSAmethod may not be reliable for regularization because this
method is established mainly for the wide-sense stationary seismic
data similar to the ALFT, ASFT, and IMAP methods. In future
work, we extend the method to the higher dimension cases and
show its capability in regularization. It is expected that the gener-
alization of the ALLSSA method to higher dimensions has better
performance in regularization.
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APPENDIX A

LSS WHEN SPATIAL SAMPLING IS UNIFORM

The discrete Fourier transform (DFT) of a sequence of n regularly
spaced complex numbers fðx1Þ; : : : ; fðxnÞ into another sequence
of complex numbers (Fourier coefficients) is defined as

f̂ðωkÞ ¼
1

n

Xn
l¼1

fðxlÞe−2πiωkxl ; (A-1)

where xl ¼ l∕n, ωk ∈ K ¼ fð−n∕2Þ; : : : ; ðn∕2Þ − 1g if n is even,
and ωk ∈ K ¼ f−ðn − 1Þ∕2; : : : ; ðn − 1Þ∕2g if n is odd. We refer
to ωk as the wavenumber that is the number of cycles per unit dis-
tance. Considering all the wavenumbers simultaneously, the DFT
can be represented in matrix form as f ¼ ð1∕nÞDTf, where

F ¼

2
6664
f̂ðω1Þ

..

.

f̂ðωnÞ

3
7775; D ¼

2
6664
e2πiω1x1 e2πiω2x1 : : : e2πiωnx1

..

. ..
.

: : : ..
.

e2πiω1xn e2πiω2xn : : : e2πiωnxn

3
7775;

f ¼

2
6664
fðx1Þ
..
.

fðxnÞ

3
7775; (A-2)

and T denotes the conjugate transpose (Craymer, 1998). It can
be seen that f ¼ DF (when traces are regularly sampled in space).
The Euler’s formula implies that e2πiωkxl ¼ cosð2πωkxlÞþ
i sinð2πωkxlÞ, and so the LSSA method expresses the columns
of D as cosine and sine basis functions. More precisely, let
Ω ¼ f1; : : : ; ηg, where η ¼ ðn∕2Þ − 1 if n is even (η ¼ n∕2 is
the Nyquist wavenumber), and η ¼ ðn − 1Þ∕2 if n is odd. When
the real-valued version of the normal equations considered, the
least-squares minimization uses the model f ¼ Φc to estimate c
as ĉ ¼ N−1ΦTf, where N ¼ ΦTΦ,

Φ¼

2
664
1 cosð2πω1x1Þ sinð2πω1x1Þ ::: cosð2πωηx1Þ sinð2πωηx1Þ
..
. ..

. ..
.

::: ..
. ..

.

1 cosð2πω1xnÞ sinð2πω1xnÞ ::: cosð2πωηxnÞ sinð2πωηxnÞ

3
775;

(A-3)

and ωk ∈ Ω. The dimensions of Φ, N, and ĉ are n × ð2ηþ 1Þ,
ð2ηþ 1Þ × ð2ηþ 1Þ, and ð2ηþ 1Þ × 1, respectively.

Note that the first column of design matrix Φ above corresponds
to the zero wavenumber. In fact, we could have two column vectors
associated to the zero wavenumber: the first column for cosine
whose elements are cosð0Þ ¼ 1 and the second column for sine
whose elements are sinð0Þ ¼ 0. However, we avoid writing the zero
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column vector because it will make matrix N singular. We empha-
size that matrix N is a real square matrix, and it is regular as long
as the column vectors of Φ are linearly independent. We may also
include the column vector of cosð2πðn∕2ÞxlÞ ¼ cosð2πðn∕2Þ
ðl∕nÞÞ ¼ cosðlπÞ ¼ �1, l ¼ 1; : : : ; n, in matrix Φ above when
n is even. This way f will be reconstructed accurately if f contains
constituents of the Nyquist wavenumber n∕2. Note that we do not
include the column vector of the sine because sinð2πðn∕2ÞxlÞ ¼
sinð2πðn∕2Þðl∕nÞÞ ¼ sinðlπÞ ¼ 0 for l ¼ 1; : : : ; n. To avoid
the singularity of square matrix N, the negative wavenumbers
are excluded from matrix Φ. Craymer (1998) discusses that when
f is real, we may only consider the positive wavenumbers. However,
not much work is done on the LSSA method for the case in which f
is complex. Our analyses show that if f is complex, we may still
consider only the positive wavenumbers for regularization (see be-
low for further details).
Assume that n is even (for n odd, we have a similar discussion).

When a data series is regularly spaced, we have

Xn
l¼1

cosð2πωkxlÞcosð2πωuxlÞ¼
8<
:
n forωk¼ωu¼−n

2
or 0

n
2

forωk¼ωu≠−n
2
or 0

0 forωk≠ωu

;

(A-4)

Xn
l¼1

sinð2πωkxlÞsinð2πωuxlÞ¼
8<
:
0 for ωk ¼ωu ¼− n

2
or 0

n
2

for ωk ¼ωu ≠−n
2
or 0

0 for ωk ≠ωu

;

(A-5)

Xn
l¼1

cosð2πωkxlÞsinð2πωuxlÞ¼0 for allω∈K: (A-6)

Therefore, including only the positive wavenumbers in the LSSA
method also implicitly accounts for the identical response to pos-
itive and negative wavenumbers and produces a one-sided spectrum
that is physically meaningful. This will also effectively double the
amplitude of the least-squares transform with respect to the DFT
(Vaníček, 1969; Craymer, 1998). More precisely, it can be seen that

ĉ ¼ N−1ΦTf ¼

2
666666664

1
n

P
n
l¼1 fðxlÞ

2
n

P
n
l¼1 cosð2πω1xlÞfðxlÞ

2
n

P
n
l¼1 sinð2πω1xlÞfðxlÞ

..

.

2
n

P
n
l¼1 cosð2πωηxlÞfðxlÞ

2
n

P
n
l¼1 sinð2πωηxlÞfðxlÞ

3
777777775
; Φĉ ≈ f:

(A-7)

The elements of column vector ĉ in equation A-7 from top to
bottom are the estimated coefficients for the columns of Φ in equa-
tion A-3 from left to right, respectively. Note that Vaníček (1969),
Craymer (1998), and Pagiatakis (1999) discuss the LSSA method
mainly for a real time series (i.e., f is a real vector) with its appli-
cations in geodesy and geodynamics. However, because design

matrix Φ is a real matrix, f can also be a complex vector (e.g.,
a temporal frequency slice). In this case, ĉ in equation A-7 will be
a complex vector whose real and imaginary parts contain the esti-
mated amplitudes corresponding to the real and imaginary parts of
f, respectively. One may also use equation A-7 for the real part and
imaginary part of f individually (treating each part as a real data
series) and then form vector ĉ by combining the estimated ampli-
tudes of each part, producing similar regularization results to the
previous case.
For an irregularly sampled data series, equations A-4–A-6 are

no longer valid; i.e., the sinusoidal basis functions are no longer
orthogonal. However, the correlation between them is taken into
account when matrix N is being inverted. The selection of wave-
numbers is a critical task for the simultaneous estimation of the
LSS. The correlation among the sinusoids must be taken into
account carefully; otherwise, ill-conditioning in N can produce in-
correct results (Craymer, 1998). In the ALLSSA method, the wave-
numbers are accurately estimated in an iterative manner, producing
an accurate one-sided spectrum for stationary data series. We em-
phasize that in the ALLSSA method, we only estimate the coeffi-
cients of significant components of a data series of size n, and so the
number of columns in equation A-3 may be much smaller than n.
Also, note that we are not using the fast methods of the FFT for the
ALFT, ASFT, and ALLSSA methods.

APPENDIX B

OPTIMIZATION METHODS

Estimating ck by minimizing the cost function Ψ2ðc; ckÞ is in fact
solving the overdetermined system f ¼ Φ c ¼ Φ c−Φkck by using
the least-squares method (Craymer, 1998). Therefore, c ¼ N−1ΦTPf,
where N ¼ ΦTPΦ. Calculation of the inverse of N for obtaining the
spectrum of a data series is computationally tedious especially when
the number of constituents of known forms (the column dimension of
Φ) increases. Therefore, we may use a sequential technique similar to
Craymer (1998) to obtain equation 9. We expand N−1 as

N−1 ¼
"
ΦTPΦ ΦTPΦk

ΦT
kPΦ ΦT

kPΦk

#−1

¼
�
M1 M2

M3 M4

�
: (B-1)

It can be seen that

M1 ¼ ðΦTPΦ −ΦTPΦkðΦT
kPΦkÞ−1ΦT

kPΦÞ−1; (B-2)

M2 ¼ −M1ΦTPΦkðΦT
kPΦkÞ−1; (B-3)

M3 ¼ −M4ΦT
kPΦN−1; (B-4)

M4 ¼ ðΦT
kPΦk −ΦT

kPΦN−1ΦTPΦkÞ−1; (B-5)

where N ¼ ΦTPΦ. Thus, from
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�
x
ĉk

�
¼ c ¼ N−1ΦTPf ¼

�
M1 M2

M3 M4

��
ΦTPf
ΦT

kPf

�
; (B-6)

we obtain

ĉk ¼ M3ΦTPf þM4ΦT
kPf: (B-7)

Substituting equation B-4 into equation B-7 and simplifying, we ob-
tain

ĉk ¼ M4ΦT
kPðf −ΦN−1ΦTPfÞ; (B-8)

that is equation 9, noting that the term within the parentheses is g.
Computing the spectrum of a data series using equation B-8 is
much more efficient because M4 is a square matrix of order 2 for
all ks.
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